THE VERY HICH VISCOSITY OF PITCH robability Flow Minimizin · 1938 (DEC) IST DROP FELL + 1947 (FEB) 2NH DROP FELL · 1954 (APR.) BRE. DROP FELL · 1362 (MAY) ATH DEOP FELL ascha Sohl-Dickstein, and some Feat Battagino, Michael R. DeWeese Peter **Redwood Center for Theoretical Neuroscience, UC Berkeley** on and Adaptive Perception Summer School Aug 12, 2010 University of Toronto

EXPERIMENT TO SHOW

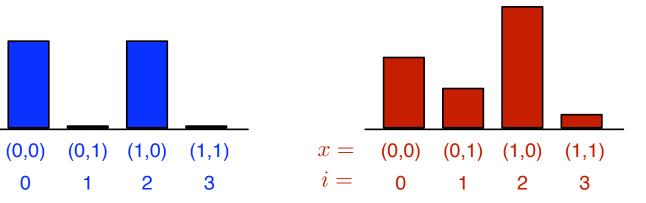
Learning in probabilistic models...

• Want to fit a parametric model to data

i =

data distribution

 $p_i^{(0)} = \frac{\text{fraction data}}{\text{in state } i}$



model distribution

$$p_i^{(\infty)}(\theta) = \frac{e^{-E_i(\theta)}}{Z(\theta)}$$
$$Z(\theta) = \sum_i e^{-E_i(\theta)}$$

• Adjust θ so the model distribution looks like the data distribution

Learning in probabilistic models...

• Maximum likelihood

$$K_{ML} = -\sum_{i} p_{i}^{(0)} \log p_{i}^{(\infty)}(\theta)$$
$$= \sum_{i} p_{i}^{(0)} E_{i}(\theta) + \log Z(\theta)$$

x = (0,0) (0,1) (1,0) (1,1)i = 0 1 2 3

model distribution

$$p_i^{(\infty)}(\theta) = \frac{e^{-E_i(\theta)}}{Z(\theta)}$$

 $Z\left(\theta\right) = \sum_{i} e^{-E_{i}\left(\theta\right)}$

• For a 100 bit binary system

$$Z(\theta) = \sum_{i=1}^{2^{100}} e^{-E_i(\theta)}$$

 $2^{100} = 1267650600228229401496703205376$

Existing Techniques

- Numerical integration, Monte Carlo sampling, mean field theory, variational bayes, pseudo likelihood, Ratio Matching, Noise Contrastive Estimation...
- Contrastive Divergence

GE Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation (2002)

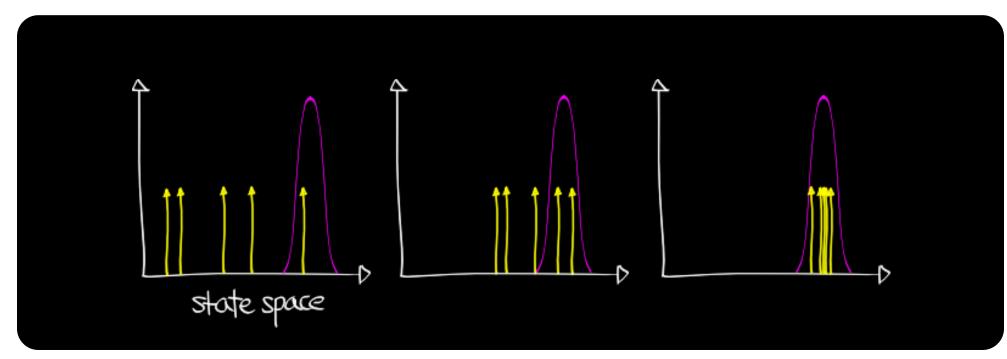
• Score Matching

A Hyvärinen. Estimation of non-normalized statistical models using score matching. *Journal of Machine Learning Research*, 6:695–709, 2005.

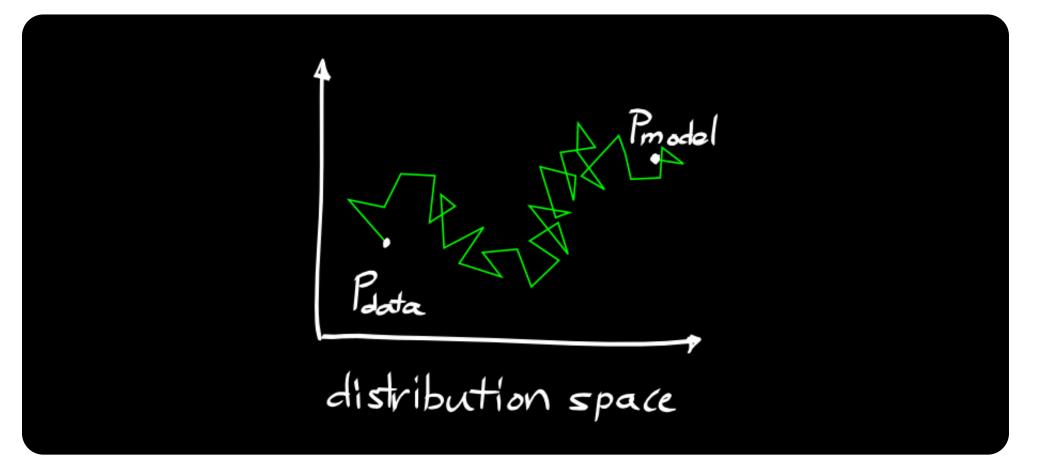
• Minimum Velocity learning

J R Movellan. A minimum velocity approach to learning. unpublished draft, Jan 2008.

