

Training Recurrent Neural
Networks to do cool stuff

Ilya Sutskever
James Martens

Geoff Hinton

Recurrent Neural Networks

Inputs

Brain state

Outputs

Recurrent Neural Networks

Large hidden states Rich dynamics

Recurrent Neural Networks

 They are much like small brains

 And we know what large brains can do

 We will see what small brains can do

Training RNNs

 Big deal, can't we optimize the training error?

 Backprop through time easily computes the
gradients of the RNN

 What's wrong with gradient descent?

Training RNNs

 Gradient descent simply doesn't work

 Just like deep learning is hard
 Multiple iterated non-linearities

 The RNN is often extremely sensitive to small
changes in its parameters
 The exploding gradient problem
 Ie, the butterfly effect

Backprop through time

Iterated matrix multiplication is exponential: either shrink or blow up

Extreme sensitivity example

Extreme sensitivity example

Training RNNs

 So training RNNs is difficult
 For gradient descent

 But what if we use the Hessian-free
optimizer?

 Can it utilize the great expressive power that
RNNs posses?

The real goal of the talk

 Is to calculate a sum

 Rich, expressive, hard to use model
 +

 a very powerful optimizer

The experiments

 Tasks with pathologically long term
dependencies
 A task much harder than “straight memorization”

 Predict the next character in a stream of text
using plenty of context

 Predict and Generate music

Extreme long term dependencies

 The multiplication problem [LSTM]

100 timesteps

1 1

.1 .4 .2 .3 .9 .1 .5 .2 .3 .8 .4 .1 .6

Output the product of the
marked numbers

Hardness of multiplication

 The RNN needs to remember the marked
numbers with high precision

 It also needs to completely ignore the
unmarked numbers that bombard its hidden
state

 Not a problem for our optimizer

Character-level language
modelling

 Take Wikipedia

 Arrange its letters in a sequence

 Train an RNN to predict the next character from
its past
 Train on string fragments of 100 characters

Specifics

 The RNN is trained to maximize the average
log probability of the next character given its
past

 We use a special multiplicative RNN

Specifics

 Different charachters have
different “weight matrices”

1 Input character

Predictive
distribution

Performance

4 gram 1.4 nats / char

PPM 1.1 nats / char

2000 unit RNN 1.02 nats / char

 Perplexity reduction: 244 to 164

Demo time

 Sample
 The model is probabilistic but the training is

completely deterministic
 All the randomness is purely in the output units

 Debag

 Log prob demo, see file

Summary

 Little brains, or RNNs, are quite powerful
 Used to be untrainable

 The HF optimizer can train RNNs to solve very
challenging tasks that involve significant long
term dependencies

Thank you!

Music

 A midi file is a list of all the “notes”, with their
beginning and end times

 Discretize time and represent the notes as
binary vectors

 Learn to predict the notes played at the next
timestep

How the data looks like

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

