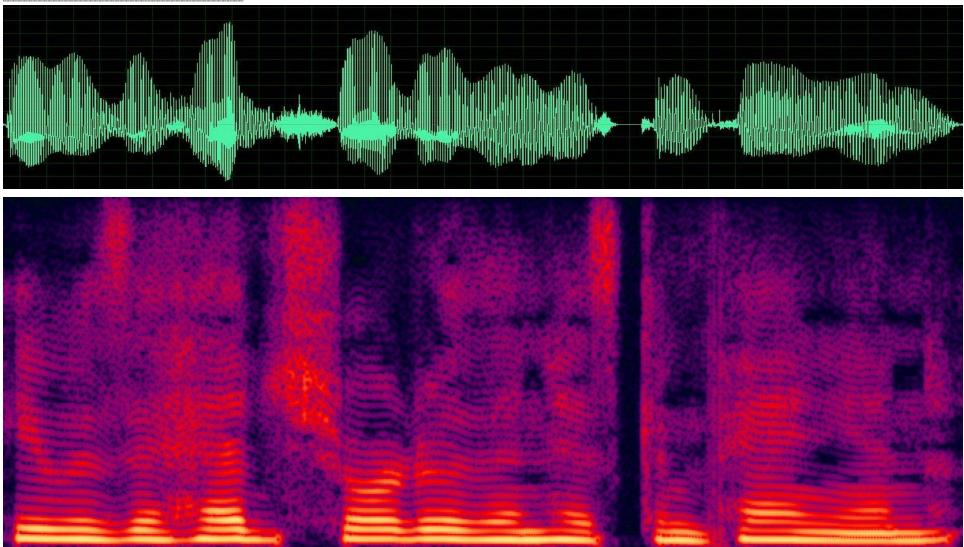
Speech Recognition Using Deep Believe Networks

Abdel-rahman Mohamed

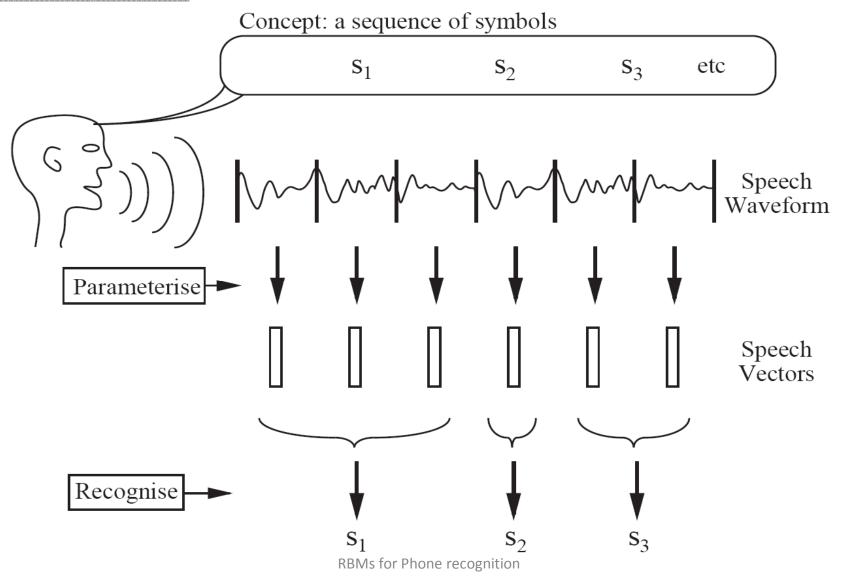
Department of Computer Science University of Toronto

