Learning Spatial and Transformational Invariants for Visual Representation

Charles Cadieu work with Bruno Olshausen

ClfAR Summer School Toronto

REDWOOD CENTER for Theoretical Neuroscience

Visual Representation

The Visual System Infers the Causes of Images

"Leopard" -Spatial Invariant

"Galloping" -Transformational Invariant

Charles Cadieu, cadieu@berkeley.edu

68.0

Structure within an Image Patch

 How do we uncover the causes of this complicated data?

$$I(x,t) = \sum_{i} A_i(x) u_i(t) + \nu(x,t)$$

First Layer
probabilistic Model
$$P(D)$$
 $P(I, a, \phi) \propto e^{-E_1}$ $P(I, a, \phi) \propto e^{-E_1}$ Sparse $P(I, a, \phi) \propto e^{-E_1}$ $P(I, a$

 $E_{\overline{}}$

Learned Basis Functions

Wednesday, August 11, 2010

First Layer Basis Functions

Motions Produce Patterns in Phase

 $\phi_i(t)$

Model the changes in phase with a sparse, latent variable model

$\phi_i(t) - \phi_i(t-1) = \sum_k D_{ik} w_k(t) + \delta_i(t)$

i, cadieu@berkeley.edu

Second Layer Probabilistic Model: Transformational Invariants $P(I, a, \phi, w) \propto e^{-E_1 - E_2}$ Error in Phase Dynamics Sparse Slow

$$E_{2} = -\sum_{t} \sum_{i \in \{a_{i}(t)>0\}} \kappa \cos(\dot{\phi}_{i} - [Dw(t)]_{i}) + \beta_{Sp} \sum_{k,t} |w_{k}(t)| + \beta_{Sl} \sum_{k,t} (w_{k}(t) - w_{k}(t-1))^{2}$$

Adapt to Natural Movies

Visualizing Learned Weights

Charles Cadieu, cadieu@berkeley.edu

 D_{10}

Learned Transformation Component

Learned Transformational Invariant

Learned Transformational Invariant

Learned Transformational Invariant

Second Layer Probabilistic Model: Spatial Invariants

$$P(I, a, \phi, v) \propto e^{-E_1 - E_2}$$

t

Learned Spatial Invariant

spatial domain

Learned Spatial Invariants

Feedback

 $P(\phi_i(t)|\phi_i(t-1), w(t)) \propto e^{k\cos(\phi_i(t)-\phi_i(t-1)-[Dw]_i)}$

Image Denoising: testing an image model

Original

Noisy

Denoised

SNR = -2.9 SNR = 6.7

Compare to Wiener, SNR = 3.9

Denoising Movies

Mean SNR of Noisy Images = -2.0

Conclusions

We have,

- Motivated models the produce interpretations of the visual world,
- Learned transformational and spatial invariants from the natural world, and
- Shown how the model improves the interpretation of ambiguous inputs.

Thanks to

Bruno Olshausen

Redwood Center for Theoretical Neuroscience

NSF support

Extra Slides...

Feedback Changes First Layer Response

ack Changes yer Response

