
1'

&

$

%

Integrating Model-Checking and Theorem Proving for

Automating the Generation of Abstractions

Shiva Nejati and Mehrdad Sabetzadeh

Department of Computer Science

University of Toronto

{shiva,mehrdad}@cs.toronto.edu

January 31, 2003

2'

&

$

%

Introduction and Motivation

• Model-checkers are efficient tools for verifying finite-state

systems, however ...

– suffer from the state explosion problem;

– cannot handle parameterized/unbounded systems.

• Theorem provers are very general, however ...

– require detailed guidance;

– working with theorem-provers requires a great deal of

expertise.

• In principle, we would like to combine the two approaches:

– Model-checkers handle decision procedures.

– Theorem provers handle proofs in undecidable logics.

3'

&

$

%

Introduction and Motivation (Cnt’d)

• We need to verify systems that

– are very large and complicated;

– have unbounded state-spaces.

• Combining model-checking and theorem proving facilitates

– automating the process of constructing finite-state

abstractions.

• Example:

– A BDD-based model-checker has been integrated with the

PVS theorem prover.

4'

&

$

%

Outline

• What is Abstraction?

• Predicate Abstraction

• Abstraction in PVS

• 3-Valued (Mixed) Abstraction

• Optimizations to Under-Approximation Abstraction

• Conclusions

5'

&

$

%

What is Abstraction?

• Reducing a large model to a smaller one while preserving the

desired properties.

• To verify a concrete model C using abstraction:

1. generate an abstract model A either manually or

automatically ;

2. check the soundness of abstraction:

∀ϕ ∈ L ·A |= ϕ⇒ C |= ϕ;

3. check the properties of interest over A:

A
?

|= ϕ.

6'

&

$

%

Computing Abstractions

• Σc is the concrete state-space;

• Σa is the abstract state-space;

• α : 2Σc → Σa is an abstraction function;

• γ : Σa → 2Σc is a concretization function;

• Properties of α and γ:

B ∀S ⊆ Σc. S ⊆ γ
(

α(S)
)

;

B ∀s ∈ Σa. α
(

γ(s)
)

= s.

α

γ

2
Σc Σa

7'

&

$

%

Abstraction: an Example

• The concrete model:

c = 0 c = 1c = −3 c = −2 c = −1c = −4 · · ·

• Abstraction criteria: ϕ1 = (c < 0) and ϕ2 = (c ≥ 0)

• Over-approximation:

c < 0 c ≥ 0

a0 a1

✎ The abstract model simulates the concrete model.

8'

&

$

%

Abstraction: an Example (Cnt’d)

• Under-approximation

c < 0 c ≥ 0

a0 a1

✎ The abstract model is simulated by the concrete model.

• 3-val (mixed) Abstraction:

c < 0 c ≥ 0

M >

M
a0 a1

9'

&

$

%

Manual Generation of Abstractions

• Let A and C be Kripke structures.

• A is an over-approximation abstraction of C iff

(1) ∀s ∈ Ic · α(s) ∈ Ia

(2) ∀s0, s1 ∈ Σc ·Rc(s0, s1) ⇒ Ra(α(s0), α(s1))

init_simulation: THEOREM

init(s) IMPLIES a_init(abst(s))

may_next_simulation: THEOREM

next(s0, s1) IMPLIES a_next(abst(s0), abst(s1))

✔ The above soundness criteria were proven by PVS’s (grind)

rule without need for human guidance.

10'

&

$

%

Predicate Abstraction

• Let ϕ1, . . . , ϕn be a set of abstraction predicates, and let

b1, . . . , bn be abstract boolean variables.

γ(f(b1, . . . , bn)) = f(ϕ1/b1, . . . , ϕn/bn)

α(ψ) =
∧

{f(b1, . . . , bn) | ψ ⇒ f(ϕ1/b1, . . . , ϕn/bn)}

• It is hard to compute α because

– there are 22
n

distinct boolean functions f(b1, . . . , bn).

• A simplified version of α is:

α(ψ) =
∧

{bi | ψ ⇒ bi}

• Let ϕ1 = (c < 0) and ϕ2 = (c ≥ 0). Then, α(c > 5) = ¬ϕ1 ∧ ϕ2,

but what about α(c ≤ 0) ?!

11'

&

$

%

Abstraction in PVS

• A conservative abstraction scheme has been implemented as a

proof rule in PVS.

• They improve the abstraction function α:

α(ψ) =
∧

{f(b1, . . . , bn) | ψ ⇒ f(ϕ1/b1, . . . , ϕn/bn)}

where f(b1, . . . , bn) are all possible disjunctions of variables

b1, . . . , bn.

• This reduces the number of functions from 22
n

to 3n.

• Let ϕ1 = (c < 0) and ϕ2 = (c ≥ 0). Then,

α(c ≤ 0) = (ϕ1 ∨ ϕ2) ∧ (¬ϕ1 ∨ ¬ϕ2).

