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Gradient descent is bad at learning deep nets

The common experience:

o gradient descent gets much slower as the depth increases
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The common experience:

o gradient descent gets much slower as the depth increases

o large enough depth — learning to slow to a crawl or even “stops’ —
severe under-fitting (poor performance on the training set)

@ ‘vanishing-gradients problem™ :

backpropagated
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error signal decays as it is

@je

Output Layer

@ the gradient is tiny for weights in early layers
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Gradient descent is bad at deep learning (cont.)

Two hypotheses for why gradient descent fails:

@ increased frequency and severity of bad local
minima:
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Gradient descent is bad at deep learning (cont.)
Two hypotheses for why gradient descent fails:

@ increased frequency and severity of bad local
minima:

@ pathological curvature, like the

type seen in the well-known .
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S
Attempted solutions for deep learning problem

Some early attempts address the vanishing gradients/pathological
curvature issue:
Momentum

@ average of the previous gradients with exponential decay

@ physical analogy: builds “momentum” while descending down narrow
valleys

Adaptive learning rates ( “R-prop”)
@ attempts to address the “vanishing gradients” problem directly

@ individual parameters have learning rates that are adapted dynamically

@ like a heuristically computed diagonal Hessian approximation
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Pre-training for deep auto-encoders
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Pre-training (cont.)

@ doesn’t generalize to all the sorts of deep-architectures we might wish

to train

@ still requires a classical optimization algorithm to “fine-tune” the

parameters

@ does it get full power out of deep auto-encoders?
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S
2nd-order optimization

If pathological curvature is the problem, this could be the solution
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2nd-order optimization

If pathological curvature is the problem, this could be the solution

General framework

@ model the objective function by the local approximation:

1
F(0+p) ~ ao(p) = f(0) + VF(0) 'p+ 5p Bp
where B is a matrix which quantifies curvature

@ in Newton's method, B=H or H 4+ \I

e fully optimizing go(p) this w.r.t. p gives: p = —B~1Vf(0)

@ update is: € «— 0 + ap for some o < 1 determined by a line search

v
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|
The importance of curvature (cont.)

Cartoon example of pathological curvature: the long narrow valley

@ consider the following example where low and high-curvature
directions co-occur. Using gradient descent gives one of the following
2 undesirable behaviors:

large learning rate: high curva- small learning rate: progress
ture directions pursued too far, un- along low curvature directions is far
desirable “bouncing” behavior too slow
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Pathological curvature in deep-nets

@ Suppose we have 2 nearly identical units (i.e. nearly identical weights
and biases). Let i and j be the two red weights. Let d direction with
dx = 0jx — djx. d is a direction which differentiates these weights.

o Then the reduction is low: —VfTd = (Vf); — (Vf); =0

e But so is the curvature: d"Hd = (H; —H;)+ (H; —H;) ~0+0=0

Left: Neural net with nearly identi- +
O cal units (in the middle layer). Two

weights with the same color have

O/ nearly identical values. O

Right: Graphical representation of d
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|
Vanishing Curvature

@ define the direction d by dy = §;x
o low reduction along d: —VfTd = —(Vf); =0

@ but also low curvature: d "Hd = —Hj; =
weight i <
Input Layer

Pf
02

Backprop direction

alle|

Output Layer

@ so a 2nd-order optimizer will pursue d at a reasonable rate, an elegant
solution to the vanishing gradient problem of 1st-order optimizers
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S
Practical Considerations for 2nd-order optimization

Hessian size problem

@ for machine learning models the number of parameter N can be very
large

@ we can't possibly calculate or even store a N x N matrix, let alone
invert one
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Practical Considerations for 2nd-order optimization

Hessian size problem

@ for machine learning models the number of parameter N can be very
large

@ we can't possibly calculate or even store a N x N matrix, let alone
invert one

Quasi-Newton Methods

@ non-linear conjugate gradient (NCG) - a hacked version of the
quadratic optimizer linear CG

o limited-memory BFGS (L-BFGS) - a low rank Hessian approximation

@ approximate diagonal or block-diagonal Hessian

Unfortunately these don't seem to resolve the deep-learning problem
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S
Hessian-free optimization