The speech signal

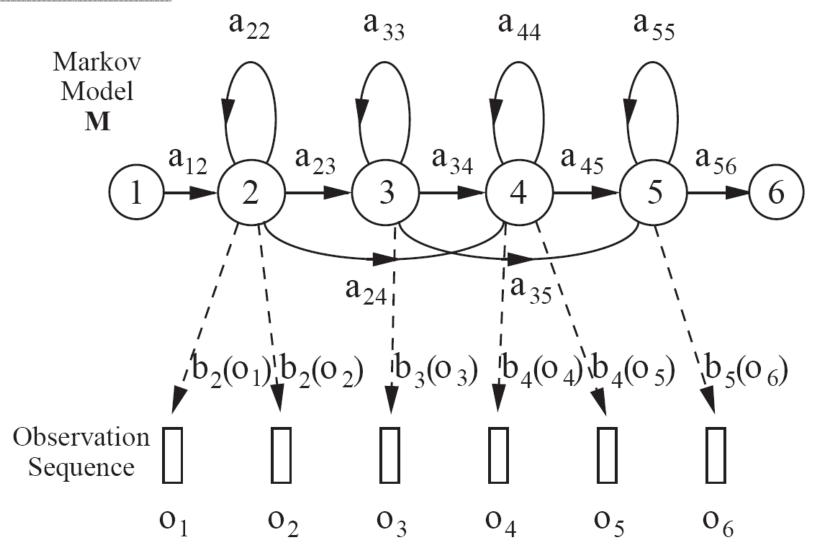


DBNs for speech recognition and generation

Automatic Speech Recognition (ASR)



ASR existing models



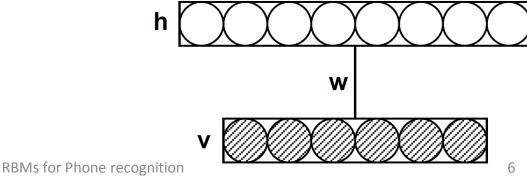
DBNs for speech recognition and generation

Motivation

- The state-of-the-art techniques for acoustic modeling suffers from unrealistic independence assumptions.
- Looking for new models that offer more representational capacity.

Restricted Boltzmann Machines (RBMs) (1)

- An RBM is a bipartite graph in which visible units are connected to binary stochastic hidden units using undirected weighted connections.
- RBMs have an efficient generative training procedure as well as discriminative fine tuning mechanisms.



RBMs (2)

- The energy of the joint configuration (v, h) is given by: $E(\mathbf{v}, \mathbf{h}; \theta) = \sum_{i=1}^{\mathcal{V}} \frac{(v_i - b_i)^2}{2} - \sum_{i=1}^{\mathcal{V}} \sum_{j=1}^{\mathcal{H}} w_{ij} v_i h_j - \sum_{j=1}^{\mathcal{H}} a_j h_j$
- The probability that the model assigns to a visible vector v is: $p(\mathbf{v}; \theta) = \frac{\sum_{\mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{\mathbf{h}} \sum_{\mathbf{h}} e^{-E(\mathbf{u}, \mathbf{h})}}$
- Conditional distributions $p(\mathbf{v}|\mathbf{h})$ and $p(\mathbf{h}|\mathbf{v})$ are factorial and given by: $p(h_j = 1|\mathbf{v}; \theta) = \sigma(\sum_{i=1}^{\mathcal{V}} w_{ij}v_i + a_j)$

$$p(v_i = 1 | \mathbf{h}; \theta) = \mathcal{N}(\sum_{j=1}^{\mathcal{H}} w_{ij}h_j + b_i, 1)$$

