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Motivation

® Many RBM learning algorithms:

e focus on the gradient update

* |ack of attention on the learning rate update

® Our work:

* try to pick well-grounded values for learning rate, therefore

speed up RBM learning



Restricted Boltzmann Machine

® Hidden layer

® Visible layer

Fig 1: The structure of RBM

® Assume no bias

® Energy function: ewv.m)=-3" vnu,
]

B exp( >_i; vihjwij)

- Z(W)

® Probability: rv.n)

® Activity rule: p(n, = 1|V) = sigmoid(WTV)
P(v; = 1|H) = sigmoid(W;H )



RBM learning

® A set of data x@, ..., x®™
® Target density pPo(x)
® parametric model density P~ (X, W)

® Goal: find weights wso that P=(x,w)is close to ro(x)

® Solution: gradient descent/ascent algorithm
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Maximum Likelihood

® Objective function

N
1 .
L(W) = ?Z log P(X ™ |W)
i
n=1
Wy = argmax L(W) = argmin KL{P°||P™)

® Gradient of L(Ww)w.r.t. w (optimal direction):
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positive phase negative phase

® MCMC (Gibbs sampling) —> bottleneck



Contrastive Divergence

® Gradient (right direction):

acDh,
W,
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where pmis the distribution which starts at 2 and
run Markov Chain for n steps.

® n=1 works well



Contrastive Divergence

® Toy example
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o ]
Fig. 2 The structure of RBM in the example

H";ll = I"l"rlg = H":r:l = H."E: = E.S
SampleNo = 1000
During each loop, Gibbs sampler runs 1000 steps for ML and only one step for CD.

Log likelihood is chosen as the measurement.



log likelihood

® The
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1-D line search of learning rate
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optimal/right step size? optimal/right direction

® How to determine the learning rate?
— Decrease the learning rate with the increase of step number
— Experience
— Experiments

Why not pick a well-gounded value for learning rate?



1-D line search of learning rate

® Fact: the optimal learning rate 1 is also required to
maximize/minimize the objective function L, i.e.,

' = argmax LW + nlElawien

® |dea: during each step, after updating the gradient,
append a line search of learning rate which gives an
value close to the optimal one.



1-D line search of learning rate

® ML with 1-D line search of learning rate

» 1 =argmax L{W +nAW)

AL(W +nAW)
an

Z < v h AW, =0 — Z < v h AW, =pw

Gibbs sampling
» use CD instead
> the gradient of co,aw+naw) w.r.t. n (right step size):

aCDy (W +nAW)
dn




1-D line search of learning rate

ML with 1-D line search of learning rate
> Algorithm

while (W_Loop<=maxLoopNo)

1) compute Pi, =< v:h: =g for all (s,t);

2) run Gibbs sampler 1 steps to get samples;

3) compute Py =< w.h, =p= for all (s,t);

4) while(eta_Loop<=n)
4.1) compute & = Z < Veh AW, >po ;
4.2) run Gibbs sampler one step to get samples;
4.3) compute - = Z < v h AW, Spr |
4.4) update 17 ;

5) update w;



1-D line search of learning rate

ML with 1-D line search of learning rate
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Fig. 4 The performance of original ML and ML with 1-D line search of learning rate
(During each outer loop, the original ML runs 1000 steps Gibbs Sampling and the
inner one runs 10 loops of 1-step CD. The learning rate of original ML is 0.1.)

50




1-D line search of learning rate

® VL with 1-D line search of learning rate

> Why it is more efficient than original ML?

(1) Most of the running time is consumed by Gibbs Sampling.
(2) During each outer loop,

the original ML runs m steps Gibbs Sampling sy 0(m) ;
the inner one runs n loops of 1-step CD wmmp 0(n)
Therefore, o(T,., /Tory) = 0(1 +n/m) .

For ML, 5 << 1 ey 0(1 + n/m) % 0(1).

(3) 'E'f"'f"pnaw < Eﬂﬂpﬂﬁ'g .



log likelihood

1-D line search of learning rate

Negative result: CD with 1-D line search of learning rate
For 1_Step CD’ m=1 = 0(1+n/m)=0(1+n) .
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Fig. 5 The performance of original CD and CD 1-D line search of learning rate
(During each outer loop, the original CD runs one step Gibbs Sampling and the
inner one runs 10 loops of 1-step CD. The learning rate of original ML/CD is 0.1.)



Conclusion

The efficiency of the gradient algorithm depends on the
gradient update and the learning rate update.

ML gives the optimal direction to update the weight. It
guarantees convergence, but runs slowly.

CD runs fast, and uses a non-optimal gradient update rule.

To improve its efficiency, ML can be combined with 1-D line
search of learning rate which gives a right step size.
However, this trick is not worthwhile for CD.



Thank you!