@ a quasi-newton method that uses no low-rank approximations

@ named 'free’ because we never explicitly compute B
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S
Hessian-free optimization

@ a quasi-newton method that uses no low-rank approximations

@ named 'free’ because we never explicitly compute B

First motivating observation

@ it is relatively easy to compute the matrix-vector product Hv for an
arbitrary vectors v

@ e.g. use finite differences to approximate the limit:

Hy — lim VIO +ev)—VIi(0)

e—0 €

@ Hv is computed for the exact value of H, there is no low-rank or
diagonal approximation here!
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Hessian-free optimization (cont.)

Second motivating observation

@ linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products
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Hessian-free optimization (cont.)

Second motivating observation

@ linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

@ more often seen in the context of solving large sparse systems

o directly minimizes the the quadratic g = p' Bp/2 + g p and not the
residual ||Bp + g||> — these are related but different!
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|
Hessian-free optimization (cont.)

Second motivating observation

linear conjugate gradient (CG) minimizes positive definite quadratic
cost functions using only matrix-vector products

more often seen in the context of solving large sparse systems

directly minimizes the the quadratic g = p' Bp/2 + g ' p and not the
residual ||Bp + g||> — these are related but different!

but we actually care about the quadratic, so this is good

requires N = dim(6) iterations to converge in general, but makes a lot
of progress in far fewer iterations than that
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S
Standard Hessian-free Optimization

Pseudo-code for a simple variant of damped Hessian-free optimization:

1: for n =1 to max-epochs do

2. compute gradient g, = V£(0,)

3 choose/adapt A, according to some heuristic
4:  define the function B,(v) = Hv + A\,v

5 pn = CGMinimize(B,, —gn)

6 9n+1 = 9,1 + Pn

7: end for

In addition to choosing A, the stopping criterion for the CG algorithm is a
critical detail.
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S
Common variants of the HF approach

Basic/naive

e )\, =0, CG iterations stopped when residual ||Bp + g|| reaches some
error tolerance or when negative curvature is detected

CG-Steihaug
@ )\, =0 and instead maintain a heuristically adjusted trust region

@ when the iterates produced by the inner CG loop leave the trust
region the loops terminates

Trust-region Newton-Lanczos Method

@ )\, is (very expensively) computed to give match a given trust region
radius

@ robust even when the Hessian is indefinite

James Martens (U of T) Deep Learning via HF August 13, 2010 15 /29



A new variant is required

e the bad news: common variants of HF (e.g. Steihaug) don't work
particular well for neural networks
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S
A new variant is required

e the bad news: common variants of HF (e.g. Steihaug) don't work
particular well for neural networks

@ there are many aspects of the algorithm that are ill-defined in the
basic approach which we need to address:

e how can deal with negative curvature?
o how should we choose \?

e how can we handle large data-sets
when should we stop the CG iterations?

can CG be accelerated?
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S
Pearlmutter’'s R-operator method

o finite-difference approximations are undesirable for many reasons
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@ there is a better way to compute Hv due to Pearlmutter (1994)
@ similar cost to a gradient computation

@ for neural nets, no extra non-linear functions need to be evaluated
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S
Pearlmutter’'s R-operator method

o finite-difference approximations are undesirable for many reasons
@ there is a better way to compute Hv due to Pearlmutter (1994)

@ similar cost to a gradient computation

@ for neural nets, no extra non-linear functions need to be evaluated

@ technique generalizes to almost any twice-differentiable function that
is tractable to compute

@ can be automated (like automatic differentiation)
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S
Forwards and backwards pass to compute the gradient

0= (Wla bl) W27 b27 ceey WL, bL)

—

1. yy=in
2: for i=1to L do
33 xi =Wy +bi
4y =o0(x)
5: end for
6: for i=L downtol do
7:  if i < L then
dE dE
8: dX,' = dX,'+1 ®y’+1 @ (1 - yl+1)
9: else
d -
10: d—j = out — yj41
11:  endif
. dE _ \a/T dE
12: a -
. dE _ dE T
M
4 o5 = 4
15: end for
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S
The same code with the R-operator applied computes Hv

v=(V1,c1,..., Vi,cr), Hv = (R {dWI} R{dbl} {dWL} R{dd[i})