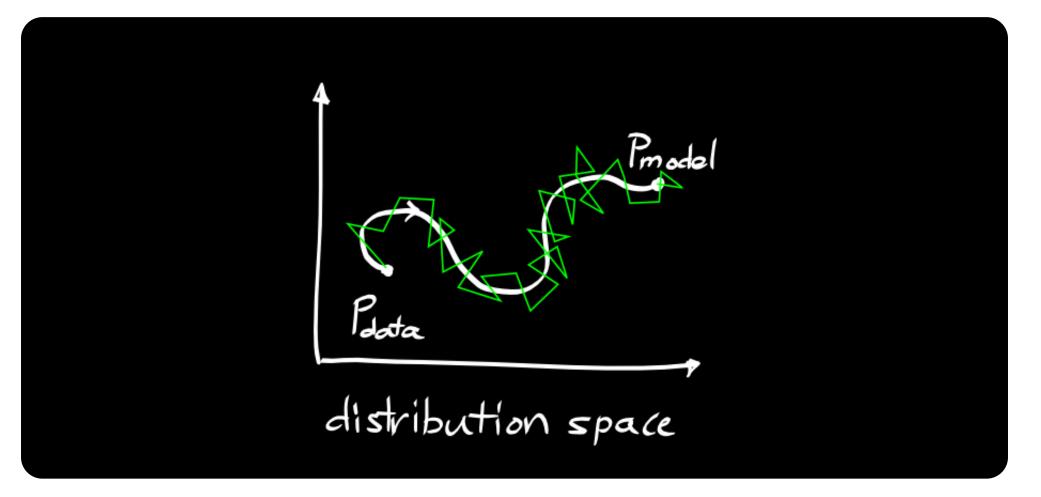
- Sampling from a distribution:
 - Take a set of samples and apply a series of stochastic transformations to it until it looks like it came from the model distribution



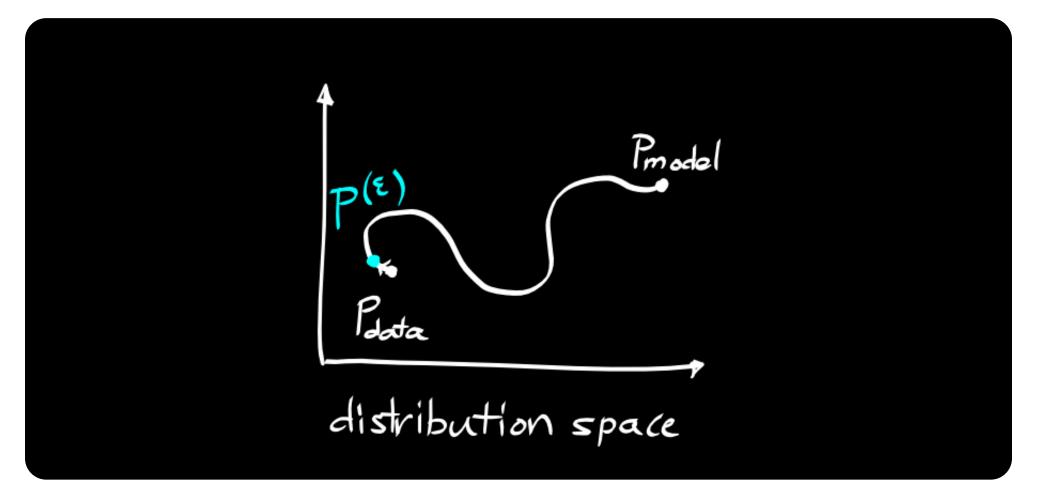
- Problem with sampling:
 - SLOW to converge for large, highdimensional data sets



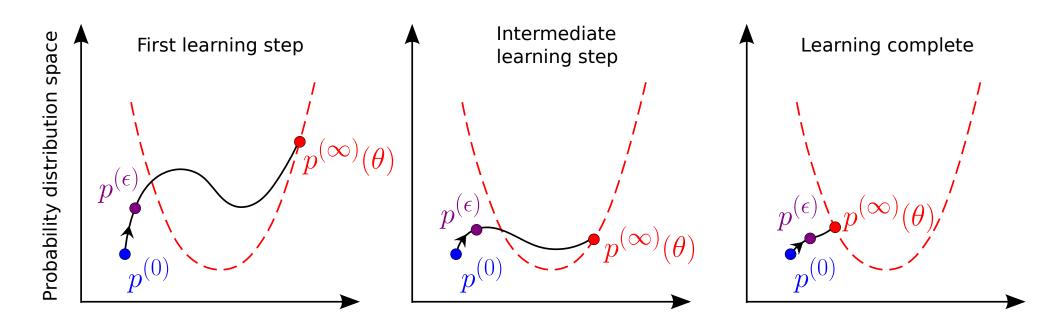
 Idea: introduce deterministic dynamics interpolating between the data and model distributions...



 …and only compare the data distribution to the distribution obtained by evolving the dynamics for a small time ε!



