
Integrating Model-Checking and Theorem Proving for
Automating the Generation of Abstractions

Shiva Nejati and Mehrdad Sabetzadeh

Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada.

{shiva,mehrdad}@cs.toronto.edu

Abstract. We investigate how the integration of model-checking and theorem
proving techniques can help in automating the process of constructing abstrac-
tions. We survey some of the existing approaches to automatic generation of
abstract models. Each approach is exemplified and its important details are out-
lined. In addition, we show how the optimizations proposed in [NGC03] can be
expressed in terms of satisfiability problems and incorporated into a 3-valued ab-
straction framework.

1 Introduction

Theorem provers have been successfully employed in proof mechanization of highly
expressive logics like first order and higher order logics. Theorem provers are based
on deductive methods making it possible to use them for reasoning about problems not
expressible in decidable theories. However, a considerable amount of human guidance
may be required before a theorem prover can carry out a verification task. This is due
to the inherent limitations that, for many logics, it is impossible to have a complete
automatization.

Model-checkers are, in contrast, based on model-theoretic methods. There are fully
automated model-checking algorithms for decidable logic fragments like temporal log-
ics; however, these algorithms are inadequate for reasoning about infinite systems, and
worse still, they all suffer from the state explosion problem in realistically large (but
finite) models.

Recently, there has been a move toward integrating model-checking and theorem
proving [RSS95,SS99]. The basic idea is to call a model-checker from within a theorem
prover as a decision procedure for verifying a decidable property. In [RSS95], an ap-
proach for such an integration has been proposed. There, a BDD-based model-checker
for the propositional µ-calculus [Koz83] has been integrated with the PVS theorem
prover [ORS92]. PVS is a verification toolkit consisting of a specification language, a
powerful higher order theorem prover, and a set of accessory tools.

In this report, we investigate how the integration of model-checking and theorem
proving techniques can help in automating the process of constructing finite-state (and
hence model-checkable) abstractions and verifying their validity. We survey some of
the existing approaches to automatic construction of abstract models. Most of the ap-
proaches surveyed do not provide worked-out examples for their proposed algorithms.

To address this problem, we exemplify each approach using our own examples. The
examples also provide a context for showing the similarities and differences between
the surveyed approaches. Each example is accompanied by a specification written in
the input language of the PVS theorem prover [ORS92]. We chose PVS because of its
built-in capabilities for model-checking and generation of abstractions.

The surveyed approaches are all based on predicate abstraction [GS97]. [GS97],
[DDP99], and [SS99] discuss abstractions that are sound for universal properties (i.e.
over-approximation abstraction); and [GHJ01] discusses abstractions that are sound for
both universal and existential properties (i.e. mixed abstractions).

We show how the optimizations proposed in [NGC03] can be expressed in terms of
satisfiability problems and seamlessly incorporated into the 3-valued abstraction frame-
work discussed in [GHJ01]. Further, we apply these optimizations to our examples in
order to obtain more conclusive abstract models.

We assume familiarity with the basic concepts of model-checking [CGP00], and
3-valued abstraction [DGG97].

The report is structured as follows: Section 1 reviews predicate abstraction and the
PVS capabilities for model-checking and abstraction. Section 2 studies the automatic
generation of mixed (i.e. 3-valued) abstract models and Section 3 demonstrates how the
optimizations discussed in [NGC03] can be applied to sharpen mixed abstractions.

2 Abstraction via Theorem Proving

Abstraction is one of the most effective methods to deal with the state explosion prob-
lem. In short, abstraction refers to the process of building a smaller model A from a
given model C in such a way that if a property holds in A, it also holds in C.

The process of verifying an infinite system by abstraction can be broken down to
three distinct stages: First, a finite abstract model is generated either manually or au-
tomatically; second, the soundness of abstraction is verified by a theorem prover; and
finally, the properties of interest are checked over the abstract model. In [RSS95], the
first stage is done manually while in more recent works [GS97,GHJ01,DDP99], this
stage is done automatically.

We illustrate the process of deriving an abstract model from an infinite state concrete
model in PVS by an example. Figure 1 depicts a transition system modeling an infinite
integer counter that initially starts with −4 and is incremented by one at each step.

c = 0 c = 1c = −3 c = −2 c = −1c = −4 · · ·

Fig. 1. Transition system for an integer counter

The PVS specification of the above transition system is given in Figure 2.
The specification begins with the declaration of a PVS theory. In the theory, a record

type state with an integer variable c has been declared. The predicate init(s)

2

counter: THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -4

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]
END counter

Fig. 2. PVS specification of the integer counter.