1: R{yl}:O
2: for i=1to L do

3 R{x}=WR{yi}+ Viyi+c
4 R{yi} = R{xi} ©yit1 © (1 — yis1)
5: end for
6: for i=L downtol do
7. ifi< L then
8: R{4 } = R{ dxﬂ} O Yir1 © (1 = yiy1) + dxﬂ O R{yit1} © (1 —2yi11)
9: else
10: R{%E} = —R{yin1}
11: end |f
12: { =) = \/,Tf’E + WTR{E}
13: R{dw = { }y, E,.R{)/I}T
14: R{ ,-} R{ dX’}
15: end for
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-
The Gauss-Newton Matrix (G)

@ a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!
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The Gauss-Newton Matrix (G)

@ a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

@ usually applied to non-linear least-squares problems where it is given
by G = JTJ (J is the Jacobian of the output units w.r.t. )

@ can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e e.g. logistic units with cross-entropy error
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@ can be generalized beyond just least squares to neural nets with

“matching” loss functions and output non-linearities (Schraudolph
2002)

e e.g. logistic units with cross-entropy error

@ works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)
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-
The Gauss-Newton Matrix (G)

a well-known alternative to the Hessian that is guaranteed to be
positive semi-definite - thus no negative curvature!

@ usually applied to non-linear least-squares problems where it is given
by G = JTJ (J is the Jacobian of the output units w.r.t. )

@ can be generalized beyond just least squares to neural nets with
“matching” loss functions and output non-linearities (Schraudolph
2002)

e e.g. logistic units with cross-entropy error

@ works much better in practice than Hessian or other curvature
matrices (e.g. empirical Fisher)

@ and we can compute Gv using an algorithm similar to the one for Hv

James Martens (U of T) Deep Learning via HF August 13, 2010 20 /29



S
CG stopping conditions

e CG is only guaranteed to converge after N (size of parameter space)
iterations — we can't always run it to convergence
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@ the standard stopping criterion used in most versions of HF is
1
|r| < min(3, llg]|2)|/g|| where r = Bp + g is the “residual”
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S
CG stopping conditions

e CG is only guaranteed to converge after N (size of parameter space)
iterations — we can't always run it to convergence

@ the standard stopping criterion used in most versions of HF is
1
|r| < min(3, llg]|2)|/g|| where r = Bp + g is the “residual”

o strictly speaking ||r|| is not the quantity that CG minimizes, nor is it
the one we really care about

x 10 qe(p) vs iteration

x10™° IBp+g ||2 vs iteration

0 50 100 150 200 250 50 100 150 200 250
iteration iteration
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|
CG stopping conditions (cont.)

@ we found that terminating CG once the relative per-iteration
reduction rate fell below some tolerance € worked best
Aq

— <€
q

(Agq is the change in the quadratic model averaged over some window
of the last k iterations of CG)

James Martens (U of T) Deep Learning via HF August 13, 2010 22 /29



|
Handling large datasets

@ each iteration of CG requires the evaluation of the product Bv for
some v
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Handling large datasets

@ each iteration of CG requires the evaluation of the product Bv for
some v

@ naively this requires a pass over the training data-set

@ but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

@ size is related to model and qualitative aspects of the dataset, but
critically not its size

o for very large datasets, mini-batches might be a tiny fraction of the
whole
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|
Handling large datasets

@ each iteration of CG requires the evaluation of the product Bv for
some v

@ naively this requires a pass over the training data-set

@ but for a sufficiently large subset of the training data - sufficient to
capture enough useful curvature information

@ size is related to model and qualitative aspects of the dataset, but
critically not its size

o for very large datasets, mini-batches might be a tiny fraction of the
whole

@ gradient and line-searches can be computed using even larger
mini-batches since they are needed much less often
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Damping the curvature matrix

@ we don't completely trust the quadratic model as an approximation
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Damping the curvature matrix