Minimum probability flow Overview



Master Equation

 $\dot{p}_i^{(t)} = \sum \Gamma_{ij}(\theta) \, p_j^{(t)} - \sum \Gamma_{ji}(\theta) \, p_i^{(t)}$

 $j{
eq}i$

- Transition rates Γ_{ij}
- Master equation conserves probability

 $^{j
eq i}$

flow into state i from other states j

flow into other states j from state i

• or in matrix form...:

$$\Gamma_{ii} := -\sum_{j \neq i} \Gamma_{ji}$$

 $\mathbf{\hat{p}}^{(t)} = \mathbf{\Gamma} \mathbf{p}^{(t)}$

$$\mathbf{p}^{(t)} = \exp\left(\mathbf{\Gamma}t\right)\mathbf{p}^{(0)}$$

Detailed Balance

• Detailed balance

$$\Gamma_{ji} p_i^{(\infty)}(\theta) = \Gamma_{ij} p_j^{(\infty)}(\theta)$$

• Choose $\pmb{\Gamma}$ to converge to model distribution

$$\frac{\Gamma_{ij}}{\Gamma_{ji}} = \frac{p_i^{(\infty)}(\theta)}{p_j^{(\infty)}(\theta)} = \exp\left[E_j(\theta) - E_i(\theta)\right]$$
$$\Gamma_{ij} = g_{ij} \exp\left[\frac{1}{2}\left(E_j(\theta) - E_i(\theta)\right)\right]$$

$$g_{ij} = g_{ji} = \begin{cases} 0\\ 1 \end{cases}$$

unconnected states connected states

Demo Code

• 6 unit Ising model

$$p^{(\infty)}(\mathbf{x}; \mathbf{J}) = \frac{1}{Z(\mathbf{J})} \exp\left[-\sum_{i,j} J_{ij} x_i x_j\right] \qquad \mathbf{x} = \begin{bmatrix} 0\\0\\1\\0\\1 \end{bmatrix} \qquad \begin{pmatrix} x_1\\x_2\\x_4\\x_5 \end{pmatrix}$$

• 2 dimensional random projection of $\mathbf{p}^{(t)}$

Objective Function

• Minimize $D_{KL}\left(\mathbf{p}^{(0)}||\mathbf{p}^{(\epsilon)}(\theta)\right)$, for small ϵ

 $\hat{\theta} = \arg\min_{\theta} K_{MPF}(\theta)$ $K_{MPF}(\theta) = D_{KL}\left(\mathbf{p^{(0)}}||\mathbf{p^{(\epsilon)}}(\theta)\right) \approx D_{KL}\left(\mathbf{p^{(0)}}||\mathbf{p^{(t)}}(\theta)\right)\Big|_{t=0} + \epsilon \frac{\partial D_{KL}\left(\mathbf{p^{(0)}}||\mathbf{p^{(t)}}(\theta)\right)}{\partial t}\Big|_{t=0}$ $= \epsilon \sum_{j \notin \text{data}} \mathbf{p}_{j}^{(0)}$ $= \epsilon \sum_{i \notin \text{data}} \sum_{j \in \text{data}} g_{ij} \exp\left[\frac{1}{2}\left(E_{j}\left(\theta\right) - E_{i}\left(\theta\right)\right)\right] p_{j}^{(0)}$

- Minimize initial probability flow from data states to non-data states
- No sampling!

Demo Code

• 6 unit Ising model

$$p^{(\infty)}(\mathbf{x}; \mathbf{J}) = \frac{1}{Z(\mathbf{J})} \exp\left[-\sum_{i,j} J_{ij} x_i x_j\right] \qquad \mathbf{x} = \begin{bmatrix} 0\\0\\1\\0\\1 \end{bmatrix} \qquad \begin{pmatrix} x_1\\x_2\\x_4\\x_5 \end{pmatrix}$$

• 2 dimensional random projection of $\mathbf{p}^{(t)}$

Tractability

- Data distribution $\mathbf{p}^{(0)}$ highly sparse
 - Ignore every column of Γ_{ij} for which $\mathbf{p}_j^{(0)} = 0$
- Γ_{ij} is highly sparse
 - Each state connected to only a small number of other states (eg, within Hamming ball)
- Objective function evaluation costs O(number data points × number connections per data point)

$$K_{MPF}\left(\theta\right) = \epsilon \sum_{i \notin \text{data}} \sum_{i \in \text{data}} \Gamma_{ij} p_j^{(0)}$$

Contrastive Divergence

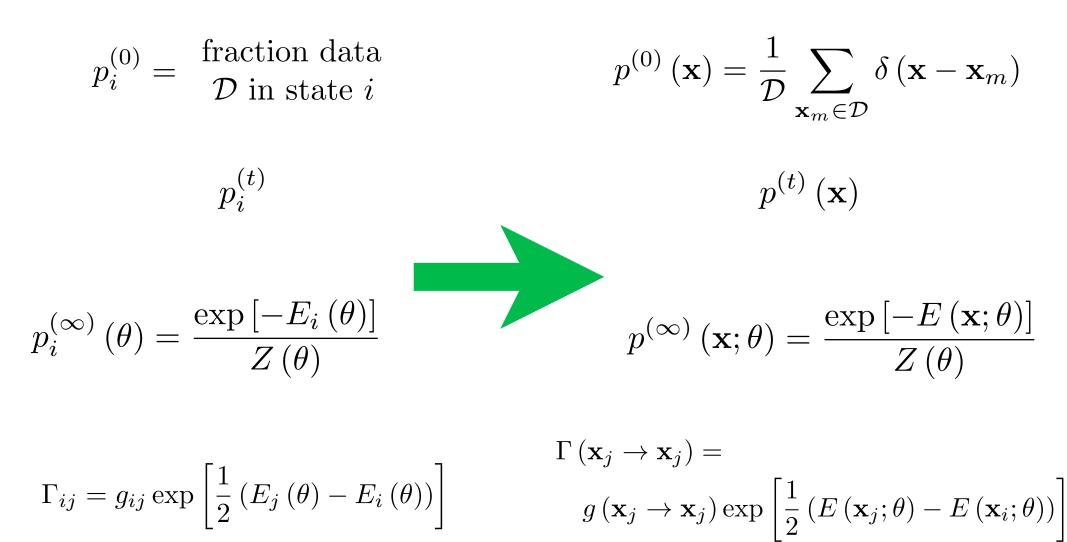
$$\Delta \theta_{CD} \propto -\sum_{i \notin \text{data}} \sum_{j \in \text{data}} p_j^{(0)} \left[\frac{\partial E_j(\theta)}{\partial \theta} - \frac{\partial E_i(\theta)}{\partial \theta} \right] \text{[probability of MCMC step from } \mathbf{j} \to \mathbf{i}]$$

