
Deep Learning via Hessian-free Optimization

James Martens

University of Toronto

August 13, 2010

UNIVERSITY OF TORONTO

Computer Science

James Martens (U of T) Deep Learning via HF August 13, 2010 1 / 29

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF August 13, 2010 2 / 29

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF August 13, 2010 2 / 29

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF August 13, 2010 2 / 29

Gradient descent is bad at learning deep nets

The common experience:

gradient descent gets much slower as the depth increases

large enough depth → learning to slow to a crawl or even “stops” →
severe under-fitting (poor performance on the training set)

“vanishing-gradients problem”: error signal decays as it is
backpropagated

Output LayerInput Layer

the gradient is tiny for weights in early layers

James Martens (U of T) Deep Learning via HF August 13, 2010 2 / 29

Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

increased frequency and severity of bad local
minima:

pathological curvature, like the
type seen in the well-known
Rosenbrock function:

f (x , y) = (1− x)2 + 100(y − x2)2

James Martens (U of T) Deep Learning via HF August 13, 2010 3 / 29

Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

increased frequency and severity of bad local
minima:

pathological curvature, like the
type seen in the well-known
Rosenbrock function:

f (x , y) = (1− x)2 + 100(y − x2)2

James Martens (U of T) Deep Learning via HF August 13, 2010 3 / 29

Attempted solutions for deep learning problem

Some early attempts address the vanishing gradients/pathological
curvature issue:

Momentum

average of the previous gradients with exponential decay

physical analogy: builds “momentum” while descending down narrow
valleys

Adaptive learning rates (“R-prop”)

attempts to address the “vanishing gradients” problem directly

individual parameters have learning rates that are adapted dynamically

like a heuristically computed diagonal Hessian approximation

James Martens (U of T) Deep Learning via HF August 13, 2010 4 / 29

Pre-training for deep auto-encoders

(from Hinton and Salakhutdinov, 2006)
James Martens (U of T) Deep Learning via HF August 13, 2010 5 / 29

Pre-training (cont.)

doesn’t generalize to all the sorts of deep-architectures we might wish
to train
still requires a classical optimization algorithm to “fine-tune” the
parameters
does it get full power out of deep auto-encoders?

(from Hinton and Salakhutdinov, 2006)James Martens (U of T) Deep Learning via HF August 13, 2010 6 / 29

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29

2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

model the objective function by the local approximation:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>Bp

where B is a matrix which quantifies curvature

in Newton’s method, B = H or H + λI

fully optimizing qθ(p) this w.r.t. p gives: p = −B−1∇f (θ)

update is: θ ← θ + αp for some α ≤ 1 determined by a line search

James Martens (U of T) Deep Learning via HF August 13, 2010 7 / 29

The importance of curvature (cont.)

Cartoon example of pathological curvature: the long narrow valley

consider the following example where low and high-curvature
directions co-occur. Using gradient descent gives one of the following
2 undesirable behaviors:

large learning rate: high curva-
ture directions pursued too far, un-
desirable “bouncing” behavior

small learning rate: progress
along low curvature directions is far
too slow

James Martens (U of T) Deep Learning via HF August 13, 2010 8 / 29

Pathological curvature in deep-nets

Suppose we have 2 nearly identical units (i.e. nearly identical weights
and biases). Let i and j be the two red weights. Let d direction with
dk = δik − δjk . d is a direction which differentiates these weights.

Then the reduction is low: −∇f >d = (∇f)j − (∇f)i ≈ 0

But so is the curvature: d>Hd = (Hii −Hij) + (Hjj −Hji) ≈ 0 + 0 = 0

Left: Neural net with nearly identi-
cal units (in the middle layer). Two
weights with the same color have
nearly identical values.