• Under-approximation of the abstract function α:

α−(ψ) =
∨

{f(b1, . . . , bn) | f(ϕ1/b1, . . . , ϕn/bn) ⇒ ψ}

12'

&

$

%

Abstraction in PVS: Over-Approximation

• There is an over-approximation transition from a0 to a1 iff

∃s, s′ · s ∈ γ(a0) ∧ s
′ ∈ γ(a1) ∧Rc(s, s

′)

• We need to express it as a quantifier-free formula. If a0, . . . , ak

are the only successors of a then

∀s, s′ · s ∈ γ(a) ∧Rc(s, s
′) ⇒ s′ ∈

(

γ(a0) ∨ . . . ∨ γ(ak)
)

• Let ϕ1 = (c < 0) and ϕ2 = (c ≥ 0). Then,

∀c, c′ · ϕ1(c) ∧ (c′ = c+ 1) ⇒ ϕ2(c
′) ∨ ϕ1(c

′)

∀c, c′ · ϕ2(c) ∧ (c′ = c+ 1) ⇒ ϕ2(c
′)

(abstract-and-mc ("lambda(s):c(s) >= 0" "lambda(s):c(s) < 0"))

13'

&

$

%

Abstraction in PVS: Under-Approximation

• There is an under-approximation transition from a0 to a1 iff

∀s · ∃s′ · s ∈ γ(a0) ⇒ s′ ∈ γ(a1) ∧Rc(s, s
′)

• This formula is not in quantifier-free form.

• However, in our example:

∀c · ∃c′ · (c ≥ 0) ⇒ (c′ ≥ 0) ∧Rc(c, c
′)

⇒ (Since Rc(c, c
′) ⇔ (c′ = c+ 1))

∀c · (c ≥ 0) ⇒ (c+ 1 ≥ 0)

✎ If the pre- or post-image function can be written in

quantifier-free form, the under-approximation formula can be

written in quantifier-free form, as well.

14'

&

$

%

Abstraction in PVS: Under-approximation Cnt’d

• pre- and post-image functions:

post(ψ) , {s′ ∈ S | ∃s ∈ S ·R(s, s′) ∧ s |= ψ}

pre(ψ) , {s ∈ S | ∀s′ ∈ S ·R(s, s′) ⇒ s′ |= ψ}

• Conventional programming languages can be translated into

guarded command form,

– this makes it possible to have q-free pre and post functions:

g(x̄) ∧ x̄′ := assign(x̄)

pre(ϕ) = g(x̄) ∧ ϕ(assign(x̄)/x̄)

Example:

(x > 5) ∧ x′ := x− 10

pre(x > 0) = (x > 5) ∧ (x− 10 > 0) = (x > 10)

15'

&

$

%

3-Valued (or Mixed) Abstraction

• Let ϕ1, . . . , ϕn be a set of abstraction predicates, and let

b1, . . . , bn be the corresponding 3-valued abstract variables.

• The abstract domain is all possible 3-valued states:

Σa = {
∧

1≤i≤n
(bi = l) | l ∈ {>,M,⊥}}

• The number of states is 3n.

• Let ϕ1 = (c < 0) and ϕ2 = (c ≥ 0). Then,

α(c ≤ 0) = ((ϕ1 = M) ∧ (ϕ2 = M))

= (¬ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2)

= (ϕ1 ∨ ϕ2) ∧ (¬ϕ1 ∨ ¬ϕ2)

16'

&

$

%

3-Valued Abstraction: the Transition Relation

• There is an over-approximation transition from ϕ1 to ϕ2 iff

ϕ1 ∧ ¬pre(¬ϕ2) is satisfiable .

• There is an under-approximation transition from ϕ1 to ϕ2 iff

ϕ1 ∧ pre(¬ϕ2) is unsatisfiable .

• Let ϕ1 = (c < 0), ϕ2 = (c ≥ 0), and R(c, c′) ⇔ (c′ = c+ 1):

(1) ϕ1

M
→ ϕ2 because ϕ1(c) ∧ ϕ2(c+ 1) is Sat :

∃c · (c < 0) ∧ (c+ 1 ≥ 0)

(2) ϕ2

>
→ ϕ2 because ¬(ϕ2(c) ∧ ¬ϕ2(c+ 1)) is a Tautology :

∀c · (c ≥ 0) ⇒ (c+ 1 ≥ 0)

17'

&

$

%

Optimizations to Under-Approximation

• Using a distance-bounded reachability (instead of the

immediate-successor) relation for computing the under-approx.

transition relation.

c < 0 c ≥ 0

>>

>
a0 a1

• EF (c ≥ 0) is conclusive for this abstract model.

• Let ϕ1 = (c < 0), ϕ2 = (c ≥ 0), and R(c, c′) ⇔ (c′ = c+ 1), and

let init(c) = −2:

(1) ϕ1

>
→ ϕ2 because

∀c · (−2 ≤ c < 0) ⇒ (c+ 1 ≥ 0)
∨

(c+ 1 ≤ 0) ∧ (c+ 2 ≥ 0)

18'

&

$

%

Concluding Remarks

• What we did:

– surveyed some of the approaches to automated generation of

abstract models;

– demonstrated how distance-bounded reachability can be

employed to make an under-approximation transition

relation more precise.

• What we learned:

– gained hands-on experience with the PVS toolkit;

∗ in particular, we implemented a number of abstraction

examples.

– We found PVS very useful for generating abstract models;

however, the PVS specification language does not provide a

convenient means for describing state transition systems.

19'

&

$

%

Future Work

• How this work can be pursued:

– Finding out whether pre-image functions can be used for

the elimination of quantifiers in general;

– Using pre-image functions for quantifer elimination in other

contexts e.g. Sat-based model-checking.

– Using fairness assumptions for sharpening the results of

abstraction (for some preliminary work in this direction, see

the report.)