$$\frac{\partial K_{MPF}\left(\theta\right)}{\partial \theta} = \epsilon \sum_{i \notin \text{data}} \sum_{j \in \text{data}} p_{j}^{(0)} \left[\frac{\partial E_{j}\left(\theta\right)}{\partial \theta} - \frac{\partial E_{i}\left(\theta\right)}{\partial \theta} \right] g_{ij} \exp\left[\frac{1}{2} \left(E_{j}\left(\theta\right) - E_{i}\left(\theta\right) \right) \right]$$

- Markov Chain sampling/rejection step replaced by weighting factor
- Objective function!
- Unique global minima when model and data agree

Continuous State Spaces

• Analogous to sum \rightarrow integral transition



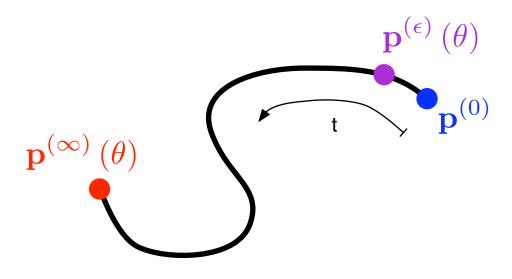
Score Matching

$$g(\mathbf{x}_{j} \to \mathbf{x}_{i}) = g(\mathbf{x}_{i} \to \mathbf{x}_{j}) = \begin{cases} 1 & ||\mathbf{x}_{j} - \mathbf{x}_{i}||_{2} < r \\ 0 & \text{otherwise} \end{cases}$$

$$\lim_{r \to 0} K_{MPF} \propto K_{SM}$$
$$= \left\langle \frac{1}{2} \nabla_{\mathbf{x}} E\left(\mathbf{x};\theta\right) \cdot \nabla_{\mathbf{x}} E\left(\mathbf{x};\theta\right) - \nabla_{\mathbf{x}}^{2} E\left(\mathbf{x};\theta\right) \right\rangle_{p^{(0)}(\mathbf{x})}$$

Objective Functions

- Maximum Likelihood $K_{ML} = D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} (\theta) \right)$
- Minimum Probability flow $K_{MPF} = D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\epsilon)} (\theta) \right)$

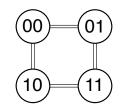


- Contrastive Divergence $K_{CD} \approx D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} (\theta) \right) - D_{KL} \left(\mathbf{p}^{(\mathbf{1})} (\theta) || \mathbf{p}^{(\infty)} (\theta) \right)$
- Score Matching

$$K_{SM} = \left\langle \frac{1}{2} \nabla_{\mathbf{x}} E\left(\mathbf{x}; \theta\right) \cdot \nabla_{\mathbf{x}} E\left(\mathbf{x}; \theta\right) - \nabla_{\mathbf{x}}^{2} E\left(\mathbf{x}; \theta\right) \right\rangle_{p^{(0)}(\mathbf{x})}$$

- Discrete space
 - Nearest neighbors

$$g_{ij} = g_{ji} = \begin{cases} 1 & i, j \text{ differ by 1 bit flip} \\ 0 & \text{otherwise} \end{cases}$$



- Continuous space
 - Hamiltonian dynamics (similar to hybrid Monte Carlo)

Extend distribution to include auxiliary momentum variables **q**

Continuous space

$$p^{(\infty)}(\mathbf{x};\theta) \qquad p^{(\infty)}(\mathbf{x};q) = p^{(\infty)}(\mathbf{x};\theta) p^{(\infty)}(\mathbf{q}) = \frac{e^{-H(\mathbf{x},\mathbf{q},\theta)}}{Z_H(\theta)}$$

$$H(\mathbf{x},\mathbf{q};\theta) = E(\mathbf{x};\theta) + \frac{1}{2}||q||_2^2$$

$$H(\mathbf{x},\mathbf{q};\theta) = E(\mathbf{x}$$

 $H(\mathbf{v}, \mathbf{a}, \mathbf{A})$

(transitions where only **q** changes don't effect objective)

 $g(\{\mathbf{x}_j,$

• Continuous space

$$p^{(\infty)}(\mathbf{x};\theta) \longrightarrow p^{(\infty)}(\mathbf{x};q) = p^{(\infty)}(\mathbf{x};\theta) p^{(\infty)}(\mathbf{q}) = \frac{e^{-H(\mathbf{x},\mathbf{q};\theta)}}{Z_H(\theta)}$$
$$H(\mathbf{x},\mathbf{q};\theta) = E(\mathbf{x};\theta) + \frac{1}{2} ||q||_2^2$$
$$g(\{\mathbf{x}_j,\mathbf{q}_j\} \to \{\mathbf{x}_i,\mathbf{q}_i\}) = g(\{\mathbf{x}_i,\mathbf{q}_i\} \to \{\mathbf{x}_j,\mathbf{q}_j\})$$
$$= \begin{cases} 1 & \mathbf{x}_i = \mathbf{x}_j \\ 1 & \{\mathbf{x}_i,\mathbf{q}_i\} = \text{leapfrog}(\{\mathbf{x}_j,\mathbf{q}_j\};\phi) \\ 0 & \text{otherwise} \end{cases}$$

