
 1

Verification of an Elevator System with MOCHA

Lin Mei, Yuan Gan
Department of Computer Science, University of Toronto

January 28, 2004

Abstract

Unlike many other existing model checkers, MOCHA is designed for the modular verification of heterogeneous
systems. Instead of manipulating unstructured state‐transition graphs, it supports the hierarchical modeling
framework of Reactive Modules. It overcomes the state‐explosion problem by exploiting the modular structure
naturally present in many system designs. Instead of traditional temporal logics such as CTL and LTL, it uses
Alternating Temporal Logic, a module‐level specification language. For the verification of complex systems, its
algorithms incorporate optimizations based on the hierarchical reduction of sequences of internal transitions. In
this paper, we study the language Reactive Modules, the Alternating Temporal Logic and use a case study of an
elevator system to try out MOCHA. Finally, we compare it with other tools SMV and SPIN and draw
conclusions.

1 Introduction

MOCHA (Modularity in Model Checking) is a growing interactive software environment for the
modular and hierarchical verification of heterogeneous systems. MOCHA is developed in a joint
venture of R. Alur at University of Pennsylvania and T.A. Henzinger at University of California at
Berkeley in 1998[1]. It is available in two versions, cMocha (Version 1.0.1) which is written in C and
jMocha (Version 2.0) which is written in Java[2].

MOCHA distinguishes from many other model checkers in modeling, specification, simulation and
verification:

♦ Different modeling language: instead of using unstructured state-transition graphs, MOCHA uses
the heterogeneous modeling framework of reactive modules [3]. The reactive modules provide
semantic glue that allows the formal embedding and interaction of components with different
characteristics. The modules can be synchronous or asynchronous, represent hardware or software,
and be speed-independent or time-critical.

♦ Nontraditional requirement specification: instead of supporting the system-level specification
languages of linear and branching temporal logics, MOCHA supports the module-level
specification language of Alternating Temporal Logic (ATL) which can express both cooperative
and adversarial relationships between different modules.

♦ Improved algorithms: MOCHA implements enumerative, as well as symbolic, state-exploration
algorithms and both checkers have the capability to produce error traces. MOCHA supports a
range of compositional and hierarchical verification methodologies so that it integrates assume-
guarantee rules, abstraction operators and automatic refinement checking.

♦ Supporting three kinds of simulation, namely, random simulation, manual simulation, and game
simulation. In random simulation, all atoms are executed by the simulator, which randomly
resolves nondeterminism. In manual simulation, all atoms are executed according to the directions
of the user. In game simulation, some of the atoms are executed by the simulator, while the

 2

remaining atoms are executed by the user. Each such simulation can be viewed as a game between
the user and the simulator.

In this paper, we use a case study of a three-level elevator to explore many of these features under the
verification environment of cMocha.

2 Elevator System Specification

Before we get into MOCHA, it is necessary to introduce the system we are going to model. The case
study we are using to demostrate MOCHA is an elevator system for an apartment building.

The system consists of an elevator that services three floors of the building and a controller that
communicates with the elevator and schedules its moves. Each floor has a request button that a user
presses to get the elevator to come to that floor and open its doors. Inside the elevator, there is one
request button for each of the three floors; passengers press these buttons to get the elevator to go to a
particular floor and open its doors. To go from floor i to floor k, the elevator must visit floors i+1
through k-1, although it does not have to open doors there. If there are no requests to service, an
elevator stays at a floor with its doors open. As passengers press buttons, the controller schedules the
elevator to service the requests, trying to minimize the waiting time. The elevator has a "passenger
present" detector and a "door open" button. When someone steps into the elevator, the doors should
close and remain closed unless the "door open" button is pressed. Since we do not want the passenger
to keep doors open, the elevator can react to the "door open" button at most twice. As passengers leave
the elevator, the "passenger present" detector is reset.

To make the specification complete, we have made some assumptions about the environment. First,
assume that the user should be able to press request buttons at any point, so we leave the button
pressing action nondeterministic. Second, to avoid leaving some request unfulfilled, the elevator runs
in a pattern that it moves in one direction to satisfy all outstanding requests in route, until it reaches the
last floor in that direction or until there are no more requests in that direction.

3 Model checker MOCHA

3.1 Reactive Modules

The input language that MOCHA uses for model description is that of Reactive Modules Language.
Unlike simple state-transition graphs, reactive modules form a compositional model in which both
states and transitions are structured. Reactive modules are built from atoms, and atoms are built from
variables which are the elementary particles of systems.

In MOCHA, a system is considered to be discrete, deadlock-free, nondeterministic. The state of the
system is described by a set of state variables: each system state corresponds to an assignment of
values to the variables. So, in the elevator system, the state of the system is essentially the movement
status and position of the elevator car and the status of the door. The behavior of the system consists in
an initial round, which initializes the variables to their initial values, followed by an infinite sequence
of update rounds, which assign new values to the variables, thus describing the evolution of the
system’s state. Atoms and modules are used to specify the initial and update rounds for all the
variables.

3.1.1 Variables

 3

3.1.1.1 Variable Type

MOCHA provides the simplest data types such as Boolean, integer and natural; the keywords for these
types are bool, int, and nat, respectively. Other common data types of MOCHA are ranges,
enumerations, arrays, and bitfields.
For example, we declare the moving status of the elevator as enumerated type and the counter for the
times of door opening as range type:
type movingType : {UP, DOWN, IDLE}
type counterType : (0..2)

Another more interesting data type is event. A variable that is used to represent an event can be
declared of type event. Events are represented by toggling the value of Boolean variables. If x is an
event variable, then we toggle it with the command x! to generate an event and we can test whether it
has been toggled with the Boolean expression x? to count that event. These are only operations of
event type. The only thing that matters is whether the value of an event variable has been toggled or
not, we do not really care about what value is stored in x. This methodology makes it easier to toggle
the variable and detect the toggling and also make the value of the variable irrelevant.

Since MOCHA does not support shared memory, the communication between different modules is
accomplished by using event variables. The events that may happen in our elevator system are
opendoor event, closedoor event, elevator stop event and elevator go event. They become
communication channel between the controller and the elevator.

3.1.1.2 Latched and updated values

Reactive modules are to specify how variables change their values over the evolution of the system. In
each evolution round, every variable has two values. The value of a variable x at the beginning of the
round is called the latched value, represented by unprimed symbol x. The value of a variable at the end
of the round is called updated value, represented by primed symbol x’. In an update round, the
updated value of a variable may depend on the latched value of this variable, and on the latched value
of other variables. Such a dependency between the values of variables within a single round is called
an await dependency.

3.1.1.3 Variable Classification

Variables are declared in the beginning of a module and specified their usage in the beginning of the
atom that needs to access them. In the module level, variables are partitioned into three sets: private
variables, interface variables and external variables, according whether the variable is controlled by
the module or by the environment. In the atom level, variables are partitioned into three types:
controlled variables, read variables, and awaited variables, according whether the atom can update
the variable’s value or can only read its value. We will discuss in details in the next section.

