/ Integrating Model-Checking and Theorem Proving for \

Automating the Generation of Abstractions

Shiva Nejati and Mehrdad Sabetzadeh
Department of Computer Science
University of Toronto

{shiva,mehrdad}@cs.toronto.edu

January 31, 2003

/ |Introduction and Motivation'

e Model-checkers are efficient tools for verifying finite-state

systems, however ...
— suffer from the state explosion problem;

— cannot handle parameterized /unbounded systems.

e Theorem provers are very general, however ...
— require detailed guidance;

— working with theorem-provers requires a great deal of
expertise.

e In principle, we would like to combine the two approaches:

— Model-checkers handle decision procedures.

\ — Theorem provers handle proofs in undecidable logics.

~

/

/ Introduction and Motivation (Cnt’d) I \

e We need to verify systems that
— are very large and complicated;

— have unbounded state-spaces.

e Combining model-checking and theorem proving facilitates
— automating the process of constructing finite-state
abstractions.
e Example:

— A BDD-based model-checker has been integrated with the
PVS theorem prover.

. /

Outline '

What is Abstraction?

Predicate Abstraction

Abstraction in PVS

3-Valued (Mixed) Abstraction

Optimizations to Under-Approximation Abstraction

Conclusions

-

|What 1S Abstraction?'

e Reducing a large model to a smaller one while preserving the

desired properties.

e To verify a concrete model C' using abstraction:

1.

generate an abstract model A either manually or

automatically;

. check the soundness of abstraction:

VoeL-AE o= C E y;

. check the properties of interest over A:

?
A= .

~

/ ‘ Computing Abstractions I \

e >, is the concrete state-space; o

e), is the abstract state-space;

o o : 2% — ¥ is an abstraction function: ~—_
o v:Y, — 2% is a concretization function:

e Properties of a and ~:
> VS C Y. S C v(oz(S));
> Vs € B a(y(s)) = s.

. /

-

.

Abstraction: an Examplel

e The concrete model:

HHHHH A

e Abstraction criteria: ¢1 = (¢ < 0) and w2 = (¢ > 0)

e Over-approximation:

ao al

[] The abstract model simulates the concrete model.

~

/

/ ‘Abstraction: an Example (Cnt’d)' \

e Under-approximation

ao al

[1 The abstract model is simulated by the concrete model.

e 3-val (mixed) Abstraction:

M T

a aj
M

. /

/ ll\/[anual Generation of Abstractions' \

e Let A and C be Kripke structures.

e A is an over-approximation abstraction of C' iff

(1) Vsel.-a(s)e€l,
(2) Vsg,s1 € X¢ - Re(s0,51) = Ra(a(sg), a(sy))

init_simulation: THEOREM
init(s) IMPLIES a_init(abst(s))

may_next_simulation: THEOREM
next(s0, s1) IMPLIES a_next(abst(s0), abst(sl))

The above soundness criteria were proven by PVS’s (grind)

\ rule without need for human guidance. /

/ Predicate Abstraction ' \

o Let ©1,...,p, be a set of abstraction predicates, and let

bi,...,b, be abstract boolean variables.

Y(f(b1, ..., bn)) = f(o1/b1,. .., 0n/bn)
a(y) = N{f(br,....0n) [V = f(o1/b1,...,0n/bn)}

e It is hard to compute o because

— there are 22" distinct boolean functions f(b1,...,b,).

e A simplified version of « is:

a(yp) = N\{bi | ¥ = b;}

e Let o1 = (c<0) and w3 = (¢ > 0). Then, alc > 5) = —p1 A pa,

\ but what about a(c < 0) ?! /

Abstraction in PVSI

A conservative abstraction scheme has been implemented as a

proof rule in PVS.

They improve the abstraction function a:

= N{f(r,....bn) [= f@1/b1,. ... on/bn)}

where f(b1,...,b,) are all possible disjunctions of variables
bi,...,b,.

This reduces the number of functions from 22" to 3".
Let o1 = (¢ < 0) and @5 = (¢ > 0). Then,
a(c <0) = (p1V2) A(—p1 V).