Alternate between updating ϕ and minimizing K_{MPF}

I. Set
$$\phi = \theta$$

2. Set
$$\theta = \arg \min_{\theta} K_{MPF}(\theta; \phi)$$

3. Repeat

Examples - Ising

 Maximum entropy distribution over binary variables consistent with pairwise statistics

$$p^{(\infty)}(\mathbf{x}; \mathbf{J}) = \frac{1}{Z(\mathbf{J})} \exp \begin{bmatrix} -\sum_{i,j} J_{ij} x_i x_j \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 0\\0\\1\\0\\1 \end{bmatrix}$$
$$\mathbf{x}_i \in \{0, 1\}$$

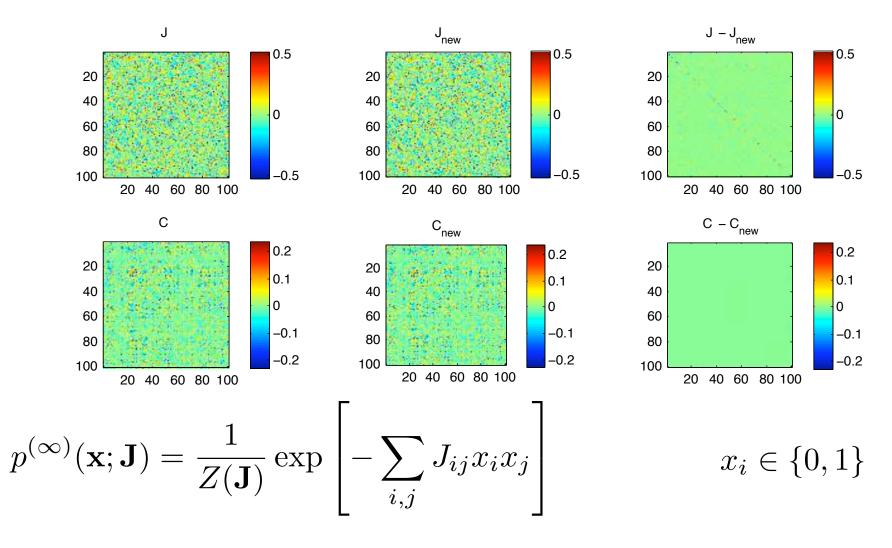
• > 2 orders of magnitude improvement in learning time

T Broderick, M Dudík, G Tkačik, R Schapire, and W Bialek. Faster solutions of the inverse pairwise ising problem. *E-print arXiv*, Jan 2007.

J Shlens, G D Field, J L Gauthier, M Greschner, A Sher, A M Litke, and E J Chichilnisky. The structure of large-scale synchronized firing in primate retina. *Journal of Neuroscience*, 29(15):5022–5031, Apr 2009.

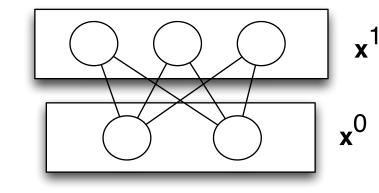
Examples - Ising

 MPF recovers Ising model parameters (100 units, 100,000 samples, J std. dev. 0.04)



Examples - RBM

• Restricted Boltzmann Machine

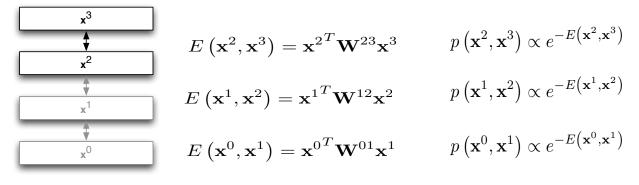


$$E(\mathbf{x}; W) = \mathbf{x}^{0^{T}} \mathbf{W} \mathbf{x}^{1}$$
$$p(\mathbf{x}; W) \propto e^{-E(\mathbf{x}; W)}$$

- Explicitly evaluate log likelihood on 20 visible unit, 20 hidden unit RBM
 - random -21.529931 bits
 - MPF -9.044596 bits
 - CDI -15.822924 bits
 - CDI0 -38.011133 bits (!!!) (continuing to increase!)

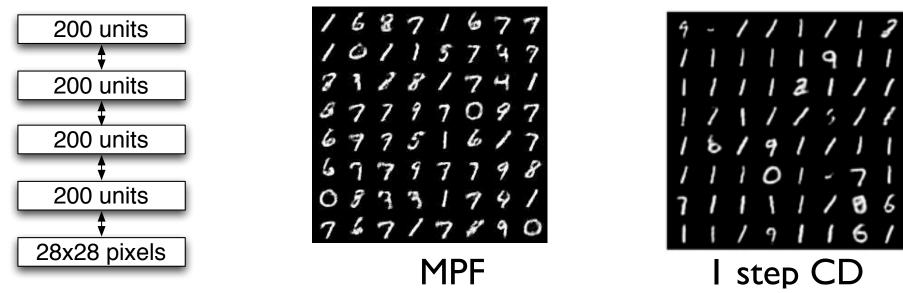
Examples - DBN

• Deep Belief Network is constructed by stacking RBMs



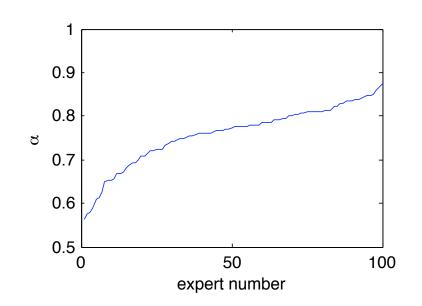
 $p\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \mathbf{x}^{2}, \mathbf{x}^{3}\right) = p\left(\mathbf{x}^{2}, \mathbf{x}^{3}\right) p\left(\mathbf{x}^{1} | \mathbf{x}^{2}\right) p\left(\mathbf{x}^{0} | \mathbf{x}^{1}\right)$