Right: Graphical representation of d

+
|

James Martens (U of T) Deep Learning via HF August 13, 2010 9 / 29

Vanishing Curvature

define the direction d by dk = δik

low reduction along d : −∇f >d = −(∇f)i ≈ 0

but also low curvature: d>Hd = −Hii = ∂2f
∂θ2

i
≈ 0

Output LayerInput Layer

Backprop directionweight i

so a 2nd-order optimizer will pursue d at a reasonable rate, an elegant
solution to the vanishing gradient problem of 1st-order optimizers

James Martens (U of T) Deep Learning via HF August 13, 2010 10 / 29

Practical Considerations for 2nd-order optimization

Hessian size problem

for machine learning models the number of parameter N can be very
large

we can’t possibly calculate or even store a N × N matrix, let alone
invert one

Quasi-Newton Methods

non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

approximate diagonal or block-diagonal Hessian

Unfortunately these don’t seem to resolve the deep-learning problem

James Martens (U of T) Deep Learning via HF August 13, 2010 11 / 29

Practical Considerations for 2nd-order optimization

Hessian size problem

for machine learning models the number of parameter N can be very
large

we can’t possibly calculate or even store a N × N matrix, let alone
invert one

Quasi-Newton Methods

non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

approximate diagonal or block-diagonal Hessian

Unfortunately these don’t seem to resolve the deep-learning problem

James Martens (U of T) Deep Learning via HF August 13, 2010 11 / 29

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF August 13, 2010 12 / 29

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF August 13, 2010 12 / 29

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF August 13, 2010 12 / 29

Hessian-free optimization

a quasi-newton method that uses no low-rank approximations

named ’free’ because we never explicitly compute B

First motivating observation

it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

e.g. use finite differences to approximate the limit:

Hv = lim
ε→0

∇f (θ + εv)−∇f (θ)

ε

Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!

James Martens (U of T) Deep Learning via HF August 13, 2010 12 / 29

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF August 13, 2010 13 / 29

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF August 13, 2010 13 / 29

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF August 13, 2010 13 / 29

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF August 13, 2010 13 / 29

Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic q ≡ p>Bp/2 + g>p and not the
residual ‖Bp + g‖2 → these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(θ) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that

James Martens (U of T) Deep Learning via HF August 13, 2010 13 / 29

Standard Hessian-free Optimization

Pseudo-code for a simple variant of damped Hessian-free optimization:

1: for n = 1 to max-epochs do
2: compute gradient gn = ∇f (θn)
3: choose/adapt λn according to some heuristic
4: define the function Bn(v) = Hv + λnv
5: pn = CGMinimize(Bn,−gn)
6: θn+1 = θn + pn

7: end for

In addition to choosing λn, the stopping criterion for the CG algorithm is a
critical detail.

James Martens (U of T) Deep Learning via HF August 13, 2010 14 / 29

Common variants of the HF approach

Basic/naive

λn = 0, CG iterations stopped when residual ‖Bp + g‖ reaches some
error tolerance or when negative curvature is detected

CG-Steihaug

λn = 0 and instead maintain a heuristically adjusted trust region

when the iterates produced by the inner CG loop leave the trust
region the loops terminates

Trust-region Newton-Lanczos Method

λn is (very expensively) computed to give match a given trust region
radius

robust even when the Hessian is indefinite

James Martens (U of T) Deep Learning via HF August 13, 2010 15 / 29

A new variant is required

the bad news: common variants of HF (e.g. Steihaug) don’t work
particular well for neural networks

there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

how can deal with negative curvature?

how should we choose λ?

how can we handle large data-sets

when should we stop the CG iterations?

can CG be accelerated?

James Martens (U of T) Deep Learning via HF August 13, 2010 16 / 29

A new variant is required

the bad news: common variants of HF (e.g. Steihaug) don’t work
particular well for neural networks

there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

how can deal with negative curvature?

how should we choose λ?

how can we handle large data-sets

when should we stop the CG iterations?

can CG be accelerated?

James Martens (U of T) Deep Learning via HF August 13, 2010 16 / 29

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF August 13, 2010 17 / 29

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF August 13, 2010 17 / 29

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF August 13, 2010 17 / 29

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF August 13, 2010 17 / 29

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF August 13, 2010 17 / 29

Pearlmutter’s R-operator method

finite-difference approximations are undesirable for many reasons

there is a better way to compute Hv due to Pearlmutter (1994)

similar cost to a gradient computation

for neural nets, no extra non-linear functions need to be evaluated

technique generalizes to almost any twice-differentiable function that
is tractable to compute

can be automated (like automatic differentiation)

James Martens (U of T) Deep Learning via HF August 13, 2010 17 / 29

Forwards and backwards pass to compute the gradient

θ = (W1, b1,W2, b2, ...,WL, bL)

