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Abstract 

Unlike many other existing model checkers, MOCHA is designed for the modular verification of heterogeneous 
systems.  Instead of manipulating unstructured  state‐transition graphs,  it  supports  the hierarchical modeling 
framework of Reactive Modules.  It overcomes the state‐explosion problem by exploiting the modular structure 
naturally present in many system designs. Instead of traditional temporal logics such as CTL and LTL, it uses 
Alternating Temporal Logic, a module‐level specification language. For the verification of complex systems, its 
algorithms incorporate optimizations based on the hierarchical reduction of sequences of internal transitions. In 
this paper, we study the language Reactive Modules, the Alternating Temporal Logic and use a case study of an 
elevator  system  to  try  out  MOCHA.  Finally,  we  compare  it  with  other  tools  SMV  and  SPIN  and  draw 
conclusions. 

1   Introduction 

MOCHA (Modularity in Model Checking) is a growing interactive software environment for the 
modular and hierarchical verification of heterogeneous systems. MOCHA is developed in a joint 
venture of R. Alur at University of Pennsylvania and T.A. Henzinger at University of California at 
Berkeley in 1998[1]. It is available in two versions, cMocha (Version 1.0.1) which is written in C and 
jMocha (Version 2.0) which is written in Java[2].  

MOCHA distinguishes from many other model checkers in modeling, specification, simulation and 
verification: 

♦ Different modeling language: instead of using unstructured state-transition graphs, MOCHA uses 
the heterogeneous modeling framework of reactive modules [3]. The reactive modules provide 
semantic glue that allows the formal embedding and interaction of components with different 
characteristics. The modules can be synchronous or asynchronous, represent hardware or software, 
and be speed-independent or time-critical. 

♦ Nontraditional requirement specification: instead of supporting the system-level specification 
languages of linear and branching temporal logics, MOCHA supports the module-level 
specification language of Alternating Temporal Logic (ATL) which can express both cooperative 
and adversarial relationships between different modules.  

♦ Improved algorithms: MOCHA implements enumerative, as well as symbolic, state-exploration 
algorithms and both checkers have the capability to produce error traces. MOCHA supports a 
range of compositional and hierarchical verification methodologies so that it integrates assume-
guarantee rules, abstraction operators and automatic refinement checking. 

♦ Supporting three kinds of simulation, namely, random simulation, manual simulation, and game 
simulation. In random simulation, all atoms are executed by the simulator, which randomly 
resolves nondeterminism. In manual simulation, all atoms are executed according to the directions 
of the user. In game simulation, some of the atoms are executed by the simulator, while the 



 2

remaining atoms are executed by the user. Each such simulation can be viewed as a game between 
the user and the simulator. 

In this paper, we use a case study of a three-level elevator to explore many of these features under the 
verification environment of cMocha.  

2   Elevator System Specification 

Before we get into MOCHA, it is necessary to introduce the system we are going to model.   The case 
study we are using to demostrate MOCHA is an elevator system for an apartment building.  

The system consists of an elevator that services three floors of the building and a controller that 
communicates with the elevator and schedules its moves. Each floor has a request button that a user 
presses to get the elevator to come to that floor and open its doors. Inside the elevator, there is one 
request button for each of the three floors; passengers press these buttons to get the elevator to go to a 
particular floor and open its doors. To go from floor i to floor k, the elevator must visit floors i+1 
through k-1, although it does not have to open doors there. If there are no requests to service, an 
elevator stays at a floor with its doors open. As passengers press buttons, the controller schedules the 
elevator to service the requests, trying to minimize the waiting time. The elevator has a "passenger 
present" detector and a "door open" button. When someone steps into the elevator, the doors should 
close and remain closed unless the "door open" button is pressed. Since we do not want the passenger 
to keep doors open, the elevator can react to the "door open" button at most twice. As passengers leave 
the elevator, the "passenger present" detector is reset. 

To make the specification complete, we have made some assumptions about the environment. First, 
assume that the user should be able to press request buttons at any point, so we leave the button 
pressing action nondeterministic. Second, to avoid leaving some request unfulfilled, the elevator runs 
in a pattern that it moves in one direction to satisfy all outstanding requests in route, until it reaches the 
last floor in that direction or until there are no more requests in that direction. 

3   Model checker MOCHA 

3.1   Reactive Modules 

The input language that MOCHA uses for model description is that of Reactive Modules Language. 
Unlike simple state-transition graphs, reactive modules form a compositional model in which both 
states and transitions are structured. Reactive modules are built from atoms, and atoms are built from 
variables which are the elementary particles of systems. 

In MOCHA, a system is considered to be discrete, deadlock-free, nondeterministic. The state of the 
system is described by a set of state variables: each system state corresponds to an assignment of 
values to the variables. So, in the elevator system, the state of the system is essentially the movement 
status and position of the elevator car and the status of the door. The behavior of the system consists in 
an initial round, which initializes the variables to their initial values, followed by an infinite sequence 
of update rounds, which assign new values to the variables, thus describing the evolution of the 
system’s state. Atoms and modules are used to specify the initial and update rounds for all the 
variables.  

3.1.1   Variables 
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3.1.1.1   Variable Type 

MOCHA provides the simplest data types such as Boolean, integer and natural; the keywords for these 
types are bool, int, and nat, respectively.  Other common data types of MOCHA are ranges, 
enumerations, arrays, and bitfields.  
For example, we declare the moving status of the elevator as enumerated type and the counter for the 
times of door opening as range type: 
type movingType : {UP, DOWN, IDLE} 
type counterType : (0..2) 

Another more interesting data type is event. A variable that is used to represent an event can be 
declared of type event. Events are represented by toggling the value of Boolean variables. If x is an 
event variable, then we toggle it with the command x! to generate an event and we can test whether it 
has been toggled with the Boolean expression x? to count that event. These are only operations of 
event type. The only thing that matters is whether the value of an event variable has been toggled or 
not, we do not really care about what value is stored in x. This methodology makes it easier to toggle 
the variable and detect the toggling and also make the value of the variable irrelevant.   

Since MOCHA does not support shared memory, the communication between different modules is 
accomplished by using event variables.  The events that may happen in our elevator system are 
opendoor event, closedoor event, elevator stop event and elevator go event.  They become 
communication channel between the controller and the elevator. 

3.1.1.2   Latched and updated values 

Reactive modules are to specify how variables change their values over the evolution of the system. In 
each evolution round, every variable has two values. The value of a variable x at the beginning of the 
round is called the latched value, represented by unprimed symbol x. The value of a variable at the end 
of the round is called updated value, represented by primed symbol x’. In an update round, the 
updated value of a variable may depend on the latched value of this variable, and on the latched value 
of other variables. Such a dependency between the values of variables within a single round is called 
an await dependency.   

3.1.1.3  Variable Classification  

Variables are declared in the beginning of a module and specified their usage in the beginning of the 
atom that needs to access them. In the module level, variables are partitioned into three sets: private 
variables, interface variables and external variables, according whether the variable is controlled by 
the module or by the environment. In the atom level, variables are partitioned into three types: 
controlled variables, read variables, and awaited variables, according whether the atom can update 
the variable’s value or can only read its value. We will discuss in details in the next section. 