3.1.2 Atoms

An atom is the basic unit of a module. It groups all related variables together and describes the initial
condition and transition relation between them. An atom deals with three types of variables:

♦ Controlled variables. The variables for which the atom can specify the values in each round.

 4

♦ Read variables. The variables whose latched value can be read by the atom to decide the next
values of the controlled variables. The updated value of a read variable is not accessible to its
atom.

♦ Awaited variables. The variables whose updated value can be read by an atom in order to decide
the updated value of the controlled variables. The latched value of an awaited variable is not
accessible to its atom.

In order to avoid inconsistent specifications, the await dependencies must be acyclic. To avoid
circularity problems, MOCHA requires that no variable is controlled by more than one atom and no
variable is both awaited and controlled.

The state of a reactive module changes in a sequence of rounds. The first round is called the initial
round, and determines initial values for all variables. Each subsequent round is called and update
round, and determines new values for all variables. Figure 3.1 shows the atoms which specify the
requests of a floor caused by non-deterministic pressing of external button and internal button of our
elevator system, as well as the updating of floor request on the change of button pressing. Specifically,
the init action of Buttons is followed by the init action of FloorReq; in each update round,
after the external variables have been updated, the update action of Buttons is followed by the
update action of FloorReq. In this manner, all awaited values are available when they are needed
during the execution and all nondeterminism in the completion of a round is caused by the
nondeterminism of the environment.
 atom Buttons
 controls inButton, exButton
 reads arrive, inButton, exButton
 awaits arrive
 init
 []true -> exButton' := false; inButton' := false
 update
 []arrive' & (exButton | inButton)-> exButton' := false;
 []~arrive' & ~exButton -> exButton' := nondet
 ...
 endatom

 atom FloorReqq
 controls floorRequest
 awaits exButton, inButton
 init
 []true -> floorRequest' := false
 update
 []true -> floorRequest' := (exButton' | inButton')
 endatm

Figure 3.1 Atom Buttons and FloorReq

The Figure 3.2 is the definition of atoms showing the communication in the elevator system using
event methodology. The variables stop, go are declared as event type. The construct stop? quires
the toggling of an event variable while the stop! toggles the value of an event. The atom
MoveControl, which is part of the controller, is responsible to determine the next action of the
elevator. It detects requests from reading the variable floor and the current position of the elevator
and schedules a stop event to the elevator car in case that a request in the current floor should be
satisfied. If there is no request in the current floor, the controller sends a go event to the elevator. The

 5

atom elevcar, which is part of the elevator, waits for the command from the controller by toggling the
value of stop and go.

atom MoveControl
 controls keepGoing, stop, go
 reads stop, go, position, floor0, floor1, floor2,
 init
 []true -> keepGoing' := false;
 update
 [] position=f0 & floor0 -> stop! ; keepGoing' := false
 ...
 [] position=f0 & ~floor0 & (floor1 | floor2)
 -> go! ; keepGoing' := true
 ...
 endatom

 atom elevcar
 controls moving, door
 reads stop, go
 awaits stop, go
 init
 []true -> moving' := false ; door' := OPEN;
 update
 []stop? -> moving' := false; door' := OPEN
 ...
 []go? -> moving' := true; door' := CLOSED
 ...
 endatom

 Figure 3.2 Communications in MOCHA

You cannot feed just above atom as input to MOCHA since the smallest unit of input to the MOCHA
parser is a module, not an atom. Next, we look at how to define a module.

3.1.3 Modules

A reactive module is a collection of atoms. It is a system, or a system component that interacts with
other systems or other components. The variables appearing in a module may be controlled either by
the module or by the environment and they are partitioned into atoms. In the initialization round and in
every update round, the module and the environment take turns in the form of subrounds to initializes
or update an atom of variables that they control.

A module description involves the following three classes of variables according whether or not their
values can be observed by the environment. And the state of a reactive module is determined by the
values of these three kinds of variables:

♦ Private variable. The variables that are only read and modified by some atom of the module and
neither read nor modified by the environment.

♦ Interface variable. The variables that are read by both the module and the environment, but only
modified by the module.

♦ External variable. The variables that are read by both the module and the environment, but only
modified by the environment.

Therefore, from the above definition, a module is in charge of its private variables and interface
variables, while the environment can observe the interface variable and external variables of one

 6

module. Given a module P consisting of a set U = {U1, U2, …Ui, …Un} of atoms, we refer privP, extP,
intfP as the private, external, interface variables of module P respectively and readUi, ctrUi, awaitUi
as the read, controlled, awaited variables of atom Ui respectively, the following relationships among
different variables immediately follow from their definition:

privP ∩ extP ∩ intfP = φ

=
=

=
U

ni

i
ictrU

1

 intfP

ctrUi ∩ awaitUi = φ

We give a concrete example after we develop the elevator module to show the relationship between
module and environment in term of various classes of variables.

Now, we are ready to develop modules for the elevator system. The Figure 3.3 is the elevator
module which represents the elevator car of our system. It communicates with the controller to serve
requests.
module elevator
 external stop, go, opendoor, closedoor : event;
 elevnextdire : movingType
 interface elevdire : movingType;
 moving : bool;
 position : posiType;
 door : doorStatusType;

passengerPresent : bool;
openDoorTimes : counterType

 atom elevcar
 controls moving, position, elevdire, door,
 passengerPresent, openDoorTimes
 reads moving, position, elevdire, door,
 elevnextdire, openDoorTimes,
 go, stop, opendoor, closedoor
 awaits stop, go, opendoor, closedoor
 init
 []true -> moving' := false ; position' := f0; door' := OPEN;
 ...
 update
 []stop? -> moving' := false; door' := OPEN;
 passengerPresent' := nondet
 []go? & (elevnextdire=UP) -> elevdire' := elevnextdire;door' := CLOSED;
 moving' := true;
 position' := if(position = f0) then f1
 else if (position = f1) then f2
 else position fi fi ...
 ...
 endatom

endmodule

Figure 3.3 Module elevator

The various classes of module variables and their relationships in the elevator module are shown in
Table 1:

 7

Private variable Interface variable
elevdire, moving, position,
door, passengerPresent,
openDoorTimes

External variable
stop, go, opendoor,
closedoor, elevnextdire

Controlled variable by module
elevdire, moving, position, door,
passengerPresent, openDoorTimes

Visible variable by environment
elevdire, moving, position, door, passengerPresent,
openDoorTimes, stop, go, opendoor, closedoor,
elevnextdire

Table 1. The relationship of variables in the module Elevator

As we have mentioned before, the state changes of a reactive module can be described as a sequence
of rounds. While in each round, there are several subrounds: one for the external variables, and one per
atom. When executing the above module elevator, in each round, first the external variables stop,
go, opendoor, closedoor, and elevnextdire are assigned arbitrary value of the correct types
and domain, and then the atoms are executed and the controlled variables elevdire, moving,
position, door , etc get updated.