@ we don't completely trust the quadratic model as an approximation
@ a good way to account for this is to “damp” B

o we take B = G + AI where X is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:

f(0+p)—F(0)
P qe(p)—a0(0)

James Martens (U of T) Deep Learning via HF August 13, 2010 24 /29



Damping the curvature matrix

@ we don't completely trust the quadratic model as an approximation
@ a good way to account for this is to “damp” B

o we take B = G + AI where X is adjusted at each (outer) iteration
using the standard Levenburg-Marquardt style heuristic:
f(0+p)—1£(6)
P 46(p)=a0(0)
if p<z then
A3\
else if p > % then
A 2N
end if
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|
Structural damping

@ the normal damping term can be interpreted as putting an ¢» prior on
the parameters that says “don’t change”:

f(0+ p) ~ qo(p) = f(0) + VF(0) 'p+ %PT(G +Al)p

1 A
= 1(0)+VI(0) p+ 5p  Go+ 5l
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@ however, some directions lead to large fluctuations in the hidden-unit
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Structural damping

@ the normal damping term can be interpreted as putting an ¢» prior on
the parameters that says “don’t change”:

f(0+ p) ~ qo(p) = f(0) + VF(0) 'p+ %PT(G +Al)p

1 A
= 1(0)+VI(0) p+ 5p  Go+ 5l

@ this treats all directions in parameter space “equally”

@ however, some directions lead to large fluctuations in the hidden-unit
activations whilst others have a much smaller effect

o for extremely non-linear models like Recurrent Neural Nets (RNNs)
we expect this effect to be pronounced and so we would prefer to
“damp” directions in a more intelligent way
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—
Structural damping (cont.)

@ so let's put a “do not change” prior on the hidden unit activities h;!
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@ so let's put a “do not change” prior on the hidden unit activities h;!

o for example, we could add the term:

21180+ p) = h(O)]?
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Structural damping (cont.)

@ so let's put a “do not change” prior on the hidden unit activities h;!

o for example, we could add the term:

21180+ p) = h(O)]?

o unlike 3||p||? this term is not quadratic in p
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Structural damping (cont.)

@ so let's put a “do not change” prior on the hidden unit activities h;!

o for example, we could add the term:

21180+ p) = h(O)]?

o unlike 3||p||? this term is not quadratic in p
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@ however, we can make it so by applying the usual Gauss-Newton
approximation
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@ however, we can make it so by applying the usual Gauss-Newton

approximation

@ this gives the following contribution to g:
gl
>PJn Inp

where Jj is the Jacobian of the hidden units w.r.t. the parameters
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@ however, we can make it so by applying the usual Gauss-Newton
approximation

@ this gives the following contribution to g:
gl
>PJn Inp
where Jj is the Jacobian of the hidden units w.r.t. the parameters

o fortunately Jyv occurs as an intermediate quantity in the algorithm
for computing Jv
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@ however, we can make it so by applying the usual Gauss-Newton
approximation

@ this gives the following contribution to g:
gl
>PJn Inp
where Jj is the Jacobian of the hidden units w.r.t. the parameters

o fortunately Jyv occurs as an intermediate quantity in the algorithm
for computing Jv

@ so it is a trivial matter to modify the algorithm include the term
IpJ) Inp
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e —
Other enhancements

@ using M-preconditioned CG with the diagonal preconditioner:

M = [diag (Z Vi ® w,-) + I

[0}
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@ using M-preconditioned CG with the diagonal preconditioner:
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[0}

@ initializing each run of the inner CG-loop from the solution found by
the previous run
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e —
Other enhancements

@ using M-preconditioned CG with the diagonal preconditioner:

M = [diag (Z Vi ® w,-) + I

[0}

@ initializing each run of the inner CG-loop from the solution found by
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Other enhancements

@ using M-preconditioned CG with the diagonal preconditioner:

M = [diag (Z Vi ® w,-) + I

[0}

@ initializing each run of the inner CG-loop from the solution found by
the previous run

o carefully bounding and "back-tracking” the maximum number of CG
steps to compensate for the effect of using mini-batches to compute
the Bv products

o (see the paper for further details)
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Thank you for your attention
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