3.1.2   Atoms 

An atom is the basic unit of a module. It groups all related variables together and describes the initial 
condition and transition relation between them. An atom deals with three types of variables: 

♦ Controlled variables. The variables for which the atom can specify the values in each round.  
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♦ Read variables. The variables whose latched value can be read by the atom to decide the next 
values of the controlled variables. The updated value of a read variable is not accessible to its 
atom. 

♦ Awaited variables. The variables whose updated value can be read by an atom in order to decide 
the updated value of the controlled variables. The latched value of an awaited variable is not 
accessible to its atom.   

In order to avoid inconsistent specifications, the await dependencies must be acyclic. To avoid 
circularity problems, MOCHA requires that no variable is controlled by more than one atom and no 
variable is both awaited and controlled.  

The state of a reactive module changes in a sequence of rounds. The first round is called the initial 
round, and determines initial values for all variables. Each subsequent round is called and update 
round, and determines new values for all variables. Figure 3.1 shows the atoms which specify the 
requests of a floor caused by non-deterministic pressing of external button and internal button of our 
elevator system, as well as the updating of floor request on the change of button pressing. Specifically, 
the init action of Buttons is followed by the init action of FloorReq; in each update round, 
after the external variables have been updated, the update action of Buttons is followed by the 
update action of FloorReq. In this manner, all awaited values are available when they are needed 
during the execution and all nondeterminism in the completion of a round is caused by the 
nondeterminism of the environment.                                  
   atom Buttons 
        controls inButton, exButton 
        reads    arrive, inButton, exButton 
        awaits   arrive 
        init 
            []true -> exButton' := false; inButton' := false 
        update 
            []arrive'  & ( exButton | inButton )-> exButton' := false; 
            []~arrive' &  ~exButton -> exButton' := nondet 
            ... 
        endatom 
 
   atom FloorReqq 
        controls floorRequest 
        awaits exButton, inButton 
        init  
            []true -> floorRequest' := false 
        update 
            []true -> floorRequest' := (exButton' | inButton') 
        endatm      

Figure 3.1 Atom Buttons and FloorReq 

The Figure 3.2 is the definition of atoms showing the communication in the elevator system using 
event methodology. The variables stop, go are declared as event type. The construct stop? quires 
the toggling of an event variable while the stop! toggles the value of an event. The atom 
MoveControl, which is part of the controller, is responsible to determine the next action of the 
elevator. It detects requests from reading the variable floor and the current position of the elevator 
and schedules a stop event to the elevator car in case that a request in the current floor should be 
satisfied. If there is no request in the current floor, the controller sends a go event to the elevator. The 
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atom elevcar, which is part of the elevator, waits for the command from the controller by toggling the 
value of stop and go.  

atom MoveControl 
        controls keepGoing, stop, go 
        reads    stop, go, position, floor0, floor1, floor2,  
        init 
            []true -> keepGoing' := false;  
        update 
            [] position=f0 & floor0 -> stop! ; keepGoing' := false 
            ... 
            [] position=f0 & ~floor0 & ( floor1 | floor2 )  
                                    -> go! ; keepGoing' := true 
            ... 
       endatom 
 
    atom elevcar 
        controls moving, door 
        reads    stop, go 
        awaits   stop, go 
        init 
            []true -> moving' := false ; door' := OPEN;  
        update 
            []stop? -> moving' := false; door' := OPEN 
            ... 
            []go?   -> moving' := true; door' := CLOSED 
            ... 
        endatom 

    Figure 3.2 Communications in MOCHA 

You cannot feed just above atom as input to MOCHA since the smallest unit of input to the MOCHA 
parser is a module, not an atom. Next, we look at how to define a module. 

3.1.3   Modules 

A reactive module is a collection of atoms. It is a system, or a system component that interacts with 
other systems or other components. The variables appearing in a module may be controlled either by 
the module or by the environment and they are partitioned into atoms. In the initialization round and in 
every update round, the module and the environment take turns in the form of subrounds to initializes 
or update an atom of variables that they control.  

A module description involves the following three classes of variables according whether or not their 
values can be observed by the environment. And the state of a reactive module is determined by the 
values of these three kinds of variables: 

♦ Private variable. The variables that are only read and modified by some atom of the module and 
neither read nor modified by the environment. 

♦ Interface variable. The variables that are read by both the module and the environment, but only 
modified by the module. 

♦ External variable. The variables that are read by both the module and the environment, but only 
modified by the environment. 

Therefore, from the above definition, a module is in charge of its private variables and interface 
variables, while the environment can observe the interface variable and external variables of one 
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module. Given a module P consisting of a set U = {U1, U2, …Ui, …Un} of atoms, we refer privP, extP, 
intfP as the private, external, interface variables of module P respectively and  readUi, ctrUi, awaitUi 
as the read, controlled, awaited variables of atom Ui respectively, the following relationships among 
different variables immediately follow from their definition: 

privP ∩  extP ∩  intfP = φ  

=
=

=
U

ni

i
ictrU

1

  intfP 

ctrUi ∩  awaitUi = φ  

We give a concrete example after we develop the elevator module to show the relationship between 
module and environment in term of various classes of variables. 

Now, we are ready to develop modules for the elevator system. The Figure 3.3 is the elevator 
module which represents the elevator car of our system. It communicates with the controller to serve 
requests. 
module elevator 
    external  stop, go, opendoor, closedoor : event; 
              elevnextdire : movingType 
    interface elevdire :  movingType; 
              moving : bool; 
              position : posiType; 
              door : doorStatusType; 

passengerPresent : bool; 
openDoorTimes : counterType 

    atom elevcar 
        controls moving, position, elevdire, door,  
                 passengerPresent, openDoorTimes 
        reads    moving, position, elevdire, door,  
                 elevnextdire,  openDoorTimes, 
                 go, stop, opendoor, closedoor 
        awaits   stop,  go, opendoor, closedoor 
        init 
            []true -> moving' := false ; position' := f0; door' := OPEN; 
            ... 
        update 
            []stop? -> moving' := false; door' := OPEN;  
                       passengerPresent' := nondet 
            []go? & (elevnextdire=UP)  -> elevdire' := elevnextdire;door' := CLOSED; 
                          moving' := true;  
                                          position' := if( position = f0) then f1 
                                                  else if (position = f1) then f2 
                                  else position fi fi            ... 
            ... 
        endatom 

endmodule 

Figure 3.3 Module elevator 

 

The various classes of module variables and their relationships in the elevator module are shown in 
Table 1: 
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Private variable Interface variable 
elevdire, moving, position, 
door, passengerPresent, 
openDoorTimes 

External variable 
stop, go, opendoor, 
closedoor, elevnextdire 

Controlled variable by module 
elevdire, moving, position, door, 
passengerPresent, openDoorTimes 

 

 

Visible variable by environment 
elevdire, moving, position, door, passengerPresent, 
openDoorTimes, stop, go, opendoor, closedoor, 
elevnextdire 

Table 1. The relationship of variables in the module Elevator  

 

As we have mentioned before, the state changes of a reactive module can be described as a sequence 
of rounds. While in each round, there are several subrounds: one for the external variables, and one per 
atom. When executing the above module elevator, in each round, first the external variables stop, 
go, opendoor, closedoor, and elevnextdire are assigned arbitrary value of the correct types 
and domain, and then the atoms are executed and the controlled variables elevdire, moving, 
position, door , etc get updated.                                               