To take a closer look to the execution of a set of atoms U, we analyze the initialized trajectories of U.
An initialized trajectory of U is the outcome of the execution. Figure 3.4 is a trajectory of module
floor with atoms Buttons and FloorReq. arrive is the external variable of module Floor, while
exButton, inButton, floorRequest are controlled variables in the atoms. There are three subrounds
in the module floor: one for external variable arrive, one for the atom Buttons, and another for the
atom FloorReq. The subround of updating the variables exButton, inButton awaits the subround of
updating external variable arrive. And the subound of atom FloorReq awaits the subround of atom
Buttons. And in the execution of FloorReq, the value of variable floorRequest depends on the
value of primed exButton, inButton, which means that the value of floorRequest will be updated in
the same round as the atom Buttons.

arrive 0 0 1 0 0 1 1 0 0 0 1

exButton 0 1 0 0 0 0 0 1 1 1 0

inButton 0 0 0 1 1 0 0 1 1 1 0

floorRequest 0 1 0 1 1 0 0 1 1 1 0

Figure 3.4 Initialized trajectory of the atoms in module Floor

The trajectory is depicted graphically in the form of a timing diagram in Figure 3.5. The vertical
dotted lines of the timing diagram represent boundaries between rounds. The diagram is interpreting
the await dependency: the variables exButton and inButton changes their values, in each round,
only after arrive have changed its value; the variable floorRequest changes its value only after
either exButton or inButton changes its value.

 8

Figure 3.5 The timing diagram for the trajectory from above

MOCHA provides three mechanisms to create new module from pre-defined module by variable
hiding, variable renaming and parallel composition. The renaming is useful for creating different
instances of a module, and for avoiding name conflicts. In our elevator system, we define the module
floor and create the first floor floor_0 by renaming it:

floor_0 := floor[arrive,floorRequest,exButton,inButton :=

 arrive0, floor0, exBtn0, inBtn0]

The parallel composition || operation combines two modules into a single module whose behavior
captures the interaction between the two original component modules. Two modules can be composed
only if their variable declarations are mutually consistent, and if the combined await dependencies of
two modules are not circular. The composition P || Q is asynchronous iff both P and Q are
asynchronous, and P || Q is round-insensitive iff both P and Q are round-insensitive [5].

After defining all component modules for our elevator system, namely, floor0, floor1, floor2,
elevator, openDoorBtn and controller, we have all components of the system. We create the
entire elevator system by parallel composition. To construct module abstractions of degrees of detail,
we hide some interface variables, so that only some status data that the user can view, such as
elevnextdire, arrive0, etc...

ElevSystem := hide elevnextdire, arrive0, arrive1, arrive2

 in (floor_0 || floor_1 || floor_2 || elevator
 || openDoorBtn || controller) endhide

The structure of modules can be graphically depicted using block diagram Figure 3.6. From the
diagram, we can see that the relationship of await dependencies among all component modules is not
circular. The complete elevator system Reactive Modules specification can be found in Appendix A.
After building the system, we specify all the properties that the system should hold. Once we have
both system specification and property specification, we verify them in MOCHA.

 9

Figure 3.6 Block Diagrams for the elevator system modules

 10

3.2 Property Specifications

MOCHA can check specification of a module in three different ways: invariants, alternating-time
temporal logic, and refinement. Refinement checking is to check whether the given module is a
refinement of the specification which is also given as a reactive module. Since in this case study we
do not check when a module refines another module, we only introduce the first two specifications.

3.2.1 Invariants

An invariant is a Boolean predicate which is intended to hold in all reachable states of a module. The
syntax for describing an invariant is the same as that for a Boolean expression.

Consider the elevator modules, an important property that should hold true throughout the execution is
that “The elevator never moves with its door open”. This is a very suitable property that we can
describe as invariant specification:

inv “inv1” ~(moving & (door = OPEN))

3.2.2 Alternating Temporal Logic

As a generalization of the temporal logic CTL [4], Alternating Temporal Logic is interpreted over
concurrent game structure and is designed for specifying requirements of open systems [5]. It captures
compositions of open systems by interpreting them over game structure with multi-players, instead of
just two-player games between the system and the environment. The players represent different
components of the system and the environment. To give a general picture about ATL, we consider a
set A of players and an ATL formula <<A>>ϕ . Let us consider dividing all players into a protagonist
and antagonist. The game proceeds in an infinite sequence of rounds, i.e. one init round and infinite
update rounds. To execute an update round, the protagonist chooses for every player in A an action.
Then the antagonist chooses for every player not in A an action, and the system (game) is updated to a
new state. In this way, the game produces a computation. The protagonist wins the game if the
resulting computation satisfiesϕ . In the following sections, we will use the term “player” or “agent” to
refer a module in the system.

In addition using all the same path quantifiers and temporal operators as CTL, ATL has two
additional path quantifiers:

<< names>>, [[names]]

ϕ>><< names where ϕ is a path formula and playersofnames ∑⊆ , means that the listed players
names have a strategy to produce a computation that satisfying ϕ , no matter how the other unlisted
players play the game, i.e. irrespective of how the players in name\∑ behave. Therefore, we can
derive that CTL path quantifier A corresponds to ATL path quantifier >><< φ and CTL path
quantifier E corresponds to ATL path quantifier >>∑<< .

ϕ]][[names where ϕ is a path formula and playersofnames ∑⊆ , means that the players that are
unlisted in the quantifier have a strategy to produce a computation satisfying ϕ , no matter how the
other listed players play the game. We see that [[]] is the dual of >><< . Therefore, we can derive
that CTL path quantifier A corresponds to ATL path quantifier]][[∑ and CTL path quantifier E
corresponds to ATL path quantifier [[φ]].

 11

3.2.2.1 CTL properties

We should note that ATL is more expressive than CTL, which means that all CTL formula can be
verified by MOCHA without any modification.

Consider the elevator model, the property we described as an invariant in Section 3.2.1 also can be
described as the following ATL formula:

AG (moving -> AF(door = CLOSED))

To make MOCHA recognize it, the syntax of specifying an ATL property is:
atl “atl1” A G (moving => A F(door = CLOSED)),

where “atl1” is the name of this property, which is given by the user.

The property that “Requests to use the elevator are eventually serviced” can be specified as:
atl A G (exBtn0 => A F ((door = OPEN) & (position = f0))).

The property that “Requests to be delivered to a particular floor are eventually serviced” can be
specified as:

atl A G (inBtn0 => A F ((door = OPEN) & (position = f0)));

The above properties will hold vacuously if the external button and internal button are never pressed.
So in order to make sure such case never happen and the system is doing some service, we should
specify and verify another property that “Eventually, the external/internal buttons will be pressed” for
vacuity checking.

atl E F (exBtn0)
atl E F (inBtn0)

The property that “The elevator should keep its door open until there is a request to use it” can be
expressed as follows:

A G ((door = OPEN) => A ((door = OPEN) W (floor0 | floor1 | floor2)));

The property that “When someone steps into the elevator, the door should close and remain closed
unless the door open button is pressed” can be expressed as follows:
 A G ((~moving & passengerPresent & (door = OPEN)) =>

 A ((door = CLOSED) U openDoorButton));

The above property will hold vacuously if there is always no passenger present. Therefore, we should
specify and verify another property that “Eventually, the passenger will present” as follows:

E F ((~moving & passengerPresent & (door = OPEN))

The complete list of properties of the elevator system can be found in Appendix B.

