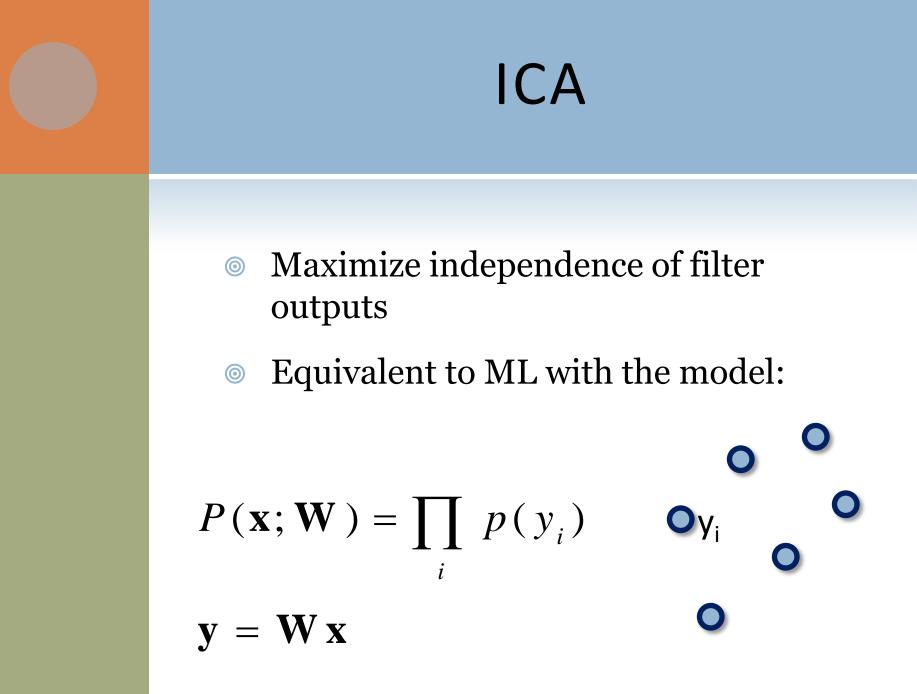
THE "TREE-DEPENDENT" COMPONENTS OF NATURAL SCENES ARE EDGE FILTERS

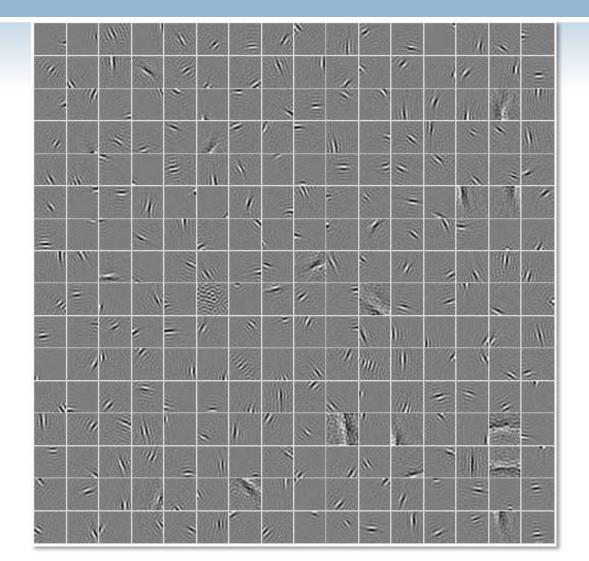
Daniel Zoran and Yair Weiss CifAR NCAP Summer School – August 2010