(1) c < 0 ⇒ AF (c ≥ 0) If c is negative, then on all paths c will eventually be positive
(2) c < 0 ⇒ EF (c ≥ 0) If c is negative, then on some paths c will eventually be positive
(3) c ≥ 0 ⇒ AG(c ≥ 0) If c is positive, then on all paths c will always be positive
(4) c ≥ 0 ⇒ EG(c ≥ 0) If c is positive, then on some paths c will always be positive

Table 1. Properties of interest

declared in the theory is true if the value of c is equal to −4 in state s, that is, init(s)
holds if s is the initial state. Note that in PVS, a predicate is simply a function with a
boolean return value. To create a transition system, we also need to specify its transition
relation: given a particular state, we should specify its possible successor states. In PVS,
a transition relation is typically expressed as binary predicate next(s0,s1) that is
true if and only if s1 is a successor of s0. In our example, s1 is the successor of s0 if
and only if the value of c in s1 is one unit larger than that in s0.

The properties of interest are shown in Table 1. One may think that it would be
better if we specified the above properties in LTL rather than CTL because of the fact
that the model is not branching. However, as we shall see later, the abstract model is
branching; therefore, it makes perfect sense to use CTL.

The PVS encoding of the above CTL properties is shown in Figure 3.

pos(s): bool = c(s) >= 0
neg(s): bool = c(s) < 0
prop1: theorem neg(s) implies AF(next, pos)(s)
prop2: theorem neg(s) implies EF(next, pos)(s)
prop3: theorem pos(s) implies AG(next, pos)(s)
prop4: theorem pos(s) implies EG(next, pos)(s)

Fig. 3. PVS encoding of the properties of interest.

3

In PVS, a µ-calculus property is implemented as a function that, when given a tran-
sition relation (e.g. next(s0, s1)) and an assertion over states (e.g. pos(s) or neg(s)),
computes the fixpoints. The higher-order specification language of PVS allows defining
µ-calculus theories parametric in a state type and a given next-state relation over this
state type. Note that all CTL operators can be defined in µ-calculus.

Obviously, the model shown in Figure 1 is not model-checkable because it is infi-
nite. Thus, we need to construct an abstract model.

A popular abstraction technique for infinite models is predicate abstraction [GS97],
also known as boolean abstraction. In predicate abstraction, each abstract state corre-
sponds to an n-ary vector of truth values of predicates Φ = {ϕ1, ϕ2, · · · , ϕn}. Each
predicate is typically a first order quantifier-free formula over the variables of the con-
crete model. By definition, a first-order formula ϕ is quantifier-free if every variable in
ϕ is free, i.e. there is no quantifier in ϕ. In such a formula, all variables are implicitly
quantified by a universal quantifier. The reason that we restrict the predicates to being
quantifier-free is that the quantifier-free fragment of first order logic is decidable and
therefore, there are fully automated decision procedures for it.

An abstraction framework is systematically defined by a pair of functions 〈α, γ〉
that are Galois connected [CC77]. The function γ, called the concretization function,
associates with every abstract state the set of concrete states that it represents; and the
function α, called the abstraction function, associates with every set of concrete states
a corresponding set of abstract states. In predicate abstraction, 〈α, γ〉 and the abstract
transition relation are computed as follows:

Computing γ and α: Let {ϕ1, . . . , ϕn} be a set of abstraction predicates, and let b1, . . . , bn
be the corresponding abstract boolean variables, where each abstract variable bi

represents all concrete states satisfying the predicate ϕi. Notice that each abstract
state can be represented as a formula f(b1, . . . , bn). The set of concrete states rep-
resented by an abstract state f(b1, . . . , bn) is computed as follows:

γ(f(b1, . . . , bn)) = f(ϕ1/b1, . . . , ϕn/bn)

The formula f(ϕ1/b1, . . . , ϕn/bn) is a boolean combination of predicatesϕ1, . . . , ϕn

that identifies a set of concrete states.
The abstraction function α takes a predicate ψ and returns a conjunction of abstract
states corresponding to ψ:

α(ψ) =
∧

{f(b1, . . . , bn) | ψ ⇒ γ(f(b1, . . . , bn))}

Computing the abstract transition relation: In [GS97], the abstract transition rela-
tion is an over-approximation of the concrete transition relation. In an over-approximation
abstraction, the existence of a transition between two concrete states results in a
transition between their corresponding abstract states. This ensures that there is a
simulation relation between the abstract and the concrete models [Mil71].