To take a closer look to the execution of a set of atoms U, we analyze the initialized trajectories of U. 
An initialized trajectory of U is the outcome of the execution.  Figure 3.4 is a trajectory of module 
floor with atoms Buttons and FloorReq. arrive is the external variable of module Floor, while 
exButton, inButton, floorRequest are controlled variables in the atoms. There are three subrounds 
in the module floor: one for external variable arrive, one for the atom Buttons, and another for the 
atom FloorReq. The subround of updating the variables exButton, inButton awaits the subround of 
updating external variable arrive. And the subound of atom FloorReq awaits the subround of atom 
Buttons. And in the execution of  FloorReq, the value of variable floorRequest depends on the 
value of primed exButton, inButton, which means that the value of floorRequest will be updated in 
the same round as the atom Buttons.  

arrive 0  0  1  0 0  1  1  0  0  0  1  

exButton  0 1  0 0  0  0  0  1  1  1 0

inButton  0 0  0 1  1  0  0  1  1  1 0

floorRequest  0 1  0 1  1  0  0  1  1  1 0

Figure 3.4 Initialized trajectory of the atoms in module Floor  

The trajectory is depicted graphically in the form of a timing diagram in Figure 3.5. The vertical 
dotted lines of the timing diagram represent boundaries between rounds.  The diagram is interpreting 
the await dependency: the variables exButton and inButton changes  their values, in each round, 
only after arrive have changed its value; the variable floorRequest  changes its value only after 
either exButton or inButton changes its value. 
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Figure 3.5 The timing diagram for the trajectory from above 

MOCHA provides three mechanisms to create new module from pre-defined module by variable 
hiding, variable renaming and parallel composition. The renaming is useful for creating different 
instances of a module, and for avoiding name conflicts. In our elevator system, we define the module 
floor and create the first floor floor_0 by renaming it:  

floor_0 := floor[arrive,floorRequest,exButton,inButton :=  

                                            arrive0, floor0, exBtn0, inBtn0] 

The parallel composition || operation combines two modules into a single module whose behavior 
captures the interaction between the two original component modules. Two modules can be composed 
only if their variable declarations are mutually consistent, and if the combined await dependencies of 
two modules are not circular. The composition P || Q is asynchronous iff both P and Q are 
asynchronous, and P || Q is round-insensitive iff both P and Q are round-insensitive [5]. 

After defining all component modules for our elevator system, namely, floor0, floor1, floor2, 
elevator, openDoorBtn and controller, we have all components of the system.  We create the 
entire elevator system by parallel composition. To construct module abstractions of degrees of detail, 
we hide some interface variables, so that only some status data that the user can view, such as 
elevnextdire, arrive0, etc... 

ElevSystem := hide elevnextdire, arrive0, arrive1, arrive2   

                       in (floor_0 || floor_1 || floor_2 || elevator  
                           || openDoorBtn || controller) endhide  

The structure of modules can be graphically depicted using block diagram Figure 3.6. From the 
diagram, we can see that the relationship of await dependencies among all component modules is not 
circular. The complete elevator system Reactive Modules specification can be found in Appendix A.  
After building the system, we specify all the properties that the system should hold. Once we have 
both system specification and property specification, we verify them in MOCHA. 
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Figure 3.6  Block Diagrams for the elevator system modules 
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3.2   Property Specifications 

MOCHA can check specification of a module in three different ways: invariants, alternating-time 
temporal logic, and refinement. Refinement checking is to check whether the given module is a 
refinement of the specification which is also given as a reactive module.  Since in this case study we 
do not check when a module refines another module, we only introduce the first two specifications.  

3.2.1 Invariants 

An invariant is a Boolean predicate which is intended to hold in all reachable states of a module. The 
syntax for describing an invariant is the same as that for a Boolean expression. 

Consider the elevator modules, an important property that should hold true throughout the execution is 
that “The elevator never moves with its door open”. This is a very suitable property that we can 
describe as invariant specification: 

inv “inv1” ~( moving & (door = OPEN)) 

3.2.2   Alternating Temporal Logic 

As a generalization of the temporal logic CTL [4], Alternating Temporal Logic is interpreted over 
concurrent game structure and is designed for specifying requirements of open systems [5].  It captures 
compositions of open systems by interpreting them over game structure with multi-players, instead of 
just two-player games between the system and the environment. The players represent different 
components of the system and the environment. To give a general picture about ATL, we consider a 
set A of players and an ATL formula <<A>>ϕ . Let us consider dividing all players into a protagonist 
and antagonist. The game proceeds in an infinite sequence of rounds, i.e. one init round and infinite 
update rounds. To execute an update round, the protagonist chooses for every player in A an action. 
Then the antagonist chooses for every player not in A an action, and the system (game) is updated to a 
new state. In this way, the game produces a computation. The protagonist wins the game if the 
resulting computation satisfiesϕ . In the following sections, we will use the term “player” or “agent” to 
refer a module in the system.  

In addition using all the same path quantifiers and temporal operators as CTL, ATL has two 
additional path quantifiers:  

<< names>>,       [[names]] 

ϕ>><< names where ϕ  is a path formula and playersofnames ∑⊆ ,  means that the listed players 
names  have a strategy to produce a computation that satisfying  ϕ , no matter how the other unlisted 
players play the game, i.e. irrespective of how the players in name\∑ behave. Therefore, we can 
derive that CTL path quantifier A corresponds to ATL path quantifier >><< φ  and CTL path 
quantifier E corresponds to ATL path quantifier >>∑<< . 

ϕ]][[names  where ϕ  is a path formula and playersofnames ∑⊆ , means that the players that are 
unlisted in the quantifier have a strategy to produce a computation satisfying  ϕ , no matter how the 
other listed players play the game.  We see that [[ ]] is the dual of  >><< . Therefore, we can derive 
that CTL path quantifier A corresponds to ATL path quantifier ]][[∑  and CTL path quantifier E 
corresponds to ATL path quantifier [[ φ ]].  



 11

3.2.2.1   CTL properties 

We should note that ATL is more expressive than CTL, which means that all CTL formula can be 
verified by MOCHA without any modification. 

Consider the elevator model, the property we described as an invariant in Section 3.2.1 also can be 
described as the following ATL formula: 

AG ( moving -> AF(door = CLOSED)) 

To make MOCHA recognize it, the syntax of specifying an ATL property is: 
atl “atl1”  A G ( moving => A F(door = CLOSED)), 

where “atl1” is the name of this property, which is given by the user. 

The property that “Requests to use the elevator are eventually serviced” can be specified as: 
atl  A G ( exBtn0 => A F ((door = OPEN) & (position = f0))). 

The property that “Requests to be delivered to a particular floor are eventually serviced” can be 
specified as: 

atl A G ( inBtn0 => A F ((door = OPEN) & (position = f0))); 

The above properties will hold vacuously if the external button and internal button are never pressed. 
So in order to make sure such case never happen and the system is doing some service, we should 
specify and verify another property that “Eventually, the external/internal buttons will be pressed” for 
vacuity checking. 

atl E F ( exBtn0 ) 
atl E F ( inBtn0 ) 

The property that “The elevator should keep its door open until there is a request to use it” can be 
expressed as follows: 

A G ( (door = OPEN) => A ( (door = OPEN) W (floor0 | floor1 | floor2))); 

The property that “When someone steps into the elevator, the door should close and remain closed 
unless the door open button is pressed” can be expressed as follows: 
     A G ( (~moving & passengerPresent & (door = OPEN)) =>  

                             A ((door = CLOSED) U openDoorButton )); 

The above property will hold vacuously if there is always no passenger present. Therefore, we should 
specify and verify another property that “Eventually, the passenger will present” as follows: 

E F ( (~moving & passengerPresent & (door = OPEN)) 

The complete list of properties of the elevator system can be found in Appendix B. 

