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Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers
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Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

increased frequency and severity of bad local
minima:

pathological curvature, like the
type seen in the well-known
Rosenbrock function:

f (x , y) = (1− x)2 + 100(y − x2)2
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Attempted solutions for deep learning problem

Some early attempts address the vanishing gradients/pathological
curvature issue:

Momentum

average of the previous gradients with exponential decay

physical analogy: builds “momentum” while descending down narrow
valleys

Adaptive learning rates (“R-prop”)

attempts to address the “vanishing gradients” problem directly

individual parameters have learning rates that are adapted dynamically

like a heuristically computed diagonal Hessian approximation
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Pre-training for deep auto-encoders

(from Hinton and Salakhutdinov, 2006)
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Pre-training (cont.)

doesn’t generalize to all the sorts of deep-architectures we might wish
to train
still requires a classical optimization algorithm to “fine-tune” the
parameters
does it get full power out of deep auto-encoders?

(from Hinton and Salakhutdinov, 2006)James Martens (U of T) Deep Learning via HF August 13, 2010 6 / 29



2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29



2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29



2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29



2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29



The importance of curvature (cont.)

Cartoon example of pathological curvature: the long narrow valley

consider the following example where low and high-curvature
directions co-occur. Using gradient descent gives one of the following
2 undesirable behaviors:

large learning rate: high curva-
ture directions pursued too far, un-
desirable “bouncing” behavior

small learning rate: progress
along low curvature directions is far
too slow
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Pathological curvature in deep-nets

Suppose we have 2 nearly identical units (i.e. nearly identical weights
and biases). Let i and j be the two red weights. Let d direction with
dk = δik − δjk . d is a direction which differentiates these weights.

Then the reduction is low: −∇f >d = (∇f )j − (∇f )i ≈ 0

But so is the curvature: d>Hd = (Hii −Hij) + (Hjj −Hji ) ≈ 0 + 0 = 0

Left: Neural net with nearly identi-
cal units (in the middle layer). Two
weights with the same color have
nearly identical values.

Right: Graphical representation of d

+
|
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Vanishing Curvature

define the direction d by dk = δik

low reduction along d : −∇f >d = −(∇f )i ≈ 0

but also low curvature: d>Hd = −Hii = ∂2f
∂θ2

i
≈ 0

Output LayerInput Layer

Backprop directionweight i

so a 2nd-order optimizer will pursue d at a reasonable rate, an elegant
solution to the vanishing gradient problem of 1st-order optimizers
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Practical Considerations for 2nd-order optimization

Hessian size problem

for machine learning models the number of parameter N can be very
large

we can’t possibly calculate or even store a N × N matrix, let alone
invert one

Quasi-Newton Methods

non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

approximate diagonal or block-diagonal Hessian

Unfortunately these don’t seem to resolve the deep-learning problem
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Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!
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Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that
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Standard Hessian-free Optimization

Pseudo-code for a simple variant of damped Hessian-free optimization:

1: for n = 1 to max-epochs do
2: compute gradient gn = ∇f (θn)
3: choose/adapt λn according to some heuristic
4: define the function Bn(v) = Hv + λnv
5: pn = CGMinimize(Bn,−gn)
6: θn+1 = θn + pn

7: end for

In addition to choosing λn, the stopping criterion for the CG algorithm is a
critical detail.
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Common variants of the HF approach

Basic/naive

λn = 0, CG iterations stopped when residual ‖Bp + g‖ reaches some
error tolerance or when negative curvature is detected

CG-Steihaug

λn = 0 and instead maintain a heuristically adjusted trust region

when the iterates produced by the inner CG loop leave the trust
region the loops terminates

Trust-region Newton-Lanczos Method

λn is (very expensively) computed to give match a given trust region
radius

robust even when the Hessian is indefinite
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A new variant is required

the bad news: common variants of HF (e.g. Steihaug) don’t work
particular well for neural networks

there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

how can deal with negative curvature?