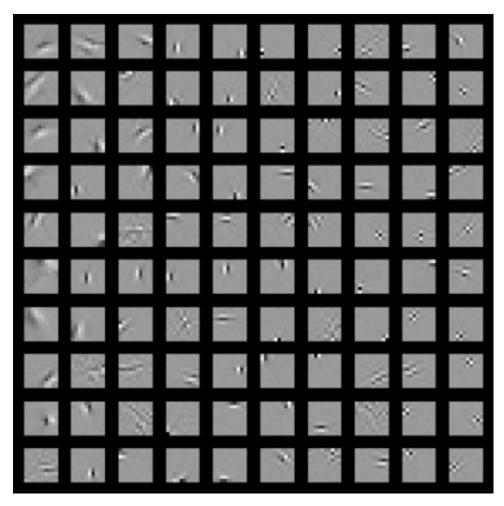
• Train DBN on MNIST digit database



Examples - Product of Student-t distributions

 $p^{(\infty)}(\mathbf{x};\mathbf{J},\alpha) \propto e^{-\sum_{i} \alpha_{i} \log\left[1+(\mathbf{J}_{i}\mathbf{x})^{2}\right]}$





MPF Summary

- General method for estimating parameters of probabilistic models
- Well defined objective function, which can be minimized using many known techniques (eg, I-BFGS, minFunc)
- Handles continuous and discrete systems
- Unique global minimum at Maximum Likelihood solution if model can exactly match data
- Convex for $\mathbf{E}(\theta)$ in exponential family (eg lsing model)
- Reduces to Minimum Velocity learning, Score Matching, and (certain forms of) Contrastive Divergence in appropriate limits

Thanks!

Discussion

Tony Bell Yoshua Bengio Charles Cadieu Cristopher Hillar Kilian Koepsell Bruno Olshausen Ashvin Vishwanath

Advisor

Co-authors

Sharing

results

Javier Movellan Jonathon Shlens Tamara Broderick Gasper Tcacik Redwood Center

Bruno Olshausen

Peter Battaglino

Michael DeWeese

Sampling Connectivity

 $\Gamma_{ji} p_{i}^{(\infty)}(\theta) = \Gamma_{ij} p_{j}^{(\infty)}(\theta) \qquad \langle \Gamma_{ji} \rangle = g_{ji} F_{ji}$ $\left\langle \Gamma_{ji} p_{i}^{(\infty)}(\theta) \right\rangle = \left\langle \Gamma_{ij} p_{j}^{(\infty)}(\theta) \right\rangle \qquad g_{ji} F_{ji} p_{i}^{(\infty)}(\theta) = g_{ij} F_{ij} p_{j}^{(\infty)}(\theta)$ $\left\langle \Gamma_{ji} \right\rangle p_{i}^{(\infty)}(\theta) = \left\langle \Gamma_{ij} \right\rangle p_{j}^{(\infty)}(\theta)$

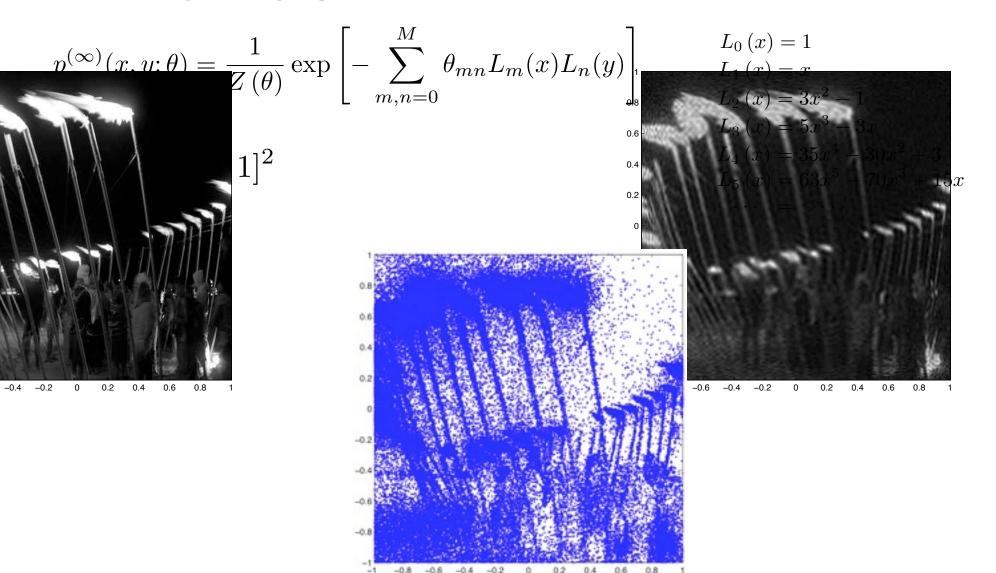
$$\frac{F_{ij}}{F_{ji}} = \frac{g_{ji}}{g_{ij}} \frac{p_i^{(\infty)}(\theta)}{p_j^{(\infty)}(\theta)} = \frac{g_{ji}}{g_{ij}} \exp\left[E_j(\theta) - E_i(\theta)\right]$$
$$F_{ij} = \left(\frac{g_{ji}}{g_{ij}}\right)^{\frac{1}{2}} \exp\left[\frac{1}{2}\left(E_j(\theta) - E_i(\theta)\right)\right]$$

$$r_{ij} \sim \text{rand } [0,1)$$

$$\Gamma_{ij} = \begin{cases} -\sum_{k \neq i} \Gamma_{ki} & i = j \\ F_{ij} & F_{ij} \leq g_{ij} \text{ and } i \neq j \\ 0 & r_{ij} > g_{ij} \text{ and } i \neq j \end{cases}$$