INTRODUCTION



ICA ON NATURAL IMAGES

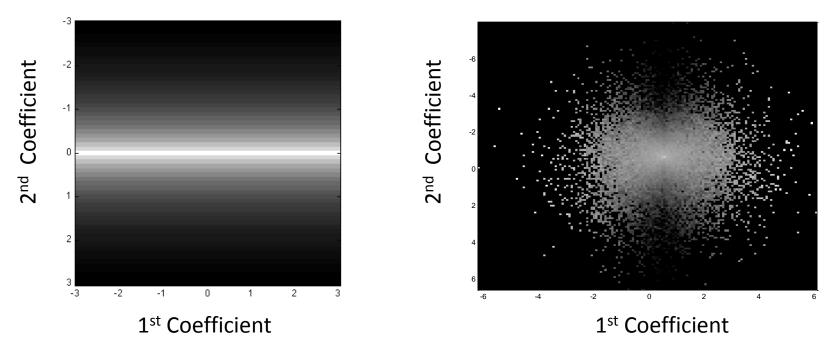
Bell & Sejnowski Olshausen & Field



PROBLEMS WITH ICA

Components are not *really* independent

Dependent Coefficients - Bowtie



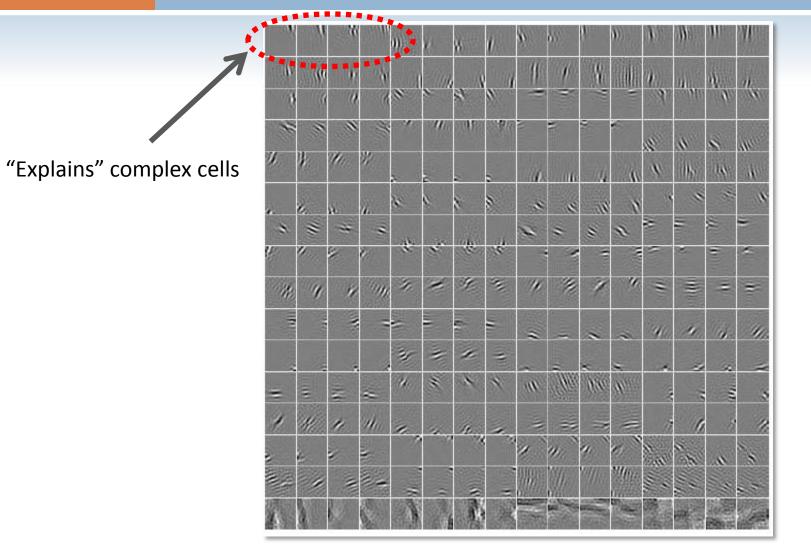
INDEPENDENT SUBSPACE ANALYSIS

Independent subspaces of the data

$$P(\mathbf{x}) = \prod_{k} p(\sum_{i \in K} y_i^2) \qquad \bigvee_{i \in K} \mathbf{y}_i$$

$$\mathbf{y} = \mathbf{W} \mathbf{x}$$

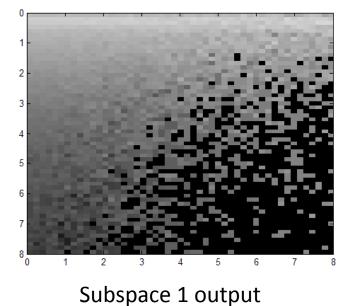
ISA ON NATURAL IMAGES



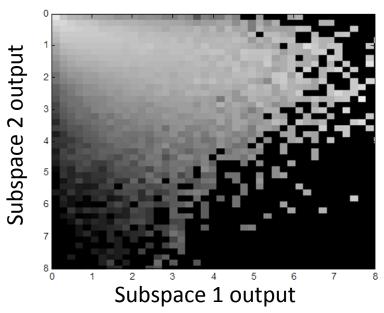
Subspace 2 output

DEPENDENCIES BETWEEN SUBSPACE ENERGIES

Conditional histogram of subspace outputs

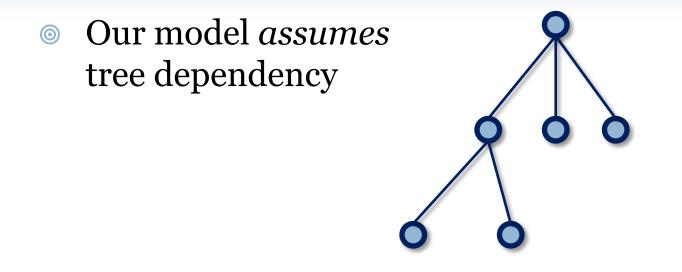


Synthetic independent data



ISA from natural images

OUR MODEL

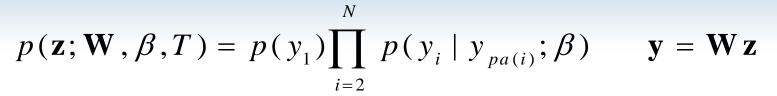


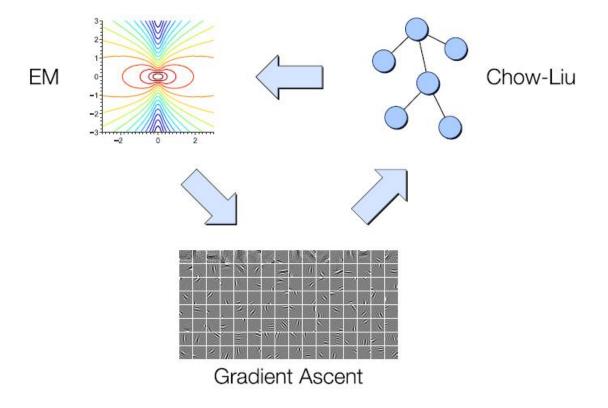
$P(\mathbf{x}; \mathbf{W}) = p(y_{root}) \prod_{i \neq root} p(y_i | y_{pa(i)})$