how should we choose λ?

how can we handle large data-sets

when should we stop the CG iterations?

can CG be accelerated?
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Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)
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Forwards and backwards pass to compute the gradient

θ = (W1, b1,W2, b2, ...,WL, bL)

1: y1 = ~in
2: for i = 1 to L do
3: xi = Wiyi + bi

4: yi = σ(xi )
5: end for
6: for i = L down to 1 do
7: if i < L then
8: dE

dxi
= dE

dxi+1
� yi+1 � (1− yi+1)

9: else
10: dE

dxi
= ~out − yi+1

11: end if
12: dE

dyi
= W T

i
dE
dxi

13: dE
dWi

= dE
dxi

yT
i

14: dE
dbi

= dE
dxi

15: end for
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The same code with the R-operator applied computes Hv

v = (V1, c1, ...,VL, cL), Hv = (R{ dE
dW1
},R{ dE

db1
}, ...,R{ dE

dWL
},R{ dE

dbL
})

1: R{y1} = 0
2: for i = 1 to L do
3: R{xi} = WiR{yi}+ Viyi + ci

4: R{yi} = R{xi} � yi+1 � (1− yi+1)
5: end for
6: for i = L down to 1 do
7: if i < L then
8: R{ dE

dxi
} = R{ dE

dxi+1
} � yi+1 � (1− yi+1) + dE

dxi+1
� R{yi+1} � (1− 2yi+1)

9: else
10: R{ dE

dxi
} = −R{yi+1}

11: end if
12: R{ dE

dyi
} = V T

i
dE
dxi

+ W T
i R{ dE

dxi
}

13: R{ dE
dWi
} = R{ dE

dxi
}yT

i + dE
dxi

R{yi}T

14: R{ dE
dbi
} = R{ dE

dxi
}

15: end for
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The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually applied to non-linear least-squares problems where it is given
by G = JT J (J is the Jacobian of the output units w.r.t. θ)

can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e.g. logistic units with cross-entropy error

works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv
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CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2 )‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about
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CG stopping conditions (cont.)

we found that terminating CG once the relative per-iteration
reduction rate fell below some tolerance ε worked best

∆q

q
< ε

(∆q is the change in the quadratic model averaged over some window
of the last k iterations of CG)
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Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often
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mini-batches since they are needed much less often
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Damping the curvature matrix

we don’t completely trust the quadratic model as an approximation

a good way to account for this is to “damp” B

we take B = G + λI where λ is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:

ρ← f (θ+p)−f (θ)
qθ(p)−qθ(0)

if ρ < 1
4 then

λ← 3
2λ

else if ρ > 3
4 then

λ← 2
3λ

end if
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Structural damping

the normal damping term can be interpreted as putting an `2 prior on
the parameters that says “don’t change”:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>(G + λI)p

= f (θ) +∇f (θ)>p +
1

2
p>Gp +

λ

2
‖p‖2

this treats all directions in parameter space “equally”

however, some directions lead to large fluctuations in the hidden-unit
activations whilst others have a much smaller effect

for extremely non-linear models like Recurrent Neural Nets (RNNs)
we expect this effect to be pronounced and so we would prefer to
“damp” directions in a more intelligent way
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Structural damping (cont.)

so let’s put a “do not change” prior on the hidden unit activities ht !

for example, we could add the term:

γ

2
‖h(θ + p)− h(θ)‖2

unlike λ
2‖p‖

2 this term is not quadratic in p
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however, we can make it so by applying the usual Gauss-Newton
approximation

this gives the following contribution to q:

γ

2
pJ>h Jhp

where Jh is the Jacobian of the hidden units w.r.t. the parameters

fortunately Jhv occurs as an intermediate quantity in the algorithm
for computing Jv

so it is a trivial matter to modify the algorithm include the term
γ
2pJ>h Jhp
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Other enhancements

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)
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Thank you for your attention
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