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Recurrent Neural Networks
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Brain state

Outputs



  

Recurrent Neural Networks

Large hidden states Rich dynamics



  

Recurrent Neural Networks

 They are much like small brains

 And we know what large brains can do

 We will see what small brains can do



  

Training RNNs

 Big deal, can't we optimize the training error? 

 Backprop through time easily computes the 
gradients of the RNN

 What's wrong with gradient descent?



  

Training RNNs

 Gradient descent simply doesn't work

 Just like deep learning is hard
 Multiple iterated non-linearities

 The RNN is often extremely sensitive to small 
changes in its parameters
 The exploding gradient problem
 Ie, the butterfly effect



  

Backprop through time

Iterated matrix multiplication is exponential: either shrink or blow up



  

Extreme sensitivity example



  

Extreme sensitivity example



  

Training RNNs

 So training RNNs is difficult
 For gradient descent

 But what if we use the Hessian-free 
optimizer?

 Can it utilize the great expressive power that 
RNNs posses? 



  

The real goal of the talk

 Is to calculate a sum

     Rich, expressive, hard to use model
                                +

             a very powerful optimizer



  

The experiments

 Tasks with pathologically long term 
dependencies 
 A task much harder than “straight memorization”

 Predict the next character in a stream of text 
using plenty of context

 Predict and Generate music



  

Extreme long term dependencies

 The multiplication problem [LSTM]

100 timesteps

1 1

.1 .4 .2 .3 .9 .1 .5 .2 .3 .8 .4 .1 .6

Output the product of the 
marked numbers



  

Hardness of multiplication

 The RNN needs to remember the marked 
numbers with high precision

 It also needs to completely ignore the 
unmarked numbers that bombard its hidden 
state

 Not a problem for our optimizer



  

Character-level language 
modelling

 Take Wikipedia

 Arrange its letters in a sequence

 Train an RNN to predict the next character from 
its past
 Train on string fragments of 100 characters



  

Specifics

 The RNN is trained to maximize the average 
log probability of the next character given its 
past

 We use a special multiplicative RNN



  

Specifics

 Different charachters have 
different “weight matrices”

1 Input character

Predictive 
distribution



  

Performance

4 gram 1.4 nats / char

PPM 1.1 nats / char

2000 unit RNN 1.02 nats / char

 Perplexity reduction: 244 to 164



  

Demo time

 Sample
 The model is probabilistic but the training is 

completely deterministic
 All the randomness is purely in the output units

 Debag

 Log prob demo, see file



  

Summary

 Little brains, or RNNs, are quite powerful
 Used to be untrainable

 The HF optimizer can train RNNs to solve very 
challenging tasks that involve significant long 
term dependencies



  

Thank you!



  

Music

 A midi file is a list of all the “notes”, with their 
beginning and end times

 Discretize time and represent the notes as 
binary vectors

 Learn to predict the notes played at the next 
timestep



  

How the data looks like
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