3.2.2.2 Properties in ATL but not in CTL

Since ATL is a generalization of the temporal logic CTL, it is more expressive than CTL. We can take
the advantage of two additional path quantifiers of ATL to specify some properties that cannot be
expressed in CTL.

There are six agents (or modules) in our elevator system: floor_0, floor_1, floor_2, elevator,
openDoorBtn, and controller. If we consider the evolution of an elevator system as a game, in each
step of the game, these agents choose a move, and the combination of choices determines a transition
from the current state to a successor state. By cooperation, some agents may have a strategy to ensure
a certain property hold no matter the rest of agents in the system do. In some other cases, some agents

 12

do not have any strategy to force a certain property hold no matter how they behave. We are interested
in verifying such CTL-unable properties.

The vacuity check for the property “Eventually, the buttons will be pressed” which was verified using
CTL formula can be verified more precisely using ATL formulas:

atl <<floor_0>> F (exBtn0);

atl <<floor_0>> F (inBtn0);

This ATL formula means that the module floor_0 has a strategy to make the external/internal button
be pressed eventually no matter how the other modules behaves. This formula is stronger than CTL
formula and it is not expressible in CTL.

The controllability of a system whose safe states are given by the state predicate ϕ is impossible
expressed in CTL. In ATL, it can be specified by >><< agentcontrol _ G ϕ . This asserts that the
control_agent has a strategy to ensure the satisfaction of ϕ . In our elevator system, the property that
“The floor_1 has the discretion to make the external button not be pressed, no other module can
force it to do otherwise” states the controllability of the floor_1 which represents the second floor
over the external button, and it can be specified as the following ATL formula:

atl A G (~exBtn1 => <<floor_1>> G ~exBtn1).

It is often useful to express an ATL formula in a dual form. As we mentioned in the beginning of this
section, the path quantifier [[]] is the dual of << >>. While ATL formula <<A>> ϕ where A is a set
of agents intuitively means that the agents in A can cooperate to make ϕ true, the dual formula [[A]]
ϕ states that the agents in A cannot cooperate to make ϕ false [5]. Let us consider the second floor in
our elevator system again. The external button exBtn1 is controlled by the floor_1 module; only the
floor_1 module has strategies to produce a trajectory to enforce the button exBtn1 turn on. Other
agents in the system such as controller or elevator cannot make the button turn on. The dual form
of this property can be stated as “whenever the request button is off, all agents together except floor_1
does not have a strategy to produce a trajectory to force the external button be pressed” which can be
specified as follow:

atl A G (~exBtn1 =>

 [[controller, elevator, floor_0, floor_2, openDoorBtn]] G ~exBtn1);

The ATL is intended for compositional reasoning. It makes the property which holds in the a
component of the system consistently hold in the composite system. More specifically, if A satisfies
the ATL formula ϕ>><><< A , then the composite system which contains A also satisfies this
formula. Consider the property that “The requests on the third floor are eventually serviced" and its
CTL formula is:

A G (floor2 => A F ((door = OPEN) & (position = f2)));

This CTL formula asserts that it is for all modules in the elevator system to cooperate so that the
request on the third floor is eventually serviced, i.e. the elevator stops at the third floor and the door is
open. The reason that the composite system ElevSystem satisfies this property is because that the two
components, namely controller and elevator, satisfy this property. So, we can give the genuine
ATL formula for this property:
 << >> G ((position=f0) & floor2 =>
 <<controller, elevator>> F ((position = f2)&(door=OPEN)));

 13

This ATL formula states that whenever the elevator is currently in the first floor and the second floor
is required, the controller and the elevator can cooperate so that the elevator will eventually be at the
second floor.

The complete list of ATL properties can be found in Appendix B.

3. 3 Simulation

MOCHA allows the user to execute any module in three modes: manual, random, and game, via a Tk-
based GUI for interacting with the tool and viewing the execution trace.

♦ Manual execution. The GUI displays all possible initial states and the user can select any one of
them to execute.

♦ Random execution. User can specify the number of rounds that it wants to execute the module for.
♦ Game execution. The user plays a game against the computer. The user controls the update of a

subset of the set of atoms of the module being simulated. In every round, the user chooses to
update the variables of the atoms he controls and the system updates the rest of the atoms
randomly. This is a way of performing guided execution.

The module definitions should be entered into a file named with the suffix .rm, in our case, elev.rm.
The properties specified in invariants and ATL formulas can be stored in a file named with
suffix .spec. Before simulation and verification, one should load these files into MOCHA. The load
of the elevator system elev.rm module and the specification is shown in Figure 3.7. We can see that
MOCHA treats a single module as a system. The composite system ElevSystem is also a module.
MOCHA allowed user to simulate any module as user needs. For example, we can just choose to
simulate the module elevator. In this case, during the simulation, the external variables such as
opendoor, stop, etc, which are controlled by the module controller, are arbitrarily assigned a
value by the environment. Since we are interested in our entire elevator system, a random simulation
execution of ElevSystem module is shown in Figure 3.8.

Figure 3.7 Read module and specification

 14

Figure 3.8 Simulation of Module ElevSystem

3.4 Verification

Mocha translates CTL-formed formulas into ATL form. Figure 3.9 shows the specifications that have
been loaded and translated.

Figure 3.9 specifications loaded and translated

 15

3.4.1 Invariant Checking

We check the property that “The elevator never moves with its door open” using invariant checking,
which is shown in Figure 3.10. We can see Mocha invariant checker is using symbolic checking. It
produces a Binary decision diagrams (BDDs) [15] representation of the transition relation and of the
set of initial states. The checking result states that the invariant is passed. The time that takes to verify
this property is one seconds.

Figure 3.10 invariant checking and the results

3.4.2 CTL and ATL checking

The algorithm of Mocha ATL checking is generalized from the symbolic model-checking procedure
for CTL. For a set A of agents, to check an ATL formula pA >><><< is to compute the least fixed
point of the set of Agents that contains all states satisfying p. Mocha computes this by an iterative
symbolic procedure so that the time complexity of ATL model checking is still linear in the size of
state space and the formula, although ATL is more expressive than CTL.

To illustrate the above MOCHA ATL checker property, we compare the checking results of both CTL
formula and ATL formula for the property “Requests to use the elevator are eventually serviced”. The
result of checking CTL formula
 “A G (floor2 => A F ((door = OPEN) & (position = f2)))”
is shown in Figure 3.11. The result of checking ATL formula

“<<>>G (((position=f0) & floor2) =>
<<controller,elevator>> F ((position = f2)&(door=OPEN)))”

is shown in Figure 3.12.

 16

Figure 3.11 CTL formula checking and the results

Figure 3.12 ATL formula checking and the results

Both formulas are verified in one seconds. Therefore, the added expressiveness of ATL over CTL does
not add extra cost to verification.

The verification results of all the properties can be found in Appendix C.