3.2.2.2   Properties in ATL but not in CTL 

Since ATL is a generalization of the temporal logic CTL, it is more expressive than CTL. We can take 
the advantage of two additional path quantifiers of ATL to specify some properties that cannot be 
expressed in CTL. 

There are six agents (or modules) in our elevator system: floor_0, floor_1, floor_2, elevator, 
openDoorBtn, and controller. If we consider the evolution of an elevator system as a game, in each 
step of the game, these agents choose a move, and the combination of choices determines a transition 
from the current state to a successor state. By cooperation, some agents may have a strategy to ensure 
a certain property hold no matter the rest of agents in the system do. In some other cases, some agents 
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do not have any strategy to force a certain property hold no matter how they behave. We are interested 
in verifying such CTL-unable properties.  

The vacuity check for the property “Eventually, the buttons will be pressed” which was verified using 
CTL formula can be verified more precisely using ATL formulas: 

atl <<floor_0>> F (exBtn0); 

atl <<floor_0>> F (inBtn0); 

This ATL formula means that the module floor_0 has a strategy to make the external/internal button 
be pressed eventually no matter how the other modules behaves. This formula is stronger than CTL 
formula and it is not expressible in CTL. 

The controllability of a system whose safe states are given by the state predicate ϕ  is impossible 
expressed in CTL. In ATL, it can be specified by >><< agentcontrol _ G ϕ .  This asserts that the 
control_agent has a strategy to ensure the satisfaction of ϕ . In our elevator system, the property that 
“The floor_1 has the discretion to make the external button not be pressed,  no other module can 
force it to do otherwise” states the controllability of the floor_1 which represents the second floor 
over the external button, and it can be specified as the following ATL formula:  

atl A G ( ~exBtn1 => <<floor_1>> G ~exBtn1). 

It is often useful to express an ATL formula in a dual form. As we mentioned in the beginning of this 
section, the path quantifier [[ ]] is the dual of << >>. While ATL formula <<A>> ϕ  where A is a set 
of agents intuitively means that the agents in A can cooperate to make ϕ  true, the dual formula  [[A]] 
ϕ  states that the agents in A cannot cooperate to make ϕ  false [5]. Let us consider the second floor in 
our elevator system again. The external button exBtn1 is controlled by the floor_1 module; only the 
floor_1 module has strategies to produce a trajectory to enforce the button exBtn1 turn on. Other 
agents in the system such as controller or elevator cannot make the button turn on. The dual form 
of this  property can be stated as “whenever the request button is off, all agents together except floor_1 
does not have a strategy to produce a trajectory to force the external button be pressed” which can be 
specified as follow: 

atl A G ( ~exBtn1 =>  

               [[controller, elevator, floor_0, floor_2, openDoorBtn ]] G ~exBtn1); 

The ATL is intended for compositional reasoning. It makes the property which holds in the a 
component of the system consistently hold in the composite system. More specifically, if A satisfies 
the ATL formula ϕ>><><< A , then the composite system which contains A also satisfies this 
formula. Consider the property that “The requests on the third floor are eventually serviced" and its 
CTL formula is: 

A G ( floor2 => A F ( (door = OPEN) & (position = f2))); 

This CTL formula asserts that it is for all modules in the elevator system to cooperate so that the 
request on the third floor is eventually serviced, i.e. the elevator stops at the third floor and the door is 
open. The reason that the composite system ElevSystem satisfies this property is because that the two 
components, namely controller and elevator, satisfy this property. So, we can give the genuine 
ATL formula for this property:  
           << >> G ((position=f0) & floor2 =>  
                 <<controller, elevator>> F ((position = f2)&(door=OPEN))); 
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This ATL formula states that whenever the elevator is currently in the first floor and the second floor 
is required, the controller and the elevator can cooperate so that the elevator will eventually be at the 
second floor. 

The complete list of ATL properties can be found in Appendix B. 

3. 3   Simulation  

MOCHA allows the user to execute any module in three modes: manual, random, and game, via a Tk-
based GUI for interacting with the tool and viewing the execution trace.  

♦ Manual execution. The GUI displays all possible initial states and the user can select  any one of 
them to execute. 

♦ Random execution. User can specify the number of rounds that it wants to execute the module for. 
♦ Game execution. The user plays a game against the computer. The user controls the update of a 

subset of the set of atoms of the module being simulated. In every round, the user chooses to 
update the variables of the atoms he controls and the system updates the rest of the atoms 
randomly. This is a way of performing guided execution. 

The module definitions should be entered into a file named with the suffix .rm, in our case, elev.rm. 
The properties specified in invariants and ATL formulas can be stored in a file named with 
suffix .spec. Before simulation and verification, one should load these files into MOCHA. The load 
of the elevator system elev.rm module and the specification is shown in Figure 3.7. We can see that 
MOCHA treats a single module as a system. The composite system ElevSystem is also a module. 
MOCHA allowed user to simulate any module as user needs. For example, we can just choose to 
simulate the module elevator. In this case, during the simulation, the external variables such as 
opendoor, stop, etc, which are controlled by the module controller, are arbitrarily assigned a 
value by the environment. Since we are interested in our entire elevator system, a random simulation 
execution of ElevSystem module is shown in Figure 3.8. 

 
Figure 3.7 Read module and specification 
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Figure 3.8 Simulation of Module ElevSystem 

3.4   Verification 

Mocha translates CTL-formed formulas into ATL form. Figure 3.9 shows the specifications that have 
been loaded and translated.   

 
Figure 3.9 specifications loaded and translated 
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3.4.1   Invariant Checking 

We check the property that “The elevator never moves with its door open” using invariant checking, 
which is shown in Figure 3.10. We can see Mocha invariant checker is using symbolic checking. It 
produces a Binary decision diagrams (BDDs) [15] representation of the transition relation and of the 
set of initial states.  The checking result states that the invariant is passed. The time that takes to verify 
this property is one seconds. 

 
Figure 3.10 invariant checking and the results 

 

3.4.2   CTL and ATL checking 

The algorithm of Mocha ATL checking is generalized from the symbolic model-checking procedure 
for CTL. For a set A of agents, to check an ATL formula pA >><><<  is to compute the least fixed 
point of the set of Agents that contains all states satisfying p. Mocha computes this by an iterative 
symbolic procedure so that the time complexity of ATL model checking is still linear in the size of 
state space and the formula, although ATL is more expressive than CTL.   