In our example, we choose ϕ1(s) = (c(s) < 0) and ϕ2(s) = (c(s) ≥ 0) as the
abstraction predicates. The resulting over-approximation abstract model is shown in
Figure 4 and its PVS specification is shown in Figure 5.

4

c < 0 c ≥ 0

a0 a1

Fig. 4. Over-approximation abstraction of the integer counter.

a_state: TYPE = [# b1: bool, b2: bool #]

as, as0, as1 : VAR a_state

a_init(as): bool = b1(as) AND Not b2(as)

a_may_next(as0,as1): bool =
(
(as1 = as0) OR
((b1(as0) AND Not b2(as0)) AND as1 = as0
WITH [b1 := false, b2 := true])

)

apos(as): bool = Not b1(as) AND b2(as)
aneg(as): bool = b1(as) AND Not b2(as)

a_may_prop1: THEOREM aneg(as) IMPLIES AF(a_may_next, apos)(as)
a_may_prop2: THEOREM aneg(as) IMPLIES EF(a_may_next, apos)(as)
a_may_prop3: THEOREM apos(as) IMPLIES AG(a_may_next, apos)(as)
a_may_prop4: THEOREM apos(as) IMPLIES EG(a_may_next, apos)(as)

Fig. 5. PVS specification of the counter’s over-approximation abstraction

We now explain how to verify the soundness of this abstraction using the PVS the-
orem prover. We define the abstraction function α. For abstraction predicates ϕ1(s) =
c(s) < 0 and ϕ2(s) = c(s) ≥ 0, the function α is as follows:

α(ϕ1(s)) = b1(as) ∧ ¬b2(as)
α(ϕ2(s)) = ¬b1(as) ∧ b2(as)

where s is a concrete state and as is an abstract state.
We prove that α preserves the initial state and the concrete transition relation. More

precisely, we prove that when there is a transition between two concrete states, there
should be a transition between their corresponding abstract states. These constraints on
the abstraction function can be expressed by the PVS theorems shown in Figure 6.

5

%% Definition of the absraction function
abst(s): a_state =

(
IF (c(s) < 0) THEN (# b1 := true, b2 := false #)
ELSE (#b1 := false, b2 := true #)
ENDIF

)

%% The abstraction function preserves
%% the initial state.
init_simulation: THEOREM

init(s) IMPLIES a_init(abst(s))

%% The abstraction function preserves
%% the concrete transition relation.
may_next_simulation: THEOREM

next(s0, s1) IMPLIES a_may_next(abst(s0), abst(s1))

Fig. 6. Soundness constraints on the abstraction function

It is worth pointing out that the soundness criteria (i.e. init simulation and
may next simulation) were proven by PVS’s (grind) rule without need for
human guidance.

The final step is model-checking the abstract model. This can be done by the PVS
(model-check) proof rule. (model-check) translates a given CTL property into
a propositional µ-calculus formula. This propositional µ-calculus formula will then be
fed to PVS’s built-in µ-calculus model-checker. At the time of this writing, PVS’s µ-
calculus model-checker is in early stages of development and does not return any useful
feedback (e.g. counter-examples) for the properties that do not hold.

Since the abstraction is an over-approximation, it is conclusive only for the universal
properties that evaluate to true. Among the properties in Table 1, only the third one is
conclusive over the abstract model (see Table 2).

(1) AF (c ≥ 0) Inconclusive
(2) EF (c ≥ 0) Inconclusive
(3) c ≥ 0 ⇒ AG(c ≥ 0) true
(4) c ≥ 0 ⇒ EG(c ≥ 0) Inconclusive

Table 2. Results of model-checking the over-approximation abstraction.

So far, our focus has been on demonstrating how a theorem prover can be used for
verifying the soundness of a manually constructed abstraction. We now turn our atten-
tion to how a theorem prover can facilitate automating the construction of abstractions.