3.5 Problems

There are some problems we encountered while verifying the properties using MOCHA. Some
problems might be caused by the limitation of the model checker, while other problems might be
caused by the imperfection of the elevator system specification. We list these problems below:

♦ We originally intended to use jMOCHA as the environment to explore Reactive Modules and ATL
model checking. It provides many improvements over cMOCHA and is written in Java. However,
its execution is noticeably slower than cMOCHA, especially when the system state space gets

 17

larger. Another problem we found is that when the array type data is used in the module, jMOCHA
behaves unexpectedly.

♦ When verifying some ATL properties, cMOCHA is crashed with segmentation fault. We observed
that those ATL formulas have a common feature that they all refer some variables of range type.
For instance, the ATL formula:

A G ~(openDoorButton & (openDoorTimes > 2) & (door = OPEN))

states that the elevator react "open door" at most twice. The variable openDoorTimes is ranging in
(0..2).

♦ Some ATL properties are failed when verified by MOCHA. However, MOCHA does not provide
counterexample and back trace methodologies, it is difficult to debug and optimize our model.

4 Related works and comparisons
Hardware and software systems will inevitably grow in scale and functionality. With the increase in
complexity, the likelihood of subtle errors is much greater. Model checking is one way to enable
developers to construct systems that operate reliably despite this complexity. Currently, model
checkers are widely used in industry and in academia. SMV and SPIN are among the most popular
ones in model checking. SMV (Symbolic model verifier) [6] is a model-checker for checking that
finite-state systems satisfy specifications given in CTL. It uses the OBDD-based symbolic model
checking algorithm. It was intended for hardware systems. Its modeling language is SMV, which
hierarchically describes finite-state machines at any level of detail, both synchronous and
asynchronous. SPIN [7] is Bell Labs’ tool implemented in C and intended for checking correctness of
process interactions. The underlying language is PROMELA (Protocol or Process Meta Language),
which is a C-like non-deterministic language based on Hoare’s CSP (communicating sequential
processes). SPIN contains a symbolic simulator, model checker, and verification with LTL (linear
temporal logic) and invariants. SPIN uses partial order reduction to reduce state space. Based on the
experience of modeling and verifying a similar elevator system in both SMV and SPIN, we draw a
summarization map of these two types of model checkers.

i. The modeling language

♦ SMV

The language in SMV for describing the model is a simple parallel assignment. The description of
a complex finite-state system can be decomposed into modules with one module called main.

Modules can have parameters, which may be state components, expressions, or other modules.

Modules can be composed either synchronously or using interleaving. If the keyword process
precedes an instance of a module, interleaving is used; other wise synchronous composition is
assumed. The interleaving model allows for a particularly efficient representation of the transition
relation: the set of states reachable by one step of the program is the union of the sets reachable by
each individual process. By this means, the reachability graph is not needed, while sometimes
complexity in representing the set of states reachable in n steps is increased up to ns possibilities.
Fairness constraint is used for specifying that each process has to execute infinitely often.

In modules, each variable is a state machine described by init and next. And there’s no loop
construct in SMV.

 18

The state transitions in a model may be either deterministic or nondeterministic. Nondeterminism
can reflect actual environment of the system being modeled, or it can be used to describe a more
abstract model where certain details are hidden. When modeling an elevator system, the request
from inside the elevator and at the floors can be modeled as nondeterministic environment.

♦ SPIN

Promela(Process Meta Language) allows for the dynamic creation of concurrent processes.
Promela programs consist of processes, message channels, and variables. The state of a variable
or channel can only be changed or inspected by processes. The behavior of a process is defined in
a proctype declaration.

Process can receive parameters of all basic data types and message channels. But data arrays and
process types are not allowed.

A proctype definition only declares process behavior, it doesn’t execute it. Initially, just one
process will be executed: a process of type init. Independent processes are composed
asynchronously by the operation of run processes defined by proctype. Except for some basic
constructs, there are also do loops, assertions and atomic steps in Promela.

Based on Dijkstra’s guarded command language, every statement in Promela program is guarded
by a condition and blocks until condition becomes true. The executability of statement is the basic
means of synchronization.

Processes can communicate using channels and global variables.

Channels and global variable define the environment in which the processes run. Promela doesn’t
provide nondeterministic assignment of variables. So, when modeling an elevator system, we need
to model the nondeterministic environment which can be executed by nondeterministic choice of
statements in processes.

ii. Simulator

♦ SMV doesn’t provide a separate simulator. If the result of model-checking is false, there is a
counterexample to prove it. If the result is true, no extra information is given.

♦ SPIN provides random simulations of the system’s execution. It can be used as a simulator
not only when a counterexample is generated but also for random and manually guided
simulation.

iii. Verifier

♦ SMV can verify properties expressed in CTL formula. These CTL properties are given as
SPEC statements in the program.

♦ SPIN can generate an exhaustive state space searching program for a model to check
deadlock, unreachable code, and violated assertions. Assertion is a way provided to check
validity of system invariant.

SPIN can also check properties specified as an LTL formula by LTL claim. The claim is
translated into NEVER claim and stored either in .ltl file or at the end of model file. All
variables in LTL claims have to be global, and only one LTL property can be verified at a
time.

 19

Due to the implicit use of universal quantification over the set of computations, LTL cannot
express existential, or possibility, properties.

iv. Algorithms

♦ SMV uses the OBDD-based symbolic model checking algorithm. OBDDs represent sets of
states and transitions in Kripke structures. And the algorithm is based on the manipulation of
Boolean formulas including fixpoints calculation and iterative techniques.

♦ Spin represents the system as a finite state machine and visits each reachable state explicitly
(using Nested DFS). performs on-the-fly computation; uses partial order reduction; efficient
memory usage(state compression, Bit-state hashing).

Spin performs on-the-fly computation: System is the asynchronous composition of processes
and the global transition is never build. For each state, the successor states are enumerated
using the transition relation of each process.

Spin also tries to realize efficient memory usage. Techniques applied includes: Hash table,
partial order reduction, minimized automata reduction, as well as working on non-binary
variables (MDD).

Given that none of formal method is likely to be suitable for describing and analyzing every aspect of
a complex system, a practical approach is to use different methods in combination. Comparing with
those tools mentioned, MOCHA is interesting to us because it integrates diverse methods and tools for
modeling heterogeneous, reactive systems, particularly embedded systems. It can model
heterogeneous systems such as those including hardware and software, analog and digital, ad electrical
and mechanical devices. It can also model systems that are complex in the sense that they mix widely
different operations, such as signal processing, feedback control, sequential decision making, and user
interfaces.

Comparing with SMV and SPIN, the following proprieties are remarkable in MOCHA:

♦ The system description language is based on reactive modules. The language REACTIVE
MODULES is a modeling and analysis language for heterogeneous concurrent systems with
synchronous and asynchronous components. The efficiency of most verification tools often
depends on the specific synchrony assumption supported by the underlying model [3]. SMV, as a
language intended for hardware description, assumes synchronous progress and BDD-based model
checking is successful in this domain. Many protocol description languages, like Promela, assume
asynchronous interleaving, and the most effective verification strategy is explicit on-the-fly search
with reduction techniques based on partial orders and symmetries. While both synchrony and
asynchrony can be forced, in one way or another, into most currency models, this often comes at
the cost of inefficiencies in verification. For example, the use of interleaving model in SMV
through the keyword process increases the number of transitions exponentially. And the
introduction of synchronization points into asynchronous models restricts the applicability of
efficient search methods in verification [12]. By contrast, the reactive modules provide a uniform
framework which allows separating complexity of verification methods from model dependence.