To illustrate the above MOCHA ATL checker property, we compare the checking results of both CTL 
formula and ATL formula for the property “Requests to use the elevator are eventually serviced”. The 
result of checking CTL formula 
                    “A G ( floor2 => A F ( (door = OPEN) & (position = f2)))” 
is shown in Figure 3.11. The result of checking ATL formula  

“<<>>G (((position=f0) & floor2) =>  
<<controller,elevator>> F ((position = f2)&(door=OPEN)))” 

is shown in Figure 3.12.  
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Figure 3.11 CTL formula checking and the results 

 
Figure 3.12  ATL formula checking and the results 

 

Both formulas are verified in one seconds. Therefore, the added expressiveness of ATL over CTL does 
not add extra cost to verification. 

The verification results of all the properties can be found in Appendix C. 

3.5   Problems 

There are some problems we encountered while verifying the properties using MOCHA. Some 
problems might be caused by the limitation of the model checker, while other problems might be 
caused by the imperfection of the elevator system specification. We list these problems below:  

♦ We originally intended to use jMOCHA as the environment to explore Reactive Modules and ATL 
model checking. It provides many improvements over cMOCHA and is written in Java. However, 
its execution is noticeably slower than cMOCHA, especially when the system state space gets 
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larger. Another problem we found is that when the array type data is used in the module, jMOCHA 
behaves unexpectedly. 

♦ When verifying some ATL properties, cMOCHA is crashed with segmentation fault. We observed 
that those ATL formulas have a common feature that they all refer some variables of range type. 
For instance, the ATL formula: 

A G ~(openDoorButton & (openDoorTimes > 2) & (door = OPEN)) 

states that the elevator react "open door" at most twice. The variable openDoorTimes is ranging in 
(0..2).  

♦ Some ATL properties are failed when verified by MOCHA. However, MOCHA does not provide 
counterexample and back trace methodologies, it is difficult to debug and optimize our model. 

4 Related works and comparisons 
Hardware and software systems will inevitably grow in scale and functionality. With the increase in 
complexity, the likelihood of subtle errors is much greater. Model checking is one way to enable 
developers to construct systems that operate reliably despite this complexity. Currently, model 
checkers are widely used in industry and in academia. SMV and SPIN are among the most popular 
ones in model checking. SMV (Symbolic model verifier) [6] is a model-checker for checking that 
finite-state systems satisfy specifications given in CTL. It uses the OBDD-based symbolic model 
checking algorithm. It was intended for hardware systems. Its modeling language is SMV, which 
hierarchically describes finite-state machines at any level of detail, both synchronous and 
asynchronous. SPIN [7] is Bell Labs’ tool implemented in C and intended for checking correctness of 
process interactions. The underlying language is PROMELA (Protocol or Process Meta Language), 
which is a C-like non-deterministic language based on Hoare’s CSP (communicating sequential 
processes). SPIN contains a symbolic simulator, model checker, and verification with LTL (linear 
temporal logic) and invariants. SPIN uses partial order reduction to reduce state space. Based on the 
experience of modeling and verifying a similar elevator system in both SMV and SPIN, we draw a 
summarization map of these two types of model checkers. 

i. The modeling language 

♦ SMV 

The language in SMV for describing the model is a simple parallel assignment. The description of 
a complex finite-state system can be decomposed into modules with one module called main.  

Modules can have parameters, which may be state components, expressions, or other modules. 

Modules can be composed either synchronously or using interleaving. If the keyword process 
precedes an instance of a module, interleaving is used; other wise synchronous composition is 
assumed. The interleaving model allows for a particularly efficient representation of the transition 
relation: the set of states reachable by one step of the program is the union of the sets reachable by 
each individual process. By this means, the reachability graph is not needed, while sometimes 
complexity in representing the set of states reachable in n steps is increased up to ns possibilities. 
Fairness constraint is used for specifying that each process has to execute infinitely often. 

In modules, each variable is a state machine described by init and next. And there’s no loop 
construct in SMV. 
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The state transitions in a model may be either deterministic or nondeterministic. Nondeterminism 
can reflect actual environment of the system being modeled, or it can be used to describe a more 
abstract model where certain details are hidden. When modeling an elevator system, the request 
from inside the elevator and at the floors can be modeled as nondeterministic environment.  

♦ SPIN 

Promela(Process Meta Language) allows for the dynamic creation of concurrent processes. 
Promela programs consist of processes, message channels, and variables. The state of a variable 
or channel can only be changed or inspected by processes. The behavior of a process is defined in 
a proctype declaration.  

Process can receive parameters of all basic data types and message channels. But data arrays and 
process types are not allowed.  

A proctype definition only declares process behavior, it doesn’t execute it. Initially, just one 
process will be executed: a process of type init. Independent processes are composed 
asynchronously by the operation of run processes defined by proctype. Except for some basic 
constructs, there are also do loops, assertions and atomic steps in Promela. 

Based on Dijkstra’s guarded command language, every statement in Promela program is guarded 
by a condition and blocks until condition becomes true. The executability of statement is the basic 
means of synchronization. 

Processes can communicate using channels and global variables. 

Channels and global variable define the environment in which the processes run. Promela doesn’t 
provide nondeterministic assignment of variables. So, when modeling an elevator system, we need 
to model the nondeterministic environment which can be executed by nondeterministic choice of 
statements in processes. 

ii. Simulator 

♦ SMV doesn’t provide a separate simulator. If the result of model-checking is false, there is a 
counterexample to prove it. If the result is true, no extra information is given. 

♦ SPIN provides random simulations of the system’s execution. It can be used as a simulator 
not only when a counterexample is generated but also for random and manually guided 
simulation. 

iii. Verifier 

♦ SMV can verify properties expressed in CTL formula. These CTL properties are given as 
SPEC statements in the program.  

♦ SPIN can generate an exhaustive state space searching program for a model to check 
deadlock, unreachable code, and violated assertions. Assertion is a way provided to check 
validity of system invariant.  

SPIN can also check properties specified as an LTL formula by LTL claim. The claim is 
translated into NEVER claim and stored either in .ltl file or at the end of model file. All 
variables in LTL claims have to be global, and only one LTL property can be verified at a 
time. 
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Due to the implicit use of universal quantification over the set of computations, LTL cannot 
express existential, or possibility, properties. 

iv. Algorithms 

♦ SMV uses the OBDD-based symbolic model checking algorithm. OBDDs represent sets of 
states and transitions in Kripke structures. And the algorithm is based on the manipulation of 
Boolean formulas including fixpoints calculation and iterative techniques. 

♦ Spin represents the system as a finite state machine and visits each reachable state explicitly 
(using Nested DFS). performs on-the-fly computation; uses partial order reduction; efficient 
memory usage(state compression, Bit-state hashing). 

Spin performs on-the-fly computation: System is the asynchronous composition of processes 
and the global transition is never build. For each state, the successor states are enumerated 
using the transition relation of each process. 

Spin also tries to realize efficient memory usage.  Techniques applied includes: Hash table, 
partial order reduction, minimized automata reduction, as well as working on non-binary 
variables (MDD). 

Given that none of formal method is likely to be suitable for describing and analyzing every aspect of 
a complex system, a practical approach is to use different methods in combination. Comparing with 
those tools mentioned, MOCHA is interesting to us because it integrates diverse methods and tools for 
modeling heterogeneous, reactive systems, particularly embedded systems. It can model 
heterogeneous systems such as those including hardware and software, analog and digital, ad electrical 
and mechanical devices. It can also model systems that are complex in the sense that they mix widely 
different operations, such as signal processing, feedback control, sequential decision making, and user 
interfaces.  