 $\mathbf{y} = \mathbf{W} \mathbf{x}$

MODEL AND LEARNING

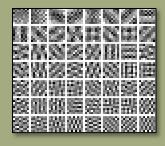
MODEL AND LEARNING



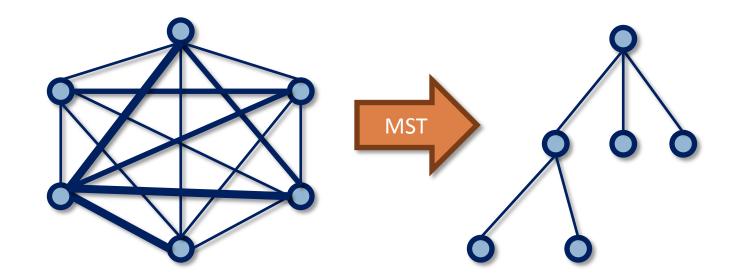


LEARNING TREE Structure

Constant

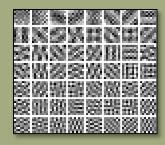


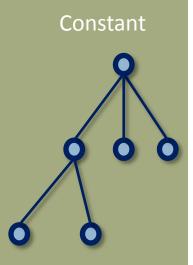
- A current estimate for W is given
- Ohow-Liu method



JOINT PAIRWISE DENSITY FUNCTION

Constant





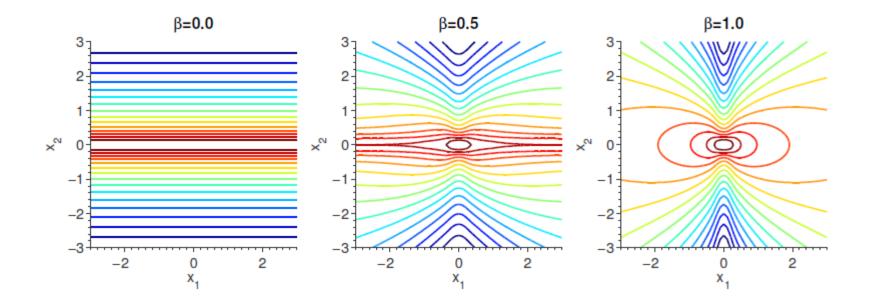
 Mixture model – allows both dependence and independence

$$p(y_1, y_2; \theta) = \beta \, p_1(y_1, y_2; \theta) + (1 - \beta) \, p_2(y_1; \theta) \, p_2(y_2; \theta)$$

 Mixing variable learned from data using EM

JOINT PAIRWISE DENSITY FUNCTION (CONT.)

- GMM for densities
- Captures highly kurtotic shape of coefficients



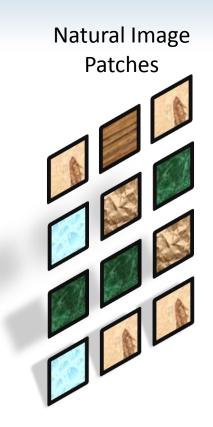
LEARNING THE FILTER MATRIX

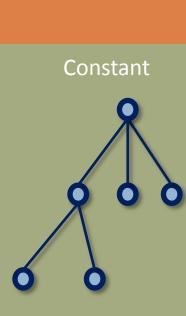
- We assume $\mathbf{w} = \mathbf{R}\mathbf{v}$ where \mathbf{v} is a whitening transform and \mathbf{R} is a rotation matrix
- \odot We use v to first whiten the patches so that:

$$\mathbf{z} = \mathbf{V}\mathbf{x} \quad \langle \mathbf{z}\mathbf{z}^T \rangle = \mathbf{I}$$

$$\mathbf{y} = \mathbf{R}\mathbf{z}$$

Now we need to learn the matrix R

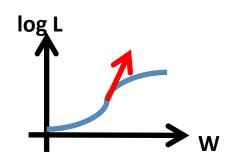


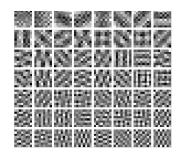


LEARNING THE FILTER MATRIX

- A current estimate for the tree structure is given
- Statistic Gradient Ascent on log likelihood: $\mathbf{R}_{r}^{t+1} = \mathbf{R}_{r}^{t} + \eta \, \frac{\partial \log p(\mathbf{y})}{\partial y_{r}} \mathbf{z}^{T}$

