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Maximize independence of filter
outputs

Equivalent to ML with the model:
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Bell & Sejnowski
Olshausen & Field




2nd Coefficient

PROBLEMS WITH ICA

Components are not really

independent

Independent Coefficients

15t Coefficient

2nd Coefficient

Dependent Coefficients - Bowtie

15t Coefficient



Independent subspaces of the data

P00 =] p(Y y7) .y\
y = WX
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“Explains” complex cells




DEPENDENCIES BETWEEN
SUBSPACE ENERGIES

Conditional histogram of subspace outputs

Synthetic independent data ISA from natural images

Subspace 2 output
Subspace 2 output
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Subspace 1 output Subspace 1 output



Our model assumes
tree dependency

POGW) = p(Yeoo) [ I POYi Y i)

I#root

y = WX
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EM &  Chow-Liu
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Gradient Ascent



Constant

A current estimate for W is given

Chow-Liu method
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Constant

Mixture model — allows both
dependence and independence
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Constant

P(Y,,Y,:0)=Bp, (Y, Y,:0)+ A= B)p,(y;;0)p,(Y,;0)

Mixing variable learned from data
using EM



GMM for densities

Captures highly kurtotic shape of coefficients

p=0.0 p=0.5 p=1.0
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Natural Image
We assume w =Rv Wwhere Vv is a whitening Patches
transform and R is a rotation matrix

We use v to first whiten the patches so that:

z=VX <7z >=I

y = Rz

Now we need to learn the matrix R
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A current estimate for the tree
structure is given

Gradient Ascent on log likelihood:

Impose orthogonality: R = (RRT)"°R

L

Rt+1:R n

r

t
r

o log

p(y) _+
Z

oy

r

s
i 3
|
= [
- =1l=3
| ", i i




Learning in mini-batches

Iterate:
®  Perform Gradient Ascent

©®  Every 500 mini-batches, relearn tree structure
and parameters

Alternative method for Tree
Component Analysis - Bach et al.

[2004]






Generative model Samples Learned tree model
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Generative model Samples Learned tree model

e B MErEC
o

i\n et




Generative model Samples Learned tree model
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Learned Tree Structure
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Phase is uncorrelated

AKkin to complex cell models

Optimal Orientation

S R i ittt
180 O EE e

3Ea =} 9%

e 6----9---!5&!- e S—
L - S
= ]

Pl SR

Parent

Optimal Frequency

o
ol O
o o o
L N
2 4 6 8
Parent

Optimal Phase

67O O TOO T 0T 0
o) 000 © o

] 00 © o)
5}-—-00——0——-0--BOO--O-—
© 0 O o

{ o o0 000
4100 . 0. Q. O 00
{ o o ©

loooo o o

3l O 00..©
77070 o}

] oo o o

1 o o oo 00
21000 [e] 00
i 0 oo oo 00 ©
] 000 O o
11000 S o
[ 000 ©O 0000

] o o
18—
0 2 4 6

Parent

Orientation, Frequency and Position —
High Correlation

Optimal Position X




Likelihood comparison — over an
unseen test set

Marginal PCA -162.5
Marginal ICA -157
ISA -159.4

Our model -144.8




ISA ICA

Tree Model






Learned components are edge filters,
even though we assumed dependence

Learned conditional density is bowtie

Learned connections between filters
give “complex cells” — orientation
tuned and phase invariant