Comparing with SMV and SPIN, the following proprieties are remarkable in MOCHA: 

♦ The system description language is based on reactive modules. The language REACTIVE 
MODULES is a modeling and analysis language for heterogeneous concurrent systems with 
synchronous and asynchronous components. The efficiency of most verification tools often 
depends on the specific synchrony assumption supported by the underlying model [3]. SMV, as a 
language intended for hardware description, assumes synchronous progress and BDD-based model 
checking is successful in this domain. Many protocol description languages, like Promela, assume 
asynchronous interleaving, and the most effective verification strategy is explicit on-the-fly search 
with reduction techniques based on partial orders and symmetries. While both synchrony and 
asynchrony can be forced, in one way or another, into most currency models, this often comes at 
the cost of inefficiencies in verification. For example, the use of interleaving model in SMV 
through the keyword process increases the number of transitions exponentially. And the 
introduction of synchronization points into asynchronous models restricts the applicability of 
efficient search methods in verification [12]. By contrast, the reactive modules provide a uniform 
framework which allows separating complexity of verification methods from model dependence.  

♦ MOCHA provides support for checking invariants on finite-state modules by implementing both 
symbolic and enumerative state-exploration algorithms. In cMocha, the enumerative state-
exploration which is used primarily by the simulator doesn’t perform any optimizations, while the 
symbolic state-exploration use BDDs to represent the transition relation and the set of reached 
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states of a reactive module. In jMocha, various features and optimizations of enumerative search 
engine is implemented [13]. And the symbolic checker in jMOCHA works on a multi-valued 
decision diagram (MDD).  

♦ Reactive modules, which permit the modular and hierarchical description of heterogeneous 
systems, provides support for modular proof principles, such as assume-guarantee reasoning and 
hierarchical verification, based on built-in abstraction operators such as next [3]. The technique of 
dividing the verification task at hand into simpler tasks is one way for combating state-explosion 
problem. In mocha a compositional methodology for refinement checking is implements based on 
assume-guarantee rules and made use of the infrastructure of reactive modules [14].  

♦ MOCHA can verify properties specified in ATL formula. Temporal logic comes in two varieties: 
linear-time temporal logic assumes implicit universal quantification over all paths that are 
generated by the execution of a system; branching-time temporal logic allows explicit existential 
and universal quantification over all paths. While alternating-time temporal logic (ATL) provides a 
more general variety of temporal logic, which offers selective quantification over those paths that 
are possible out comes of games, such as the game in which the system and the environment 
alternate moves[5]. 

The logics LTL and CTL are interpreted over Kripke structure, which offer a natural model for the 
computations of a closed system, whose behavior is completely determined by the state of the 
system. While reactive modules, as a concurrent game structure, require to be viewed as open 
systems, which interact with environment and whose behavior depend on the state of the system as 
well as the behavior of the environment. ATL is better suitable for compositional reasoning and 
expressing properties of open systems. For instance, if a component A satisfies the CTL 
formula ϕEG , we can’t conclude that a composite system that contains A as a component also 
satisfies ϕEG . On the other hand, if A satisfies the ATL formula ϕGA >><< , then so does the 
composite system.. 

Given the features above, it would be worth further research to investigate how MOCHA could 
provides us with a wealth of experience in tool integration. 

5 Conclusions 

MOCHA is an interactive verification environment for the modular verification of heterogeneous. It 
models system with heterogeneous modeling framework of reactive modules, specifies properties with 
the module-level specification language of ATL, in which both cooperative and adversarial 
relationships between modules can be expressed. MOCHA also provides automatic refinement 
checking. The MOCHA toolkit includes the following functionalities: simulation, enumerative and 
symbolic invariant checking and error-trace generation, compositional refinement checking, ATL 
model checking, reachability analysis of real-time systems. As an integrated model checking 
environment, MOCHA is a good choice to do some case study on. 

From the experience of building an elevator system with MOCHA as well as SPIN and SMV, we 
found that as a model checker based on reactive modules, MOCHA has some advantages in scalability 
which is realized by parallel composition of modules, providing both enumerative and symbolic 
invariant checking, supporting game execution, and verifying properties specified in ATL formula. As 
a tool integrating so many interesting features in modeling checking, MOCHA is worthy of learning 
and analyzing. 
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From the case study of an elevator system, we also find some limitations in MOCHA. First, RML is 
not as convenient of building large complex software or hardware systems for programmers as 
programming language which is more similar to natural language. Second, the way in which variables 
are updated in a single round in MOCHA is nonatomic synchrony [5]. To make sure that the 
possibility of nonterminating computation within a single is avoided, a restrictive strategy is applied 
by statically linearizing the partial order on the atoms. It is useful, while at the same time requires user 
to spend more time on figuring out relationship between modules as well as atoms in detail.    Finally, 
the ATL property checker still cannot provide the counter example execution, which makes debug 
extremely hard.  
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Appendix A: Elevator System Modules 
 
/********************************************************************** 
 
        A REACTIVE MODULES of AN THREE-LEVEL ELEVATOR CONTROL SYSTEM 
 
                             Yuan Gan, Lin Mei 
                                 09-01-2004 
         
**********************************************************************/ 
 
-- the moving direction of the elevator car 
type movingType : {UP, DOWN, IDLE} 
 
-- the status of the elevator car  
type elevStatusType : {STOP, GO} 
 
-- the states of door  
type doorStatusType : {OPEN, CLOSED} 
 
-- floor number  
type posiType : {f0, f1, f2} 
 
-- the counter counting the times of door opening 
type counterType : (0..2) 
 
module floor 
-- represents one floor of the building which the elevator serves. There are an  
-- external and an internal buttons in each floor which issue the requests to 
-- the elevator. When a request is satisfied, the controller issues an arrive 
-- event. 
 
    external  arrive : bool 
    interface floorRequest : bool; 
              exButton : bool; 
              inButton : bool 
               
    atom Buttons 
        controls inButton, exButton 
        reads    arrive, inButton, exButton 
        awaits   arrive 
                
        init 
            []true -> exButton' := false; inButton' := false 
        update 
            -- if the request is served, reset the request to be false 
            []arrive'  & ( exButton | inButton )-> exButton' := false; 
                                                   inButton' := false 
            -- otherwise, the request occurs nondeterministcally  
            []~arrive' &  ~exButton -> exButton' := nondet 
            []~arrive' &  ~inButton -> inButton' := nondet   
            []default ->  exButton' := exButton; inButton' := inButton 
        endatom 
         
    atom FloorReqq 
        controls floorRequest 
        awaits exButton, inButton 
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        init  
            []true -> floorRequest' := false 
        update 
            []true -> floorRequest' := (exButton' | inButton') 
        endatom 
endmodule        
 
 
-- There are three floors in the building, we easily create the three floor  
-- modules by variable renaming. 
 