RBMs for Phone recognition

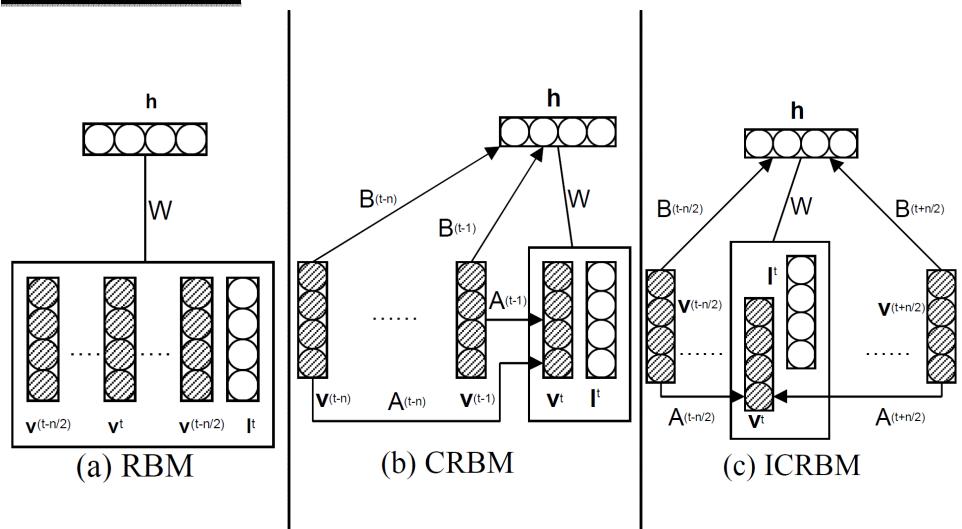
Using RBMs for phone recognition (Mohamed, Hinton, ICASSP 2010)

- A context window of successive feature vectors is used to set the states of the visible units.
- To train an RBM to model the joint distribution of data and labels, the visible vector is concatenated with a binary vector of class labels.

$$E(\mathbf{v}, \mathbf{l}, \mathbf{h}; \theta) = -\sum_{i=1}^{\mathcal{V}} \sum_{j=1}^{\mathcal{H}} w_{ij} h_j v_i - \sum_{k=1}^{\mathcal{L}} \sum_{j=1}^{\mathcal{H}} w_{kj} h_j l_k - \sum_{j=1}^{\mathcal{H}} a_j h_j - \sum_{k=1}^{\mathcal{L}} c_k l_k + \sum_{i=1}^{\mathcal{V}} \frac{(v_i - b_i)^2}{2}$$
$$p(l_k = 1 | \mathbf{h}; \theta) = \operatorname{softmax}(\sum_{i=1}^{\mathcal{H}} w_{kj} h_j + c_k)$$

 The DBN produces a probability distribution over the possible labels of the central frame. Then probabilities are fed to a standard Viterbi decoder.

RBM and its variants



<u>RBM training</u>: Generative training

• By maximizing the likelihood function of the visible data, we get:

$$\Delta w_{ij} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}$$

• The Contrastive Divergence (CD) approximation is used:

$$\Delta w_{ij} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_1$$

• For the CRBM, the directed connection updates are:

$$\Delta A_{ij}^{(t-q)} = v_i^{(t-q)} (\langle v_j^t \rangle_{data} - \langle v_j^t \rangle_1)$$

$$\Delta B_{ij}^{(t-q)} = v_i^{(t-q)} (\langle h_j^t \rangle_{data} - \langle h_j^t \rangle_1)$$

RBM training: Discriminative training

• $p(\mathbf{l}|\mathbf{v})$ can be computed exactly by:

$$p(\mathbf{l}|\mathbf{v}) = \frac{\sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{l},\mathbf{h})}}{\sum_{\mathbf{l}} \sum_{\mathbf{h}} e^{-E(\mathbf{v},\mathbf{l},\mathbf{h})}}$$

• The gradient of $\log p(\mathbf{l}|\mathbf{v})$ can also be computed exactly. The update rule for the vis-hid weights is:

$$\Delta w_{ij} = v_i \sigma \left(a_j + w_{jm} + \sum_{i=1}^{\mathcal{V}} w_{ij} v_i \right) - v_i \sum_{k=1}^{\mathcal{L}} p(l_k = 1 | \mathbf{v}) \sigma \left(a_j + w_{jk} + \sum_{i=1}^{\mathcal{V}} w_{ij} v_i \right)$$

• To avoid model overfitting, we follow the gradient of: $f(\mathbf{v}, \mathbf{l}) = \alpha \log p(\mathbf{l} | \mathbf{v}) + \log p(\mathbf{v} | \mathbf{l})$

Evaluation Setup

- The core test set of the TIMIT database is used. The MIT development set (50 speakers) was used for model tuning.
- 12th order MFCC and energy along with 1st and 2nd derivatives were used as features.
- A context window of 11 feature frames was used.
- All architectures contain 2000 hidden units.
- We used 183 target class labels (3 states*61 phones).
- We used a bigram language model over phones, estimated from the training set of TIMIT.