♦ MOCHA provides support for checking invariants on finite-state modules by implementing both
symbolic and enumerative state-exploration algorithms. In cMocha, the enumerative state-
exploration which is used primarily by the simulator doesn’t perform any optimizations, while the
symbolic state-exploration use BDDs to represent the transition relation and the set of reached

 20

states of a reactive module. In jMocha, various features and optimizations of enumerative search
engine is implemented [13]. And the symbolic checker in jMOCHA works on a multi-valued
decision diagram (MDD).

♦ Reactive modules, which permit the modular and hierarchical description of heterogeneous
systems, provides support for modular proof principles, such as assume-guarantee reasoning and
hierarchical verification, based on built-in abstraction operators such as next [3]. The technique of
dividing the verification task at hand into simpler tasks is one way for combating state-explosion
problem. In mocha a compositional methodology for refinement checking is implements based on
assume-guarantee rules and made use of the infrastructure of reactive modules [14].

♦ MOCHA can verify properties specified in ATL formula. Temporal logic comes in two varieties:
linear-time temporal logic assumes implicit universal quantification over all paths that are
generated by the execution of a system; branching-time temporal logic allows explicit existential
and universal quantification over all paths. While alternating-time temporal logic (ATL) provides a
more general variety of temporal logic, which offers selective quantification over those paths that
are possible out comes of games, such as the game in which the system and the environment
alternate moves[5].

The logics LTL and CTL are interpreted over Kripke structure, which offer a natural model for the
computations of a closed system, whose behavior is completely determined by the state of the
system. While reactive modules, as a concurrent game structure, require to be viewed as open
systems, which interact with environment and whose behavior depend on the state of the system as
well as the behavior of the environment. ATL is better suitable for compositional reasoning and
expressing properties of open systems. For instance, if a component A satisfies the CTL
formula ϕEG , we can’t conclude that a composite system that contains A as a component also
satisfies ϕEG . On the other hand, if A satisfies the ATL formula ϕGA >><< , then so does the
composite system..

Given the features above, it would be worth further research to investigate how MOCHA could
provides us with a wealth of experience in tool integration.

5 Conclusions

MOCHA is an interactive verification environment for the modular verification of heterogeneous. It
models system with heterogeneous modeling framework of reactive modules, specifies properties with
the module-level specification language of ATL, in which both cooperative and adversarial
relationships between modules can be expressed. MOCHA also provides automatic refinement
checking. The MOCHA toolkit includes the following functionalities: simulation, enumerative and
symbolic invariant checking and error-trace generation, compositional refinement checking, ATL
model checking, reachability analysis of real-time systems. As an integrated model checking
environment, MOCHA is a good choice to do some case study on.

From the experience of building an elevator system with MOCHA as well as SPIN and SMV, we
found that as a model checker based on reactive modules, MOCHA has some advantages in scalability
which is realized by parallel composition of modules, providing both enumerative and symbolic
invariant checking, supporting game execution, and verifying properties specified in ATL formula. As
a tool integrating so many interesting features in modeling checking, MOCHA is worthy of learning
and analyzing.

 21

From the case study of an elevator system, we also find some limitations in MOCHA. First, RML is
not as convenient of building large complex software or hardware systems for programmers as
programming language which is more similar to natural language. Second, the way in which variables
are updated in a single round in MOCHA is nonatomic synchrony [5]. To make sure that the
possibility of nonterminating computation within a single is avoided, a restrictive strategy is applied
by statically linearizing the partial order on the atoms. It is useful, while at the same time requires user
to spend more time on figuring out relationship between modules as well as atoms in detail. Finally,
the ATL property checker still cannot provide the counter example execution, which makes debug
extremely hard.

References
[1] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA: Modularity in model
checking. In precceddings of the 10th International Conference on Computer Aided Verification, LNCS 1427,
pages 516‐520. Springer‐Verlag, 1998.

[2] L. de Alfora R. alur R. Grosu T. Henzinger M. Kang. MOCHA: exploiting Modularity in Model Checking.

[3] R. Alur and T.A. Henzinger. Reactive Modules. In Proceeding of the 11th Annual Symposium on Logic in
Computer Science, pages 207‐218. IEEE Computer Society Press, 1996.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching‐time temporal
logic. In Workshop one Logic of Programs, Lecture Notes in Computer Science 131, pages 2‐71. Springer‐Verlag,
1981.

[5] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating‐time temporal logic. In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, pags 100‐109. IEEE Computer Society Press, 1997.

[6] K. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Technical Report CMU‐‐CS‐
‐ 92‐‐131, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1992. PhD Thesis...

[7] Gerard J. Holzmann. The Model Checker Spin,IEEE Trans. on Software Engineering,Vol. 23, No. 5, May 1997,
pp. 279‐295.

[8] http://www.dcs.ed.ac.uk/home/cwb

[9] Rajeev Alur, Thomas A. Henzinger, Pei‐Hsin Ho. Automatic symbolic verification of embedded systems. IEEE
Real‐Time Systems Symposium, 1996

[10] C. Daws, S. Yovine .Two examples of verification of multirate timed automata with Kronos, Proceedings of the
16th IEEE Real‐Time Systems Symposium (RTSSʹ95), Pisa, Italy (1995)

[11] Edmund M.Clarke, Jr., Orna Grumberg, and Doron A.Peled. Model Checking

[12] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice‐Hall, 1985

[13] L.De Alfaro, R.Alur, MOCHA: Exploiting Modularity in Model Checking, 2000

[14] Thomas A. Henzinger Shaz Qadeer, Sriram K. Rajamani, You Assume, We Guarantee: Methodology and Case
Studies, Proceedings of the 10th International conference on Computer‐aided Verification, Lecture Notes in
Computer Science 1427, Springer‐Verlag, 1998, pp.440‐451

[15] R.E.Bryant. Graph‐based algorithms for boolean‐function manipulation. IEEE Trans. On Computers, C‐
35(8), 1986

 22

Appendix A: Elevator System Modules

/**

 A REACTIVE MODULES of AN THREE-LEVEL ELEVATOR CONTROL SYSTEM

 Yuan Gan, Lin Mei
 09-01-2004

**/

-- the moving direction of the elevator car
type movingType : {UP, DOWN, IDLE}

-- the status of the elevator car
type elevStatusType : {STOP, GO}

-- the states of door
type doorStatusType : {OPEN, CLOSED}

-- floor number
type posiType : {f0, f1, f2}

-- the counter counting the times of door opening
type counterType : (0..2)

module floor
-- represents one floor of the building which the elevator serves. There are an
-- external and an internal buttons in each floor which issue the requests to
-- the elevator. When a request is satisfied, the controller issues an arrive
-- event.