Examples - Power series

Fitting a highly unstructured 2-dimensional distribution



scatterplot, 100,000 samples

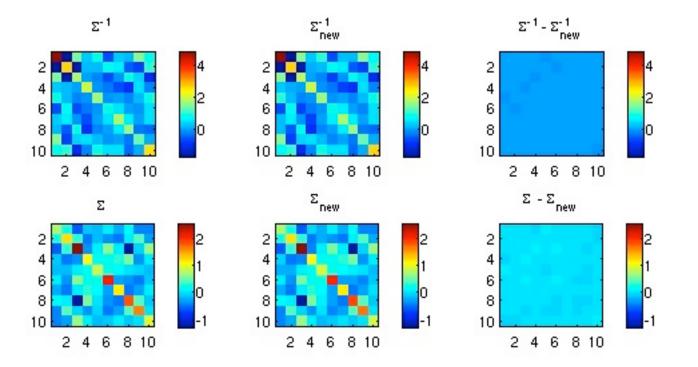
model histogram

data histogram Saturday, August 14, 2010

Examples - Gaussian

• MPF recovers parameters from 10,000 samples of a 10-dimensional Gaussian distribution

$$p^{(\infty)}(\mathbf{x}; \mathbf{\Sigma}^{-1}) = \frac{1}{Z(\mathbf{\Sigma}^{-1})} \exp\left[-\frac{1}{2}\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}\right]$$



Relationship to CD

$$K_{CD} \approx D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} (\theta) \right) - D_{KL} \left(\mathbf{p}^{(\epsilon)} (\theta) || \mathbf{p}^{(\infty)} (\theta) \right)$$

 $K_{MPF} = D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\epsilon)} \left(\theta \right) \right)$

 $D_{KL}(A||C) \le D_{KL}(A||B) + D_{KL}(B||C)$

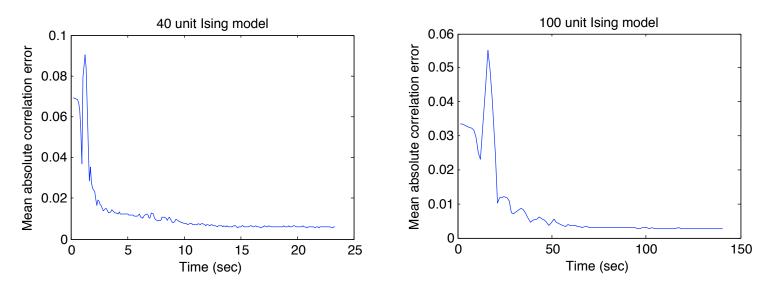
$$D_{KL}\left(\mathbf{p}^{(\mathbf{0})}||\mathbf{p}^{(\infty)}\left(\theta\right)\right) \leq D_{KL}\left(\mathbf{p}^{(\mathbf{0})}||\mathbf{p}^{(\epsilon)}\left(\theta\right)\right) + D_{KL}\left(\mathbf{p}^{(\epsilon)}\left(\theta\right)||\mathbf{p}^{(\infty)}\left(\theta\right)\right)$$
$$D_{KL}\left(\mathbf{p}^{(\mathbf{0})}||\mathbf{p}^{(\infty)}\left(\theta\right)\right) - D_{KL}\left(\mathbf{p}^{(\epsilon)}\left(\theta\right)||\mathbf{p}^{(\infty)}\left(\theta\right)\right) \leq D_{KL}\left(\mathbf{p}^{(\mathbf{0})}||\mathbf{p}^{(\epsilon)}\left(\theta\right)\right)$$

 $K_{CD} \leq K_{MPF}$

Examples - Ising

T Broderick, M Dudík, G Tkačik, R Schapire, and W Bialek. Faster solutions of the inverse pairwise ising problem. *E-print arXiv*, Jan 2007.

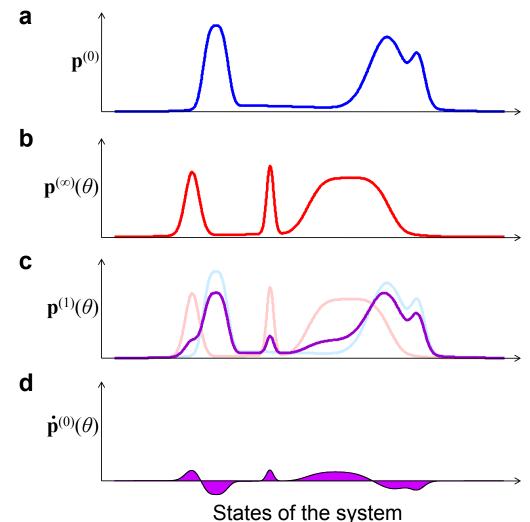
- Takes Broderick et al ~200 seconds on ~100 cores to recover parameters for 40 unit Ising model from 20,000 samples
- Using their J matrix, takes MPF ~15 seconds on 8 cores



• Learning is ~ 2 orders of magnitude faster

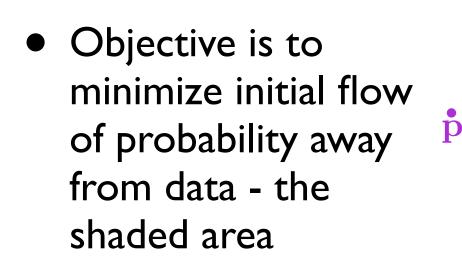
Objective function Alternate interpretation