floor_0 := floor[arrive,  floorRequest, exButton, inButton :=  

                                            arrive0, floor0, exBtn0, inBtn0] 

floor_1 := floor[arrive,  floorRequest, exButton, inButton :=  

                                            arrive1, floor1, exBtn1, inBtn1] 

floor_2 := floor[arrive,  floorRequest, exButton, inButton :=  

                                            arrive2, floor2, exBtn2, inBtn2] 

 
module openDoorBtn 
--represents the “open door” button inside the elevator. 
    external   door : doorStatusType; openDoorTimes : counterType;  
               passengerPresent : bool 
    interface  openDoorButton : bool 
 
    atom Openrequest 
        controls openDoorButton 
        reads    door, openDoorTimes, passengerPresent 
         
        init 
            []true -> openDoorButton' := false 
        update 
            --if there is passenger inside the elevator, opendoor button  
            --can be pressed nondeterminstically. 
            []openDoorTimes < 2 & passengerPresent -> openDoorButton' := nondet 
            []default -> openDoorButton' := false 
        endatom 
endmodule 
 
  
module elevator 
--represents the elevator car. It communicates with the controller to get  
--the next movement data for the elevator moving direction and the statue of the 
--door. 
 
    external  stop, go, opendoor, closedoor : event; 
              elevnextdire : movingType 
    interface elevdire :  movingType; 
              moving : bool; 
              position : posiType; 
              door : doorStatusType; 
     passengerPresent : bool; 
     openDoorTimes : counterType 
 
    atom elevcar 
        controls moving, position, elevdire, door,  
                 passengerPresent, openDoorTimes 
        reads    moving, position, elevdire, door,  
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                 elevnextdire,  openDoorTimes, 
                 go, stop, opendoor, closedoor 
        awaits   stop,  go, opendoor, closedoor 
 
        init 
            []true -> moving' := false ; position' := f0;  
                      elevdire' := IDLE; door' := OPEN; 
                      passengerPresent' := false 
        update 
            -- stop command from the controller! Stop moving and open the door 
            -- and passenger can either leave the elevator or stay in it. 
            []stop? -> moving' := false;  
                       door' := OPEN;  
                       openDoorTimes' := 0; 
                       passengerPresent' := nondet 
 
            -- go command from the controller! moves according the next direction  
            -- issued by the controller. 
            []go? & (elevnextdire=UP)  -> elevdire' := elevnextdire; 
                                          door' := CLOSED; 
                          moving' := true;  
                                          openDoorTimes' := 0; 
                                          position' := if( position = f0) then f1 
                                                  else if (position = f1) then f2 
                                  else position fi fi 
 
            []go? & (elevnextdire=DOWN)-> elevdire' := elevnextdire; 
                                          door' := CLOSED; 
                                          moving' := true;  
                                          openDoorTimes' := 0; 
                                          position' := if( position = f2) then f1 
                                                  else if (position = f1) then f0 
                                                  else position fi fi 
 
            --No movement command and next direction is IDLE, so should open the  
            --door and wait  
            [](elevnextdire=IDLE)->       elevdire' := elevnextdire; 
                                          door' := OPEN; 
                                          moving' := false;  
                                          openDoorTimes' := 0; 
                                          position' := position; 
                                          passengerPresent' := nondet 
 
            --opendoor is pressed!  
            []opendoor? -> moving' := false; 
                           position' := position;  
                           door' := OPEN; 
                  elevdire' := elevdire; 
                           openDoorTimes' := openDoorTimes + 1 
 
            --passenger is present! 
            []closedoor? -> moving' := false; 
                            position' := position;  
                            door' := CLOSED; 
                   elevdire' := elevdire 
 
            -- if there is no any events, the elevator stops there. 
            []default -> moving' := false; door' := OPEN; position' := position           
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        endatom 
     
endmodule 
 
 
module controller 
-- controls the elevator car to serve the requests from each floor. 
-- It detects requests from reading the variable floor[0,1,2] and determines the 
-- next direction according the current direction of elevator and which floor is  
-- required. 
 
    external position : posiType; 
             floor0, floor1, floor2 : bool; 
             elevdire : movingType; 
             openDoorButton : bool; 
             openDoorTimes : counterType; 
             passengerPresent : bool; 
             door : doorStatusType  
    interface elevnextdire : movingType; 
              stop, go, opendoor, closedoor : event; 
              arrive0, arrive1, arrive2 : bool 
    private   keepGoing : bool 
 
    atom MoveControl 
        controls keepGoing, stop, go, arrive0, arrive1, arrive2 
        reads    stop, go, position, floor0, floor1, floor2, arrive0,         
                 arrive1, arrive2 
          
        init 
            []true -> keepGoing' := false; arrive0' := false;  
             arrive1' := false; arrive2' := false 
        update 
            -- satisfy the first floor request 
            [] position=f0 & floor0 -> stop! ; arrive0':=true; arrive1' := false; 
                                      arrive2' := false; keepGoing' := false 
 
            -- satisfy the second floor request 
            [] position=f1 & floor1 -> stop! ; arrive0':=false; arrive1' := true; 
                                      arrive2' := false; keepGoing' := false 
 
            -- satisfy the third floor request 
            [] position=f2 & floor2 -> stop! ; arrive0':=false; arrive1' := false; 
                                      arrive2' := true; keepGoing' := false 
 
            -- no need to stop, so keep going  
            [] position=f0 & ~floor0 & ( floor1 | floor2 ) -> 
                                                         go! ; keepGoing' := true 
                                                               
            [] position=f1 & ~floor1 & ( floor0 | floor2 ) -> 
                                                         go! ; keepGoing' := true 
                                                               
            [] position=f2 & ~floor2 & ( floor0 | floor1 ) -> 
                                                         go! ; keepGoing' := true 
                                                               
 
            [] default -> keepGoing' := false 
       endatom 
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    atom DireControl 
        controls elevnextdire, opendoor, closedoor 
        reads    elevnextdire, elevdire, position,  
           floor0, floor1, floor2, door,  
     openDoorButton, openDoorTimes, passengerPresent,  
                 opendoor, closedoor 
        awaits   keepGoing 
         
        init 
            []true -> elevnextdire' := IDLE 
        update 
 
            ---** The elevator is currently in UP direction**--- 
 
            -- if it is at the upper most floor, and any of lower floor is  
            -- required, go DOWN. 
            [] keepGoing' & elevdire=UP & position=f2 & (floor0| floor1)  
                                       -> elevnextdire' := DOWN  
 
            -- if it is at the low most floor, and any of upper floors is  
            -- request, still go UP. 
            [] keepGoing' & elevdire=UP & position=f0 & (floor1 | floor2) 
                                       -> elevnextdire' := UP  
             
            -- if it is at the middle floor, the priority is given to the 
            -- upper floor requests.   
            [] keepGoing' & elevdire=UP & position=f1 &  floor2 
                                       -> elevnextdire' := UP  
            [] keepGoing' & elevdire=UP & position=f1 & ~floor2 & floor0 
                                       -> elevnextdire' := DOWN  
 
 
            ---**The elevator is currently in DOWN direction**--- 
 
            -- if it is at the lower most floor, and any of upper floors is 
            -- required, go UP. 
            [] keepGoing' & elevdire=DOWN & position=f0 & (floor1 | floor2) 
                                       -> elevnextdire' := UP  
 
            -- if it is at the upper most floor, and any of lower floors is 
            -- required, go DOWN. 
            [] keepGoing' & elevdire=DOWN & position=f2 & (floor0 | floor1)  
                                       -> elevnextdire' := DOWN  
 
            -- if it is at the middle floor, the priority is given to the 
            -- lower floor requests. 
            [] keepGoing' & elevdire=DOWN & position=f1 & floor0  
                                       -> elevnextdire' := DOWN  
            [] keepGoing' & elevdire=DOWN & position=f1 & ~floor0 & floor2  
                                       -> elevnextdire' := UP  
 
