
THE “ TREE-DEPENDENT” COMPONENTS

OF NATURAL SCENES ARE EDGE FILTERS



INTRODUCTION



ICA

 Maximize independence of filter 
outputs

 Equivalent to ML with the model:
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ICA ON NATURAL IMAGES

Bell & Sejnowski
Olshausen & Field



PROBLEMS WITH ICA

 Components are not really
independent
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INDEPENDENT SUBSPACE

ANALYSIS

 Independent subspaces of the data
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ISA ON NATURAL IMAGES

“Explains” complex cells



DEPENDENCIES BETWEEN

SUBSPACE ENERGIES

Conditional histogram of subspace outputs

Subspace 1 output
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ISA from natural images
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Synthetic independent data



OUR MODEL

 Our model assumes
tree dependency
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MODEL AND LEARNING



MODEL AND LEARNING
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LEARNING TREE

STRUCTURE

 A current estimate for W is given

 Chow-Liu method

MST

Constant



JOINT PAIRWISE DENSITY

FUNCTION

 Mixture model – allows both 
dependence and independence

 Mixing variable learned from data 
using EM
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JOINT PAIRWISE DENSITY

FUNCTION (CONT.)

 GMM for densities

 Captures highly kurtotic shape of coefficients



LEARNING THE FILTER MATRIX

 We assume                 where       is a whitening 
transform and      is a rotation matrix

 We use        to first whiten the patches so that:

 Now we need to learn the matrix 
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LEARNING THE FILTER MATRIX

 A current estimate for the tree 
structure is given

 Gradient Ascent on log likelihood:

 Impose orthogonality:
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LEARNING DETAILS

 Learning in mini-batches

 Iterate:

 Perform Gradient Ascent

 Every 500 mini-batches, relearn tree structure 
and parameters

 Alternative method for Tree 
Component Analysis  - Bach et al. 
[2004]



RESULTS



VALIDATION - ICA

Generative model Samples Learned tree model



VALIDATION - ISA

Generative model Samples Learned tree model



VALIDATION – TREE MODEL

Generative model Samples Learned tree model



Learned Tree Structure
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LEARNED EDGE FEATURES



CORRELATIONS BETWEEN

PAIRS

 Orientation, Frequency and Position –
High Correlation

 Phase is uncorrelated 

 Akin to complex cell models



COMPARISON TO OTHER

MODELS - LIKELIHOOD

 Likelihood comparison – over an 
unseen test set

Log LikelihoodModel

-162.5Marginal PCA

-157Marginal ICA

-159.4ISA

-144.8Our model



COMPARISON (CONT.) –
SAMPLES



Samples from 24x24 tree model Real Patches

ICATree

Natural Images



CONCLUSIONS

 Learned components are edge filters, 
even though we assumed dependence

 Learned conditional density is bowtie

 Learned connections between filters 
give “complex cells” – orientation 
tuned and phase invariant



THANKS!