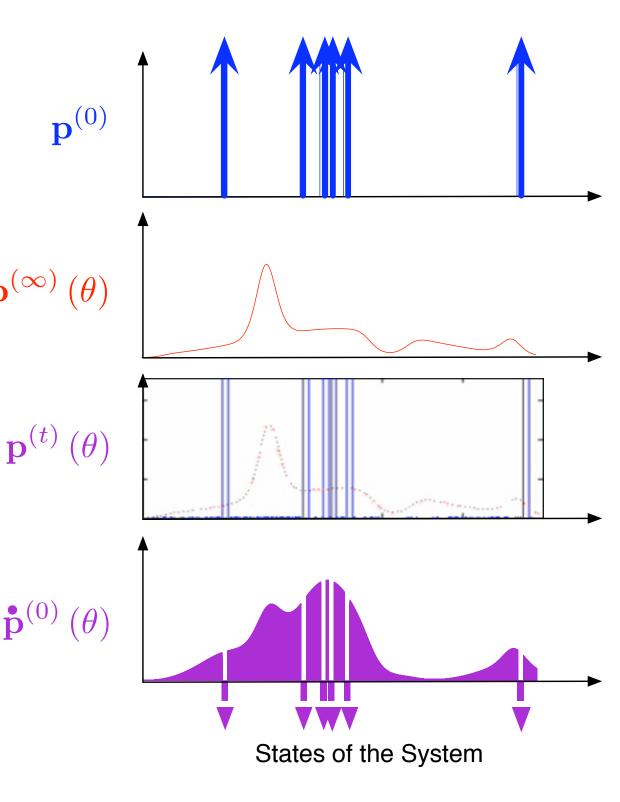
- Dynamics turn data distribution (a) into model distribution (b)
- (c) shows distribution at intermediate time
- The objective is to minimize the initial flow of probability away from the data, the shaded area in (d).

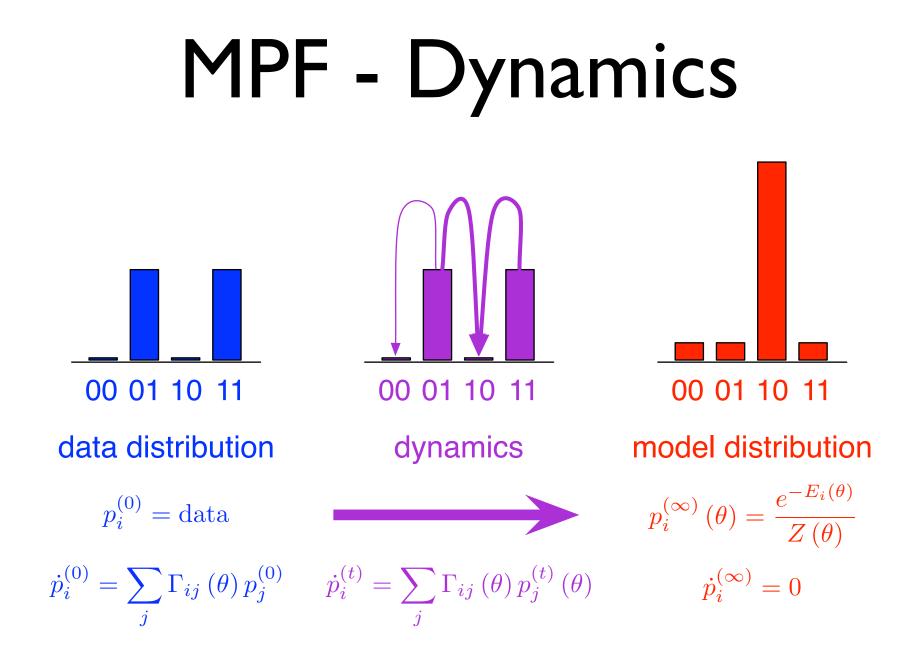


Alternative view

• Dynamics turn data $\mathbf{p}^{(\infty)}(\theta)$ distribution into model distribution

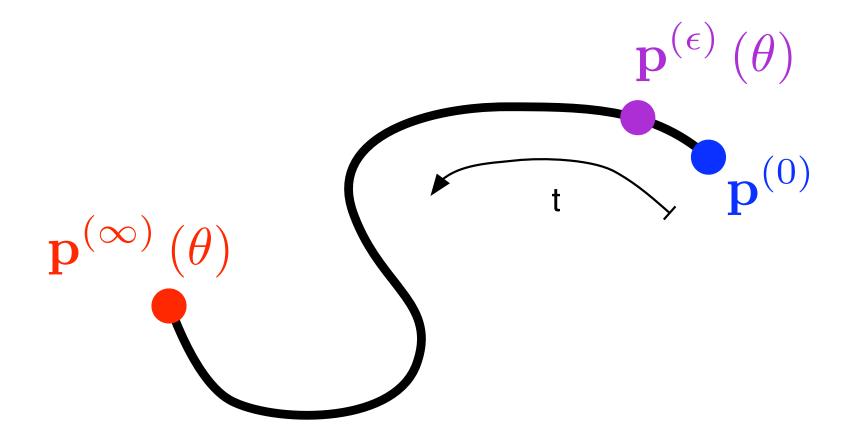






 Most Monte Carlo methods implement a stochastic version of these dynamics

Minimum probability flow Overview



Example: Boltzmann Machine

Comparison of actual visible state probabilities: 4 visible, 4 hidden VS. only 4 visible