Impose orthogonality: $\mathbf{R} = (\mathbf{R}\mathbf{R}^T)^{-0.5}\mathbf{R}$



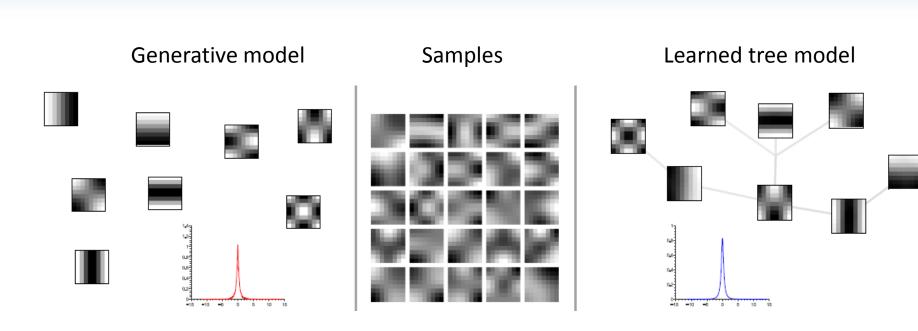


LEARNING DETAILS

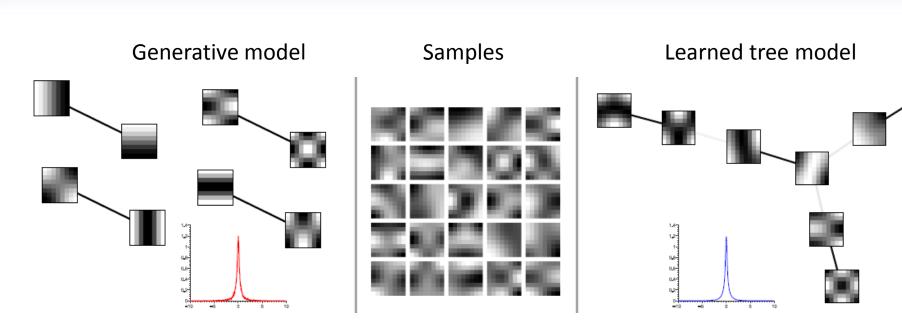
- Learning in mini-batches
- Iterate:
 - Perform Gradient Ascent
 - Every 500 mini-batches, relearn tree structure and parameters
- Alternative method for Tree
 Component Analysis Bach et al.
 [2004]