1: y1 = ~in
2: for i = 1 to L do
3: xi = Wiyi + bi

4: yi = σ(xi)
5: end for
6: for i = L down to 1 do
7: if i < L then
8: dE

dxi
= dE

dxi+1
� yi+1 � (1− yi+1)

9: else
10: dE

dxi
= ~out − yi+1

11: end if
12: dE

dyi
= W T

i
dE
dxi

13: dE
dWi

= dE
dxi

yT
i

14: dE
dbi

= dE
dxi

15: end for

James Martens (U of T) Deep Learning via HF August 13, 2010 18 / 29

The same code with the R-operator applied computes Hv

v = (V1, c1, ...,VL, cL), Hv = (R{ dE
dW1
},R{ dE

db1
}, ...,R{ dE

dWL
},R{ dE

dbL
})

1: R{y1} = 0
2: for i = 1 to L do
3: R{xi} = WiR{yi}+ Viyi + ci

4: R{yi} = R{xi} � yi+1 � (1− yi+1)
5: end for
6: for i = L down to 1 do
7: if i < L then
8: R{ dE

dxi
} = R{ dE

dxi+1
} � yi+1 � (1− yi+1) + dE

dxi+1
� R{yi+1} � (1− 2yi+1)

9: else
10: R{ dE

dxi
} = −R{yi+1}

11: end if
12: R{ dE

dyi
} = V T

i
dE
dxi

+ W T
i R{ dE

dxi
}

13: R{ dE
dWi
} = R{ dE

dxi
}yT

i + dE
dxi

R{yi}T

14: R{ dE
dbi
} = R{ dE

dxi
}

15: end for

James Martens (U of T) Deep Learning via HF August 13, 2010 19 / 29

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually applied to non-linear least-squares problems where it is given
by G = JT J (J is the Jacobian of the output units w.r.t. θ)

can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e.g. logistic units with cross-entropy error

works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF August 13, 2010 20 / 29

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually applied to non-linear least-squares problems where it is given
by G = JT J (J is the Jacobian of the output units w.r.t. θ)

can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e.g. logistic units with cross-entropy error

works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF August 13, 2010 20 / 29

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually applied to non-linear least-squares problems where it is given
by G = JT J (J is the Jacobian of the output units w.r.t. θ)

can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e.g. logistic units with cross-entropy error

works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF August 13, 2010 20 / 29

The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

usually applied to non-linear least-squares problems where it is given
by G = JT J (J is the Jacobian of the output units w.r.t. θ)

can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e.g. logistic units with cross-entropy error

works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)

and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF August 13, 2010 20 / 29

CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2)‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about

0 50 100 150 200 250
−2

0

2

4

6
x 10

4

iteration

qθ(p) vs iteration

50 100 150 200 250
0

2

4

6

x 10
10

iteration

|| Bp + g ||2 vs iteration

James Martens (U of T) Deep Learning via HF August 13, 2010 21 / 29

CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2)‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about

0 50 100 150 200 250
−2

0

2

4

6
x 10

4

iteration

qθ(p) vs iteration

50 100 150 200 250
0

2

4

6

x 10
10

iteration

|| Bp + g ||2 vs iteration

James Martens (U of T) Deep Learning via HF August 13, 2010 21 / 29

CG stopping conditions

CG is only guaranteed to converge after N (size of parameter space)
iterations −→ we can’t always run it to convergence

the standard stopping criterion used in most versions of HF is

‖r‖ < min(1
2 , ‖g‖

1
2)‖g‖ where r = Bp + g is the “residual”

strictly speaking ‖r‖ is not the quantity that CG minimizes, nor is it
the one we really care about

0 50 100 150 200 250
−2

0

2

4

6
x 10

4

iteration

qθ(p) vs iteration

50 100 150 200 250
0

2

4

6

x 10
10

iteration

|| Bp + g ||2 vs iteration

James Martens (U of T) Deep Learning via HF August 13, 2010 21 / 29

CG stopping conditions (cont.)

we found that terminating CG once the relative per-iteration
reduction rate fell below some tolerance ε worked best

∆q

q
< ε

(∆q is the change in the quadratic model averaged over some window
of the last k iterations of CG)

