Training Recurrent Neural

Networks to do cool stuff

llya Sutskever
James Martens
Geoff Hinton



Recurrent Neural Networks

Brain state




Recurrent Neural Networks




Recurrent Neural Networks

= They are much like small brains
= And we know what large brains can do

= \We will see what small brains can do



Training RNNs

= Big deal, can't we optimize the training error?

= Backprop through time easily computes the
gradients of the RNN

= What's wrong with gradient descent?



Training RNNs

= Gradient descent simply doesn't work

= Just like deep learning is hard
= Multiple iterated non-linearities

= The RNN is often extremely sensitive to small
changes in its parameters

= The exploding gradient problem
= le, the butterfly effect



Backprop through time

s i e

lterated matrix multiplication is exponential: either shrink or blow up




Extreme sensitivity example




Extreme sensitivity example




Training RNNs

= So training RNNs is difficult

= For gradient descent

= But what if we use the Hessian-free
optimizer?

= Can it utilize the great expressive power that
RNNs posses?



The real goal of the talk

» |s to calculate a sum

Rich, expressive, hard to use model
+

a very powerful optimizer




The experiments

= Tasks with pathologically long term
dependencies

= A task much harder than “straight memorization”

= Predict the next character in a stream of text
using plenty of context

= Predict and Generate music



Extreme long term dependencies

= The multiplication problem [LSTM]

- 100 timesteps >

Output the product of the
marked numbers



Hardness of multiplication

= The RNN needs to remember the marked
numbers with high precision

= |t also needs to completely ignore the
unmarked numbers that bombard its hidden
state

= Not a problem for our optimizer



Character-level language

modellinc

= Take Wikipedia
= Arrange Iits letters in a sequence
= Train an RNN to predict the next character from

its past
= Train on string fragments of 100 characters



= The RNN is trained to maximize the average

log probability of the next character given its
past

= We use a special multiplicative RNN



= Different charachters have
different “weight matrices”

Predictive
distribution

‘ G ‘ <+—— |nput character




Performance

4 gram 1.4 nats / char
PPM 1.1 nats / char
2000 unit RNN 1.02 nats / char

= Perplexity reduction: 244 to 164



= Sample

= The model is probabilistic but the training is
completely deterministic

= All the randomness is purely in the output units

= Debag

= Log prob demo, see file



= Little brains, or RNNs, are quite powerful
= Used to be untrainable

= The HF optimizer can train RNNs to solve very
challenging tasks that involve significant long
term dependencies



Thank you!



= A midi file is a list of all the “notes”, with their
beginning and end times

= Discretize time and represent the notes as
binary vectors

= Learn to predict the notes played at the next
timestep



How the data looks like

100

120




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