 external arrive : bool
 interface floorRequest : bool;
 exButton : bool;
 inButton : bool

 atom Buttons
 controls inButton, exButton
 reads arrive, inButton, exButton
 awaits arrive

 init
 []true -> exButton' := false; inButton' := false
 update
 -- if the request is served, reset the request to be false
 []arrive' & (exButton | inButton)-> exButton' := false;
 inButton' := false
 -- otherwise, the request occurs nondeterministcally
 []~arrive' & ~exButton -> exButton' := nondet
 []~arrive' & ~inButton -> inButton' := nondet
 []default -> exButton' := exButton; inButton' := inButton
 endatom

 atom FloorReqq
 controls floorRequest
 awaits exButton, inButton

 23

 init
 []true -> floorRequest' := false
 update
 []true -> floorRequest' := (exButton' | inButton')
 endatom
endmodule

-- There are three floors in the building, we easily create the three floor
-- modules by variable renaming.

floor_0 := floor[arrive, floorRequest, exButton, inButton :=

 arrive0, floor0, exBtn0, inBtn0]

floor_1 := floor[arrive, floorRequest, exButton, inButton :=

 arrive1, floor1, exBtn1, inBtn1]

floor_2 := floor[arrive, floorRequest, exButton, inButton :=

 arrive2, floor2, exBtn2, inBtn2]

module openDoorBtn
--represents the “open door” button inside the elevator.
 external door : doorStatusType; openDoorTimes : counterType;
 passengerPresent : bool
 interface openDoorButton : bool

 atom Openrequest
 controls openDoorButton
 reads door, openDoorTimes, passengerPresent

 init
 []true -> openDoorButton' := false
 update
 --if there is passenger inside the elevator, opendoor button
 --can be pressed nondeterminstically.
 []openDoorTimes < 2 & passengerPresent -> openDoorButton' := nondet
 []default -> openDoorButton' := false
 endatom
endmodule

module elevator
--represents the elevator car. It communicates with the controller to get
--the next movement data for the elevator moving direction and the statue of the
--door.

 external stop, go, opendoor, closedoor : event;
 elevnextdire : movingType
 interface elevdire : movingType;
 moving : bool;
 position : posiType;
 door : doorStatusType;
 passengerPresent : bool;
 openDoorTimes : counterType

 atom elevcar
 controls moving, position, elevdire, door,
 passengerPresent, openDoorTimes
 reads moving, position, elevdire, door,

 24

 elevnextdire, openDoorTimes,
 go, stop, opendoor, closedoor
 awaits stop, go, opendoor, closedoor

 init
 []true -> moving' := false ; position' := f0;
 elevdire' := IDLE; door' := OPEN;
 passengerPresent' := false
 update
 -- stop command from the controller! Stop moving and open the door
 -- and passenger can either leave the elevator or stay in it.
 []stop? -> moving' := false;
 door' := OPEN;
 openDoorTimes' := 0;
 passengerPresent' := nondet

 -- go command from the controller! moves according the next direction
 -- issued by the controller.
 []go? & (elevnextdire=UP) -> elevdire' := elevnextdire;
 door' := CLOSED;
 moving' := true;
 openDoorTimes' := 0;
 position' := if(position = f0) then f1
 else if (position = f1) then f2
 else position fi fi

 []go? & (elevnextdire=DOWN)-> elevdire' := elevnextdire;
 door' := CLOSED;
 moving' := true;
 openDoorTimes' := 0;
 position' := if(position = f2) then f1
 else if (position = f1) then f0
 else position fi fi

 --No movement command and next direction is IDLE, so should open the
 --door and wait
 [](elevnextdire=IDLE)-> elevdire' := elevnextdire;
 door' := OPEN;
 moving' := false;
 openDoorTimes' := 0;
 position' := position;
 passengerPresent' := nondet

 --opendoor is pressed!
 []opendoor? -> moving' := false;
 position' := position;
 door' := OPEN;
 elevdire' := elevdire;
 openDoorTimes' := openDoorTimes + 1

 --passenger is present!
 []closedoor? -> moving' := false;
 position' := position;
 door' := CLOSED;
 elevdire' := elevdire

 -- if there is no any events, the elevator stops there.
 []default -> moving' := false; door' := OPEN; position' := position

 25

 endatom

endmodule

module controller
-- controls the elevator car to serve the requests from each floor.
-- It detects requests from reading the variable floor[0,1,2] and determines the
-- next direction according the current direction of elevator and which floor is
-- required.

 external position : posiType;
 floor0, floor1, floor2 : bool;
 elevdire : movingType;
 openDoorButton : bool;
 openDoorTimes : counterType;
 passengerPresent : bool;
 door : doorStatusType
 interface elevnextdire : movingType;
 stop, go, opendoor, closedoor : event;
 arrive0, arrive1, arrive2 : bool
 private keepGoing : bool

 atom MoveControl
 controls keepGoing, stop, go, arrive0, arrive1, arrive2
 reads stop, go, position, floor0, floor1, floor2, arrive0,
 arrive1, arrive2

 init
 []true -> keepGoing' := false; arrive0' := false;
 arrive1' := false; arrive2' := false
 update
 -- satisfy the first floor request
 [] position=f0 & floor0 -> stop! ; arrive0':=true; arrive1' := false;
 arrive2' := false; keepGoing' := false

 -- satisfy the second floor request
 [] position=f1 & floor1 -> stop! ; arrive0':=false; arrive1' := true;
 arrive2' := false; keepGoing' := false

 -- satisfy the third floor request
 [] position=f2 & floor2 -> stop! ; arrive0':=false; arrive1' := false;
 arrive2' := true; keepGoing' := false

 -- no need to stop, so keep going
 [] position=f0 & ~floor0 & (floor1 | floor2) ->
 go! ; keepGoing' := true

 [] position=f1 & ~floor1 & (floor0 | floor2) ->
 go! ; keepGoing' := true

 [] position=f2 & ~floor2 & (floor0 | floor1) ->
 go! ; keepGoing' := true

 [] default -> keepGoing' := false
 endatom

 26

 atom DireControl
 controls elevnextdire, opendoor, closedoor
 reads elevnextdire, elevdire, position,
 floor0, floor1, floor2, door,
 openDoorButton, openDoorTimes, passengerPresent,
 opendoor, closedoor
 awaits keepGoing

 init
 []true -> elevnextdire' := IDLE
 update

 ---** The elevator is currently in UP direction**---

 -- if it is at the upper most floor, and any of lower floor is
 -- required, go DOWN.
 [] keepGoing' & elevdire=UP & position=f2 & (floor0| floor1)
 -> elevnextdire' := DOWN

 -- if it is at the low most floor, and any of upper floors is
 -- request, still go UP.
 [] keepGoing' & elevdire=UP & position=f0 & (floor1 | floor2)
 -> elevnextdire' := UP

 -- if it is at the middle floor, the priority is given to the
 -- upper floor requests.
 [] keepGoing' & elevdire=UP & position=f1 & floor2
 -> elevnextdire' := UP
 [] keepGoing' & elevdire=UP & position=f1 & ~floor2 & floor0
 -> elevnextdire' := DOWN