Evaluation

• Using the generative objective, PER percentages are:

RBM	CRBM	ICRBM
36.9 %	42.7 %	39.3 %

• Using the hybrid objective function:

RBM	ICRBM
27.5 %	26.7 %

Evaluation

 Comparison with feedforward neural networks

NN (random weights)	NN (RBM weights)	ICRBM
28.7 %	28.3 %	26.7 %

 A two-tailed Matched Pairs Sentence-Segment Word Error (MAPSSWE) significance test showed that ICRBM is significantly better.

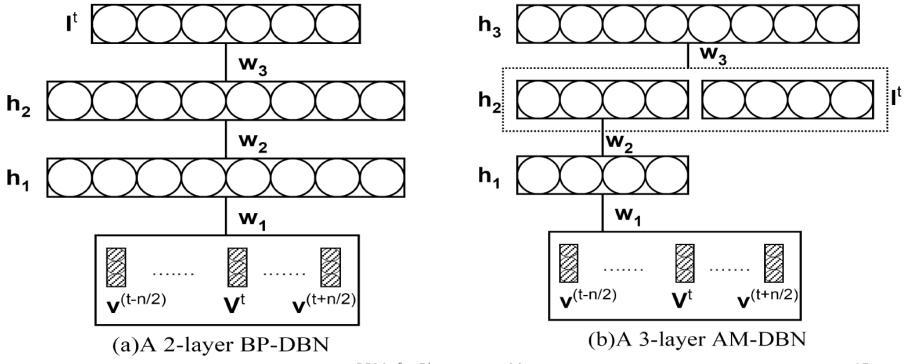
Using DBNs for phone recognition

(Mohamed, Dahl, Hinton, NIPS workshop 2009)

We employed two types of DBN architectures:

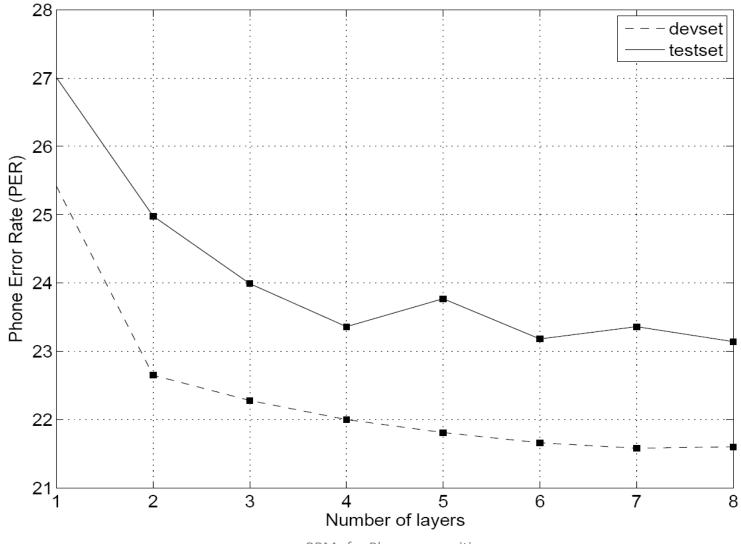
The BP-DBN: It performs a purely discriminative fine-tuning phase using backpropagation.

•The AM-DBN: It has an RBM associative memory for the final layer to model joint density of labels and inputs. The hybrid objective function is used for fine-tuning.



RBMs for Phone recognition

Evaluation: How deep should the model be?



RBMs for Phone recognition

Evaluation

Method	PER
Large Margin GMM	33.0 %
ML trained CD-HMM	27.3 %
ICRBM	26.7 %
Recurrent NN	26.1 %
Monophone HTMs	24.8 %
Heterogeneous Classifiers	24.4 %
Deep Belief Network (DBN)	23 %
CD-HMM trained with BMMI (IBM)	22.7%
DBN with mcRBM as the 1 st layer	20.5%

Thank you