RESULTS

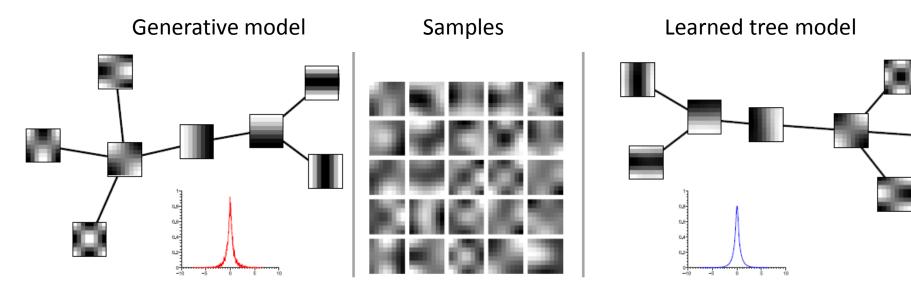
VALIDATION - ICA

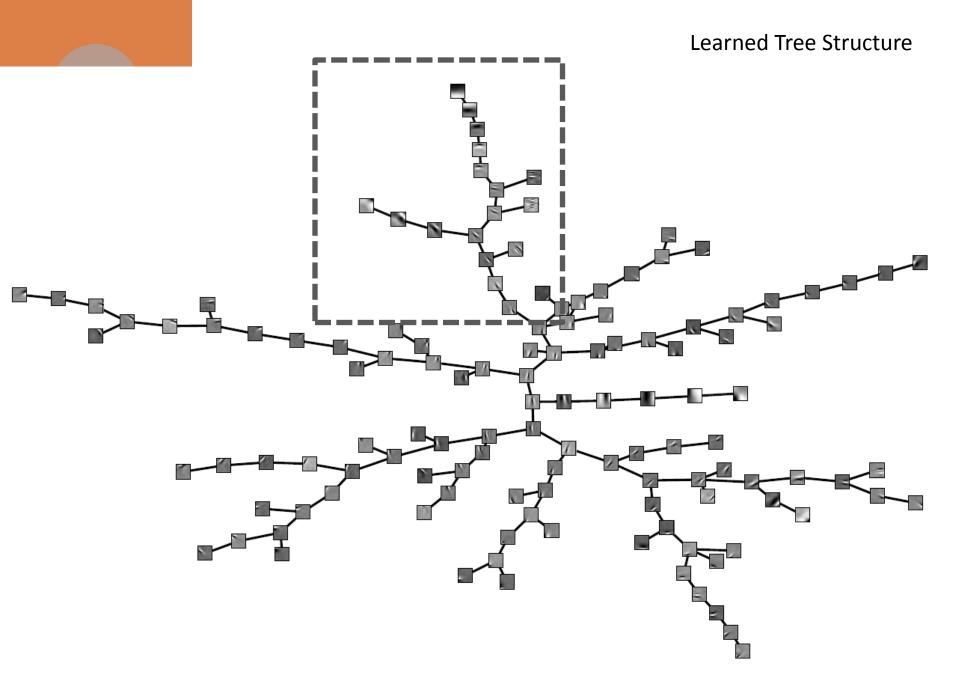


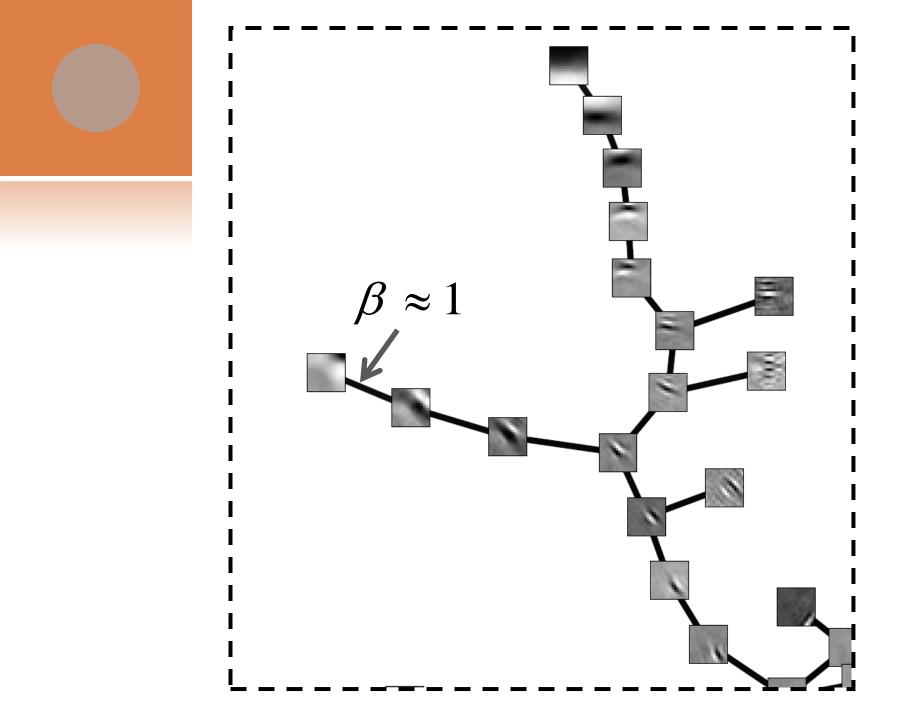
VALIDATION - ISA



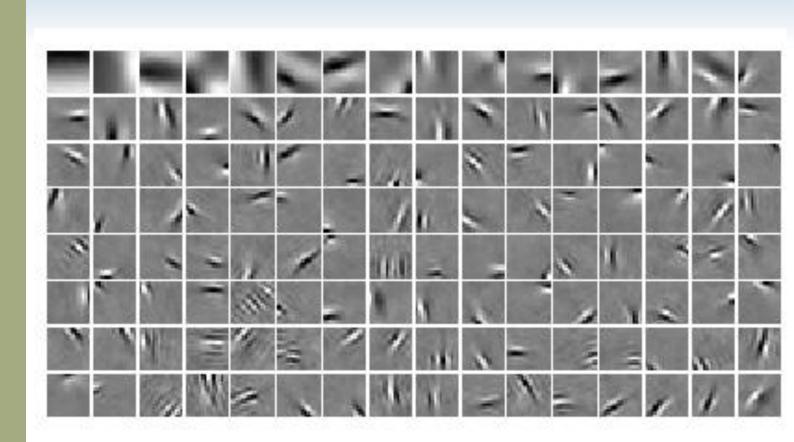
Validation – Tree Model





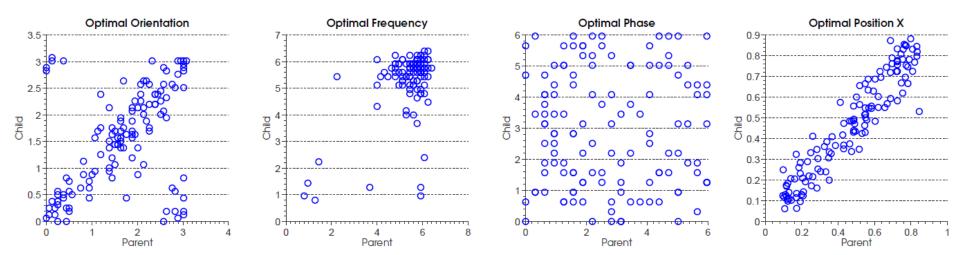


LEARNED EDGE FEATURES



CORRELATIONS BETWEEN PAIRS

- Orientation, Frequency and Position High Correlation
- Phase is uncorrelated
- Akin to complex cell models

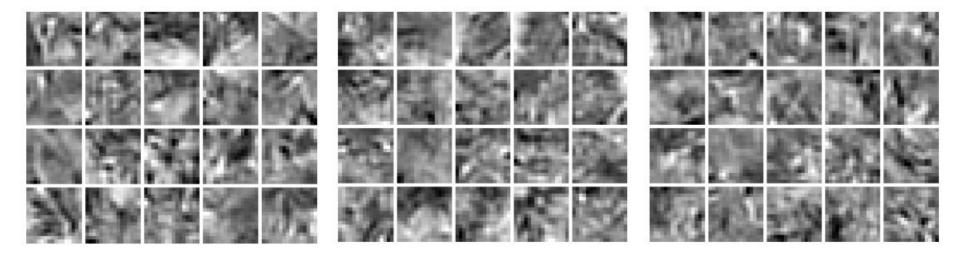


COMPARISON TO OTHER MODELS - LIKELIHOOD