 
            ---**The elevator currently is IDLE **--- 
 
            -- if it is at the upper most floor, and any of lower floors is 
            -- required, go DOWN. 
            [] keepGoing' & elevdire=IDLE & position=f2 & (floor0 | floor1) 
                                       -> elevnextdire' := DOWN  
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            -- if it is at the upper most floor, and any of lower floors is 
            -- required, go DOWN.  
            [] keepGoing' & elevdire=IDLE & position=f0 & (floor1 | floor2)  
                                       -> elevnextdire' := UP  
 
            -- if it is at the middle floor, the priority is given to the 
            -- upper floor requests.   
            [] keepGoing' & elevdire=IDLE & position=f1 & floor2  
                                       -> elevnextdire' := UP  
            [] keepGoing' & elevdire=IDLE & position=f1 & ~floor2 & floor0 
                                       -> elevnextdire' := DOWN  
 
            -- if the elevator is not moving and passenger is present 
            -- door should be closed 
            [] ~keepGoing' & passengerPresent & (door = OPEN) -> closedoor! 
 
            -- if the elevator is not moving and open door button is pressed, 
            -- open the door if open door times is less than twice. 
            [] ~keepGoing' & openDoorButton & (openDoorTimes < 2) & (door = CLOSED) 
                              -> opendoor! 
 
            -- if none of three floors is required, it should be IDLE. 
            [](~floor0) &  (~floor1) & (~floor2) -> elevnextdire' := IDLE 
             
            []default -> elevnextdire' := elevnextdire 
        endatom 
endmodule 
 
 
-- We create the entire elevator system by parallel composition. To construct 
-- module abstractions of degrees of detail, we hide some interface variables 
-- so that only some status data the user can view, such as elevdire, door, 
-- moving, etc. 
 
ElevSystem := hide elevnextdire,  arrive0, arrive1, arrive2,   

              keepGoing in (floor_0 || floor_1 || floor_2 || elevator  

                            || openDoorBtn || controller) endhide 
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Appendix B: Elevator System Properties 
 
 
/************************************************************************* 
 
 
    The invariant and ATL properties of a three-level elevator system 
 
 
**************************************************************************/ 
 
--The elvator never moves with its door open. 
--This property can be expressed either in invariant form or ATL form 
inv "inv1" 
 ~( moving & (door = OPEN) ); 
 
atl "atl1" 
 A G ~( moving & (door = OPEN) ); 
 
atl "atl11" 
 A G ( moving => (door = CLOSED) ); 
 
 
--Requests to use the elevator are eventually serviced. 
 
atl "atl21" 
 A G ( exBtn0 => A F ( (door = OPEN) & (position = f0))); 
 
atl "atl22" 
 A G ( exBtn1 => A F ( (door = OPEN) & (position = f1))); 
 
atl "atl23" 
 A G ( exBtn2 => A F ( (door = OPEN) & (position = f2))); 
 
 
--Requests to be delivered to a particular floor are eventually serviced. 
 
atl "atl24" 
 A G ( inBtn0 => A F ( (door = OPEN) & (position = f0))); 
 
atl "atl25" 
 A G ( inBtn1 => A F ( (door = OPEN) & (position = f1))); 
 
atl "atl26" 
 A G ( inBtn2 => A F ( (door = OPEN) & (position = f2))); 
 
 
--The above two types properties can be tested together since  
--floor0 = (exBtn0 | inBtn0). 
 
atl "atl27" 
 A G ( floor0 => A F ( (door = OPEN) & (position = f0))); 
 
atl "atl28" 
 A G ( floor1 => A F ( (door = OPEN) & (position = f1))); 
 
atl "atl29" 
 A G ( floor2 => A F ( (door = OPEN) & (position = f2))); 
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--Vacuity check for the above property formulas. 
atl "atl30" 
 E F (exBtn0); 
 
atl "atl31" 
 E F (exBtn1); 
 
atl "atl32" 
 E F (exBtn2); 
 
atl "atl33" 
 E F (inBtn0); 
 
atl "atl34" 
 E F (inBtn1); 
 
atl "atl35" 
 E F (inBtn2); 
 
 
--The elevator should keep its door open until there is a request to use it. 
atl "atl50" 
 A G ( (door = OPEN) => A ( (door = OPEN) W (floor0 | floor1 | floor2))); 
 
 
--When someone steps into the elevator, the door should close and remain closed unless 
--the door open button is pressed. 
atl "atl60" 
 A G ( (~moving & passengerPresent & (door = OPEN)) => A ((door = CLOSED) U 
openDoorButton )); 
 
--Vacuity check for the above property, 
--i.e. Eventually, the passenger will present" as follows: 
atl "atl61" 
 E F (~moving & passengerPresent & (door = OPEN)); 
 
 
--The elevator react "open door" at most twice 
atl "atl70" 
 A G ~(openDoorButton & (openDoorTimes > 2) & (door = OPEN)); 
 
 
--The elevator cannot change its direction when it is moving. 
atl "atl80" 
 A G ( (moving & (elevdire = UP)) => A X ~( moving & (elevdire = DOWN))); 
 
 
--The floor has the discretion to make the external button not be pressed,  
--No other module can force it to do otherwise.  
atl "atl95" 
 A G ( ~exBtn0 => <<floor_0>> G ~exBtn0); 

 
atl "atl96" 
 A G ( ~exBtn1 => <<floor_1>> G ~exBtn1); 

 
atl "atl97" 
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 A G ( ~exBtn2 => <<floor_2>> G ~exBtn2); 

 
 
--Whenever the request button is off, the controller does not have a strategy  
--to produce a trajectory to force the external button not be pressed . 
atl "atl90" 
 A G ( ~exBtn1 => [[controller, elevator, floor_0, floor_2, openDoorBtn ]] G ~exBtn1); 

 
 
--The floor has a strategy to make the external button be pressed,  
--no matter how the other module behaves. 
atl "atl100" 
 <<floor_0>> F (exBtn0); 

 
atl "atl101" 
 <<floor_1>> F (exBtn1); 

 
atl "atl102" 
 <<floor_2>> F (exBtn2); 

 
--Whenever the elevator is currently in the first floor and the second floor 
--is required, the controller and the elevator can cooperate so that the 
--elevator will be at the second floor. 
atl "atl120" 
 << >> G ( ((position=f0) & floor2) =>  
                   <<controller, elevator>> F ((position = f2)&(door=OPEN))); 
 
--atl "atl130" 
-- <<elevator>> F ((positon=f1) & floor2) => <<elevator>> F (elevdire=DOWN)); 
-- 
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Appendix C: Result of invariant checking and ATL checking 
 
The number of properties that checked is consistent with the properties specified in Appendix B. 
MOCHA does not report the time that takes to verify properties. We manually recorded the time. It 
took about 2 seconds to check the properties: 

atl "atl95"  A G ( ~exBtn0 => <<floor_0>> G ~exBtn0); 

atl "atl96"  A G ( ~exBtn1 => <<floor_1>> G ~exBtn1); 

atl "atl97"  A G ( ~exBtn2 => <<floor_2>> G ~exBtn2); 

All the other properties are verified in one second. 
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