James Martens (U of T) Deep Learning via HF August 13, 2010 22 / 29

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF August 13, 2010 23 / 29

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF August 13, 2010 23 / 29

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF August 13, 2010 23 / 29

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF August 13, 2010 23 / 29

Handling large datasets

each iteration of CG requires the evaluation of the product Bv for
some v

naively this requires a pass over the training data-set

but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

size is related to model and qualitative aspects of the dataset, but
critically not its size

for very large datasets, mini-batches might be a tiny fraction of the
whole

gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often

James Martens (U of T) Deep Learning via HF August 13, 2010 23 / 29

Damping the curvature matrix

we don’t completely trust the quadratic model as an approximation

a good way to account for this is to “damp” B

we take B = G + λI where λ is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:

ρ← f (θ+p)−f (θ)
qθ(p)−qθ(0)

if ρ < 1
4 then

λ← 3
2λ

else if ρ > 3
4 then

λ← 2
3λ

end if

James Martens (U of T) Deep Learning via HF August 13, 2010 24 / 29

Damping the curvature matrix

we don’t completely trust the quadratic model as an approximation

a good way to account for this is to “damp” B

we take B = G + λI where λ is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:

ρ← f (θ+p)−f (θ)
qθ(p)−qθ(0)

if ρ < 1
4 then

λ← 3
2λ

else if ρ > 3
4 then

λ← 2
3λ

end if

James Martens (U of T) Deep Learning via HF August 13, 2010 24 / 29

Damping the curvature matrix

we don’t completely trust the quadratic model as an approximation

a good way to account for this is to “damp” B

we take B = G + λI where λ is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:

ρ← f (θ+p)−f (θ)
qθ(p)−qθ(0)

if ρ < 1
4 then

λ← 3
2λ

else if ρ > 3
4 then

λ← 2
3λ

end if

James Martens (U of T) Deep Learning via HF August 13, 2010 24 / 29

Damping the curvature matrix

we don’t completely trust the quadratic model as an approximation

a good way to account for this is to “damp” B

we take B = G + λI where λ is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:

ρ← f (θ+p)−f (θ)
qθ(p)−qθ(0)

if ρ < 1
4 then

λ← 3
2λ

else if ρ > 3
4 then

λ← 2
3λ

end if

James Martens (U of T) Deep Learning via HF August 13, 2010 24 / 29

Structural damping

the normal damping term can be interpreted as putting an `2 prior on
the parameters that says “don’t change”:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>(G + λI)p

= f (θ) +∇f (θ)>p +
1

2
p>Gp +

λ

2
‖p‖2

this treats all directions in parameter space “equally”

however, some directions lead to large fluctuations in the hidden-unit
activations whilst others have a much smaller effect

for extremely non-linear models like Recurrent Neural Nets (RNNs)
we expect this effect to be pronounced and so we would prefer to
“damp” directions in a more intelligent way

James Martens (U of T) Deep Learning via HF August 13, 2010 25 / 29

Structural damping

the normal damping term can be interpreted as putting an `2 prior on
the parameters that says “don’t change”:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>(G + λI)p

= f (θ) +∇f (θ)>p +
1

2
p>Gp +

λ

2
‖p‖2

this treats all directions in parameter space “equally”

however, some directions lead to large fluctuations in the hidden-unit
activations whilst others have a much smaller effect

for extremely non-linear models like Recurrent Neural Nets (RNNs)
we expect this effect to be pronounced and so we would prefer to
“damp” directions in a more intelligent way

James Martens (U of T) Deep Learning via HF August 13, 2010 25 / 29

Structural damping

the normal damping term can be interpreted as putting an `2 prior on
the parameters that says “don’t change”:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>(G + λI)p

= f (θ) +∇f (θ)>p +
1

2
p>Gp +

λ

2
‖p‖2

this treats all directions in parameter space “equally”

however, some directions lead to large fluctuations in the hidden-unit
activations whilst others have a much smaller effect

for extremely non-linear models like Recurrent Neural Nets (RNNs)
we expect this effect to be pronounced and so we would prefer to
“damp” directions in a more intelligent way