Likelihood comparison – over an unseen test set

Model	Log Likelihood
Marginal PCA	-162.5
Marginal ICA	-157
ISA	-159.4
Our model	-144.8

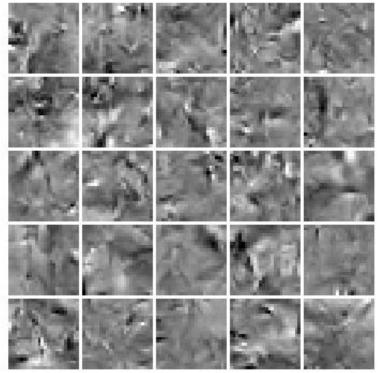
Comparison (cont.) – Samples

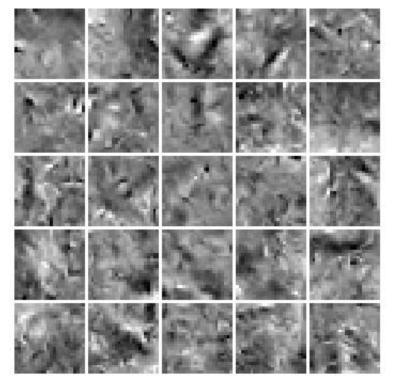


Tree Model

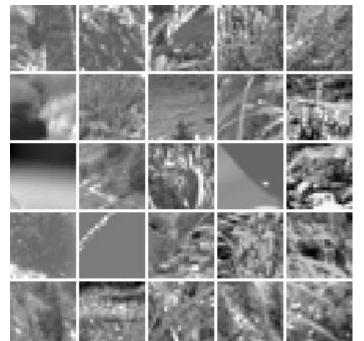
ISA

ICA





Tree



ICA

Natural Images

CONCLUSIONS

- Learned components are edge filters, even though we assumed dependence
- Learned conditional density is bowtie
- Learned connections between filters give "complex cells" – orientation tuned and phase invariant

THANKS!