Under-approximation of the abstract function a:

=\ {01, 00) [f(1/b1,- - 00 /bn) = 0}

~

/

11

e There is an over-approximation transition from ag to aq iff

ds,s" - s € y(ag) N8 € y(a1) A Re(s,s")

are the only successors of a then
Vs,s" - s € y(a) A Re(s,s") = s € (v(ao) V... V~(ar))

e Let o1 = (c<0) and w3 = (¢ > 0). Then,

/ Abstraction in PVS: Over-ApproximationI \

e We need to express it as a quantifier-free formula. If ag, ..., ax

(abstract—and-mc ("lambda(s):c(s) >= 0" "lambda(s):c(s) < 0"))

.

_/

12

e There is an under-approximation transition from ag to ap iff
Vs-3s'-s € v(ag) = s € v(a1) A Re(s,s")

e This formula is not in quantifier-free form.
e However, in our example:
Ve-3dd - (¢ >0)= (¢ >0) A R(c,)

= (Since R.(c,d) = (=c+1))
c-(c>0)=(c+12>0)

If the pre- or post-image function can be written in

quantifier-free form, the under-approximation formula can be

\ written in quantifier-free form, as well.

/ ‘Abstraction in PVS: Under-ApproximationI \

13

(1

e pre- and post-image functions:

post(vp) £ {s'€S|3scS-R(s,s')AskE=}
pre()) = {scS|Vs €S- R(s,s)=s =1}

e Conventional programming languages can be translated into
guarded command form,

g(Z) AT’ := assign()
pre(y) = g(z) A p(assign(z)/T)
Example:

(x>b)ANz' =2 —10
\ pre(x >0)=(x >5) A(x—10>0) = (x > 10)

bstraction in PVS: Under-approximation Cnt’d

— this makes it possible to have g-free pre and post functions:

~

/

14

-

a(c <0)

‘S-Valued (or Mixed) Abstraction'

Let ©1,...,0, be a set of abstraction predicates, and let

bi,...,b, be the corresponding 3-valued abstract variables.

The abstract domain is all possible &-valued states:

2ig = {Algign(bi =) |le{T,M,L}}
The number of states is 3".

Let 1 = (¢ < 0) and @2 = (¢ > 0). Then,

~

/| 3-Valued Abstraction: the Transition Relation '\

e There is an over-approximation transition from ¢ to o iff
©1 A\ —pre(—psy) is satisfiable.

e There is an under-approximation transition from ¢ to o iff

w1 A\ pre(—ys) is unsatisfiable.
e Let o1 =(c<0), po = (c>0),and R(c,c') < (¢ =c+1):

(1) ¢1 o @2 because p1(c) A pa(c+ 1) is SAT :
de-(c<0)A(c+12>0)

(2) @2 4 @2 because —(pz(c) A mpa(c+ 1)) is a TAUTOLOGY :

Ve-(¢>0)=(c+1>0)

. /

16

-

.

~

Optimizations to Under-Approximation

e Using a distance-bounded reachability (instead of the
immediate-successor) relation for computing the under-approx.
transition relation. T T

Qg ai
T

e FF(c>0) is conclusive for this abstract model.
o Let o1 =(c<0), po =(c>0),and R(c,c') < (¢ =c+ 1), and
let init(c) = —2:

(1) ¢1 4 w9 because

Ve (—2<e<0)= (c+1>0)V

17

-

.

Concluding Remarks I \

e What we did:

— surveyed some of the approaches to automated generation of
abstract models;

— demonstrated how distance-bounded reachability can be
employed to make an under-approximation transition
relation more precise.

e What we learned:

— gained hands-on experience with the PVS toolkit;
x in particular, we implemented a number of abstraction

examples.

— We found PVS very useful for generating abstract models;
however, the PVS specification language does not provide a

convenient means for describing state transition systems. /

18

-

| Future Work ' \

e How this work can be pursued:

— Finding out whether pre-image functions can be used for

the elimination of quantifiers in general;

— Using pre-image functions for quantifer elimination in other

contexts e.g. SAT-based model-checking.

— Using fairness assumptions for sharpening the results of
abstraction (for some preliminary work in this direction, see

the report.)

/

19