James Martens (U of T) Deep Learning via HF August 13, 2010 25 / 29

Structural damping

the normal damping term can be interpreted as putting an `2 prior on
the parameters that says “don’t change”:

f (θ + p) ≈ qθ(p) ≡ f (θ) +∇f (θ)>p +
1

2
p>(G + λI)p

= f (θ) +∇f (θ)>p +
1

2
p>Gp +

λ

2
‖p‖2

this treats all directions in parameter space “equally”

however, some directions lead to large fluctuations in the hidden-unit
activations whilst others have a much smaller effect

for extremely non-linear models like Recurrent Neural Nets (RNNs)
we expect this effect to be pronounced and so we would prefer to
“damp” directions in a more intelligent way

James Martens (U of T) Deep Learning via HF August 13, 2010 25 / 29

Structural damping (cont.)

so let’s put a “do not change” prior on the hidden unit activities ht !

for example, we could add the term:

γ

2
‖h(θ + p)− h(θ)‖2

unlike λ
2‖p‖

2 this term is not quadratic in p

James Martens (U of T) Deep Learning via HF August 13, 2010 26 / 29

Structural damping (cont.)

so let’s put a “do not change” prior on the hidden unit activities ht !

for example, we could add the term:

γ

2
‖h(θ + p)− h(θ)‖2

unlike λ
2‖p‖

2 this term is not quadratic in p

James Martens (U of T) Deep Learning via HF August 13, 2010 26 / 29

Structural damping (cont.)

so let’s put a “do not change” prior on the hidden unit activities ht !

for example, we could add the term:

γ

2
‖h(θ + p)− h(θ)‖2

unlike λ
2‖p‖

2 this term is not quadratic in p

James Martens (U of T) Deep Learning via HF August 13, 2010 26 / 29

Structural damping (cont.)

so let’s put a “do not change” prior on the hidden unit activities ht !

for example, we could add the term:

γ

2
‖h(θ + p)− h(θ)‖2

unlike λ
2‖p‖

2 this term is not quadratic in p

James Martens (U of T) Deep Learning via HF August 13, 2010 26 / 29

however, we can make it so by applying the usual Gauss-Newton
approximation

this gives the following contribution to q:

γ

2
pJ>h Jhp

where Jh is the Jacobian of the hidden units w.r.t. the parameters

fortunately Jhv occurs as an intermediate quantity in the algorithm
for computing Jv

so it is a trivial matter to modify the algorithm include the term
γ
2pJ>h Jhp

James Martens (U of T) Deep Learning via HF August 13, 2010 27 / 29

however, we can make it so by applying the usual Gauss-Newton
approximation

this gives the following contribution to q:

γ

2
pJ>h Jhp

where Jh is the Jacobian of the hidden units w.r.t. the parameters

fortunately Jhv occurs as an intermediate quantity in the algorithm
for computing Jv

so it is a trivial matter to modify the algorithm include the term
γ
2pJ>h Jhp

James Martens (U of T) Deep Learning via HF August 13, 2010 27 / 29

however, we can make it so by applying the usual Gauss-Newton
approximation

this gives the following contribution to q:

γ

2
pJ>h Jhp

where Jh is the Jacobian of the hidden units w.r.t. the parameters

fortunately Jhv occurs as an intermediate quantity in the algorithm
for computing Jv

so it is a trivial matter to modify the algorithm include the term
γ
2pJ>h Jhp

James Martens (U of T) Deep Learning via HF August 13, 2010 27 / 29

however, we can make it so by applying the usual Gauss-Newton
approximation

this gives the following contribution to q:

γ

2
pJ>h Jhp

where Jh is the Jacobian of the hidden units w.r.t. the parameters

fortunately Jhv occurs as an intermediate quantity in the algorithm
for computing Jv

so it is a trivial matter to modify the algorithm include the term
γ
2pJ>h Jhp

James Martens (U of T) Deep Learning via HF August 13, 2010 27 / 29

Other enhancements

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF August 13, 2010 28 / 29

Other enhancements

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF August 13, 2010 28 / 29

Other enhancements

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF August 13, 2010 28 / 29

Other enhancements

using M-preconditioned CG with the diagonal preconditioner:

M =

[
diag

(∑
i

∇fi �∇fi

)
+ λI

]α

initializing each run of the inner CG-loop from the solution found by
the previous run

carefully bounding and “back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

(see the paper for further details)

James Martens (U of T) Deep Learning via HF August 13, 2010 28 / 29

Thank you for your attention

James Martens (U of T) Deep Learning via HF August 13, 2010 29 / 29

	
	

