Study of Line Search of Learning Rate in RBM

> Xing Zhang SUNY, UAlbany

Motivation

- Many RBM learning algorithms:
 - focus on the gradient update
 - lack of attention on the learning rate update

- Our work:
 - try to pick well-grounded values for learning rate, therefore speed up RBM learning

Restricted Boltzmann Machine

- Hidden layer
- Visible layer

Fig 1: The structure of RBM

- Assume no bias
- Energy function: $E(V, H) = -\sum_{i,j} v_i h_j w_{ij}$

• Probability: $P(V, H) = \frac{exp(\frac{1}{2}\sum_{i,j}v_ih_jw_{ij})}{Z(W)}$

• Activity rule: $P(h_i = 1|V) = sigmoid(W_i^T V)$ $P(v_j = 1|H) = sigmoid(W_j H)$

RBM learning

- A set of data $X^{(1)}, \dots, X^{(N)}$
- Target density *P*⁰(*X*)
- parametric model density $P^{\infty}(X, W)$
- Goal: find weights w so that $P^{\infty}(X, W)$ is close to $P^{0}(X)$
- Solution: gradient descent/ascent algorithm

 $W^{(k+1)} = W^{(k)} + \eta^{(k)} \Delta W^{(k)}$

Maximum Likelihood

Objective function

$$L(W) = \frac{1}{N} \sum_{n=1}^{N} \log P(X^{(n)}|W)$$
$$W_{ML} = \operatorname{argmax} L(W) = \operatorname{argmin} KL(P^{0}||P^{\infty})$$

• Gradient of *L(W)* w.r.t. *W* (optimal direction):

$$\frac{\partial L}{\partial W_{st}} = \stackrel{<}{=} \frac{v_s h_t >_{p^0} - < v_s h_t >_{p^{\infty}}}{positive phase}$$

MCMC (Gibbs sampling) ---> bottleneck

Contrastive Divergence

• Gradient (right direction):

$$\frac{\partial CD_n}{\partial W_{st}} = < v_s h_t >_{p^0} - < v_s h_t >_{p^n}$$

where *Pⁿ* is the distribution which starts at *P⁰* and run Markov Chain for n steps.

• n=1 works well

Contrastive Divergence

• Toy example

Fig. 2 The structure of RBM in the example

 $W_{11} = W_{12} = W_{21} = W_{22} = 0.5$

SampleNo = 1000

During each loop, Gibbs sampler runs 1000 steps for ML and only one step for CD. Log likelihood is chosen as the measurement.

Contrastive Divergence

The performace of ML and CD

• How to determine the learning rate?

- Decrease the learning rate with the increase of step number
- Experience
- Experiments

Why not pick a well-gounded value for learning rate?

 Fact: the optimal learning rate η is also required to maximize/minimize the objective function L, i.e.,

 $\eta^{(k)*} = \operatorname{argmax} L(W^{(k)} + \eta^{(k)} \Delta W^{(k)})$

 Idea: during each step, after updating the gradient, append a line search of learning rate which gives an value close to the optimal one.

• ML with 1-D line search of learning rate

$$\frac{\partial L(W + \eta \Delta W)}{\partial \eta} = \sum_{t} \langle v_s h_t \Delta W_{st} \rangle_{p^0} - \sum_{t} \langle v_s h_t \Delta W_{st} \rangle_{p^\infty}$$

Gibbs sampling

- use CD instead
- > the gradient of $CD_1(W + \eta \Delta W)$ w.r.t. η (right step size):

$$\frac{\partial CD_1(W + \eta \Delta W)}{\partial \eta} = \sum \langle v_s h_t \Delta W_{st} \rangle_{p^0} - \sum \langle v_s h_t \Delta W_{st} \rangle_{p^1}$$

- ML with 1-D line search of learning rate
 - > Algorithm

```
while (W_Loop<=maxLoopNo)</pre>
```

1) compute $P_{W_{st}}^+ = \langle v_s h_t \rangle_{P^0}$ for all (s,t);

2) run Gibbs sampler m steps to get samples;

3) compute $P_{W_{st}}^- = \langle v_s h_t \rangle_{P^{\infty}}$ for all (s,t);

4) while(eta_Loop<=n)

4.1) compute $P_{\eta}^{+} = \sum \langle v_{s}h_{t}\Delta W_{st} \rangle_{p^{0}}$;

4.2) run Gibbs sampler one step to get samples;

4.3) compute $P_{\eta}^- = \sum \langle v_s h_t \Delta W_{st} \rangle_{P^1}$;

4.4) update η ;

5) update W;

• ML with 1-D line search of learning rate

Fig. 4 The performance of original ML and ML with 1-D line search of learning rate (During each outer loop, the original ML runs 1000 steps Gibbs Sampling and the inner one runs 10 loops of 1-step CD. The learning rate of original ML is 0.1.)

- ML with 1-D line search of learning rate
 - > Why it is more efficient than original ML?
 - (1) Most of the running time is consumed by Gibbs Sampling.(2) During each outer loop,
 - the original ML runs m steps Gibbs Sampling $\longrightarrow O(m)$;
 - the inner one runs n loops of 1-step $CD \longrightarrow O(n)$.

Therefore, $O(T_{new}/T_{orig}) = O(1 + n/m)$.

For ML, $n \ll m \longrightarrow O(1 + n/m) \approx O(1)$.

(3) loop_{new} < loop_{orig}.

• Negative result: CD with 1-D line search of learning rate

Fig. 5 The performance of original CD and CD 1-D line search of learning rate (During each outer loop, the original CD runs one step Gibbs Sampling and the inner one runs 10 loops of 1-step CD. The learning rate of original ML/CD is 0.1.)

Conclusion

- The efficiency of the gradient algorithm depends on the gradient update and the learning rate update.
- ML gives the optimal direction to update the weight. It guarantees convergence, but runs slowly.
- CD runs fast, and uses a non-optimal gradient update rule.
- To improve its efficiency, ML can be combined with 1-D line search of learning rate which gives a right step size. However, this trick is not worthwhile for CD.

Thank you!