 ---**The elevator is currently in DOWN direction**---

 -- if it is at the lower most floor, and any of upper floors is
 -- required, go UP.
 [] keepGoing' & elevdire=DOWN & position=f0 & (floor1 | floor2)
 -> elevnextdire' := UP

 -- if it is at the upper most floor, and any of lower floors is
 -- required, go DOWN.
 [] keepGoing' & elevdire=DOWN & position=f2 & (floor0 | floor1)
 -> elevnextdire' := DOWN

 -- if it is at the middle floor, the priority is given to the
 -- lower floor requests.
 [] keepGoing' & elevdire=DOWN & position=f1 & floor0
 -> elevnextdire' := DOWN
 [] keepGoing' & elevdire=DOWN & position=f1 & ~floor0 & floor2
 -> elevnextdire' := UP

 ---**The elevator currently is IDLE **---

 -- if it is at the upper most floor, and any of lower floors is
 -- required, go DOWN.
 [] keepGoing' & elevdire=IDLE & position=f2 & (floor0 | floor1)
 -> elevnextdire' := DOWN

 27

 -- if it is at the upper most floor, and any of lower floors is
 -- required, go DOWN.
 [] keepGoing' & elevdire=IDLE & position=f0 & (floor1 | floor2)
 -> elevnextdire' := UP

 -- if it is at the middle floor, the priority is given to the
 -- upper floor requests.
 [] keepGoing' & elevdire=IDLE & position=f1 & floor2
 -> elevnextdire' := UP
 [] keepGoing' & elevdire=IDLE & position=f1 & ~floor2 & floor0
 -> elevnextdire' := DOWN

 -- if the elevator is not moving and passenger is present
 -- door should be closed
 [] ~keepGoing' & passengerPresent & (door = OPEN) -> closedoor!

 -- if the elevator is not moving and open door button is pressed,
 -- open the door if open door times is less than twice.
 [] ~keepGoing' & openDoorButton & (openDoorTimes < 2) & (door = CLOSED)
 -> opendoor!

 -- if none of three floors is required, it should be IDLE.
 [](~floor0) & (~floor1) & (~floor2) -> elevnextdire' := IDLE

 []default -> elevnextdire' := elevnextdire
 endatom
endmodule

-- We create the entire elevator system by parallel composition. To construct
-- module abstractions of degrees of detail, we hide some interface variables
-- so that only some status data the user can view, such as elevdire, door,
-- moving, etc.

ElevSystem := hide elevnextdire, arrive0, arrive1, arrive2,

 keepGoing in (floor_0 || floor_1 || floor_2 || elevator

 || openDoorBtn || controller) endhide

 28

Appendix B: Elevator System Properties

/***

 The invariant and ATL properties of a three-level elevator system

**/

--The elvator never moves with its door open.
--This property can be expressed either in invariant form or ATL form
inv "inv1"
 ~(moving & (door = OPEN));

atl "atl1"
 A G ~(moving & (door = OPEN));

atl "atl11"
 A G (moving => (door = CLOSED));

--Requests to use the elevator are eventually serviced.

atl "atl21"
 A G (exBtn0 => A F ((door = OPEN) & (position = f0)));

atl "atl22"
 A G (exBtn1 => A F ((door = OPEN) & (position = f1)));

atl "atl23"
 A G (exBtn2 => A F ((door = OPEN) & (position = f2)));

--Requests to be delivered to a particular floor are eventually serviced.

atl "atl24"
 A G (inBtn0 => A F ((door = OPEN) & (position = f0)));

atl "atl25"
 A G (inBtn1 => A F ((door = OPEN) & (position = f1)));

atl "atl26"
 A G (inBtn2 => A F ((door = OPEN) & (position = f2)));

--The above two types properties can be tested together since
--floor0 = (exBtn0 | inBtn0).

atl "atl27"
 A G (floor0 => A F ((door = OPEN) & (position = f0)));

atl "atl28"
 A G (floor1 => A F ((door = OPEN) & (position = f1)));

atl "atl29"
 A G (floor2 => A F ((door = OPEN) & (position = f2)));

 29

--Vacuity check for the above property formulas.
atl "atl30"
 E F (exBtn0);

atl "atl31"
 E F (exBtn1);

atl "atl32"
 E F (exBtn2);

atl "atl33"
 E F (inBtn0);

atl "atl34"
 E F (inBtn1);

atl "atl35"
 E F (inBtn2);

--The elevator should keep its door open until there is a request to use it.
atl "atl50"
 A G ((door = OPEN) => A ((door = OPEN) W (floor0 | floor1 | floor2)));

--When someone steps into the elevator, the door should close and remain closed unless
--the door open button is pressed.
atl "atl60"
 A G ((~moving & passengerPresent & (door = OPEN)) => A ((door = CLOSED) U
openDoorButton));

--Vacuity check for the above property,
--i.e. Eventually, the passenger will present" as follows:
atl "atl61"
 E F (~moving & passengerPresent & (door = OPEN));

--The elevator react "open door" at most twice
atl "atl70"
 A G ~(openDoorButton & (openDoorTimes > 2) & (door = OPEN));

--The elevator cannot change its direction when it is moving.
atl "atl80"
 A G ((moving & (elevdire = UP)) => A X ~(moving & (elevdire = DOWN)));

--The floor has the discretion to make the external button not be pressed,
--No other module can force it to do otherwise.
atl "atl95"
 A G (~exBtn0 => <<floor_0>> G ~exBtn0);

atl "atl96"
 A G (~exBtn1 => <<floor_1>> G ~exBtn1);

atl "atl97"

 30

 A G (~exBtn2 => <<floor_2>> G ~exBtn2);

--Whenever the request button is off, the controller does not have a strategy
--to produce a trajectory to force the external button not be pressed .
atl "atl90"
 A G (~exBtn1 => [[controller, elevator, floor_0, floor_2, openDoorBtn]] G ~exBtn1);

--The floor has a strategy to make the external button be pressed,
--no matter how the other module behaves.
atl "atl100"
 <<floor_0>> F (exBtn0);

atl "atl101"
 <<floor_1>> F (exBtn1);

atl "atl102"
 <<floor_2>> F (exBtn2);

--Whenever the elevator is currently in the first floor and the second floor
--is required, the controller and the elevator can cooperate so that the
--elevator will be at the second floor.
atl "atl120"
 << >> G (((position=f0) & floor2) =>
 <<controller, elevator>> F ((position = f2)&(door=OPEN)));

--atl "atl130"
-- <<elevator>> F ((positon=f1) & floor2) => <<elevator>> F (elevdire=DOWN));
--

 31

Appendix C: Result of invariant checking and ATL checking

The number of properties that checked is consistent with the properties specified in Appendix B.
MOCHA does not report the time that takes to verify properties. We manually recorded the time. It
took about 2 seconds to check the properties:

atl "atl95" A G (~exBtn0 => <<floor_0>> G ~exBtn0);

atl "atl96" A G (~exBtn1 => <<floor_1>> G ~exBtn1);

atl "atl97" A G (~exBtn2 => <<floor_2>> G ~exBtn2);

All the other properties are verified in one second.

 32

 33

 34

 35

 36