6

In [SS99], a conservative abstraction scheme has been implemented as a proof rule
in PVS. There, formulae over the set of concrete state variables are abstracted so as
to yield formulae over the set of abstract state variables. The approach applies predi-
cate abstraction to all assertions and the transition relation. Below, we briefly explain
the approach in [SS99]; however, we will not base our work on their approach primar-
ily because the first order formula that the approach yields for computing the under-
approximation transition relation is not quantifier-free and hence, there is no guarantee
that it can be automatically verified.

Assertion Abstraction
[SS99] defines both over- and under-approximation abstraction for assertions. For ev-
ery assertion p(s) with s being a concrete variable, the over-approximation abstraction
function α+(p(s)) can be computed as follows:

α+(p(s)) =
∧

{f(b1, . . . , bn) | p(s) ⇒ γ(f(b1, . . . , bn))}

As an example, suppose ϕ1(s) = c(s) < 0 and ϕ2(s) = c(s) ≥ 0 are the abstrac-
tion predicates and b1 and b2 are the corresponding abstract boolean variables. For an
assertion p(s) = s ≤ 0, we have: α+(p(s)) = b1 ∨ b2. This is because p(s) implies
γ(b1 ∨ b2) = (s < 0) ∨ (s ≥ 0).

Dually, for every assertion p(s), the under-approximation abstraction functionα−(p(s))
can be computed as follows:

α−(p(s)) =
∨

{f(b1, . . . , bn) | γ(f(b1, . . . , bn)) ⇒ p(s)}

Transition Relation Abstraction
In PVS, transitions are expressed as predicates over pairs of concrete states. Let next(s0, s1)
be the transition relation predicate for the concrete model. There is an over-approximation
transition between two abstract states f(b1, . . . , bn) and g(b1, . . . , bn) if and only if:

(

∃s0 ∈ γ(f(b1, . . . , bn))
)

∧
(

∃s1 ∈ γ(g(b1, . . . , bn))
)

∧ next(s0, s1)

However, the above formula is not quantifier-free and hence cannot be proved automat-
ically by (grind). In order to make the over-approximation formula quantifier-free,
we rewrite it as follows:

∀s0, s1 ·
(

s0 ∈ γ(f(b1, . . . , bn)
)

∧ next(s0, s1) =⇒ s0 ∈ γ(ψ) (F1)

where ψ is the disjunction of those abstract states gi(b1, . . . , bn) for which the following
property holds:

(

∃s0 ∈ γ(f(b1, . . . , bn))
)

∧
(

∃s1 ∈ γ(gi(b1, . . . , bn))
)

∧ next(s0, s1).
Here, we do not elaborate the details of the algorithm for computing ψ. The interested
reader can consult [SS99] for the details.

Now, (F1) contains only universal quantifiers and hence, can be written as a quantifier-
free first-order formula.

7

As an example, suppose ϕ1(s) = c(s) < 0 and ϕ2(s) = c(s) ≥ 0 are the abstrac-
tion predicates and b1 and b2 are the corresponding abstract boolean variables. Suppose
the concrete transition is specified by the following PVS predicate:

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

For the abstract state b1 ∧ ¬b2, the minimal disjunction making (F1) a valid formula is
ψ = (b1 ∧¬b2)∨ (¬b1 ∧ b2). Therefore, the abstract state b1 ∧¬b2 has two successors,
namely b1 ∧ ¬b2 and b1 ∧ ¬b2, in the over-approximation abstraction.

The PVS abstraction algorithm is implemented as a proof rule (abstract-and-
mc). This proof rule takes the abstraction predicates as parameter and calls the built-
in model-checker to verify the temporal properties expressed by PVS theorems. The
(abstract-and-mc) proof rule can be used as follows to automatically compute
the abstraction in Figure 4 and verify the properties of interest:

(abstract-and-mc ("lambda(s):c(s) >= 0" "lambda(s):c(s) < 0"))

Since the resulting abstraction is an over-approximation, we obtain the same results
as those shown in Table 2.

Unfortunately, [SS99] does not discuss under-approximation abstraction for tran-
sition relations. To address this shortcoming, we attempted to find a quantifier-free
formula that describes an under-approximation transition relation, but we were not
successful. This was due an structural difference between the formulae for over- and
under-approximation: the formula corresponding to the over-approximation abstrac-
tion has two existential quantifiers whereas the formula corresponding to the under-
approximation abstraction, has one universal and one existential quantifier.

3 Automatic Generation of Mixed (3-Valued) Abstractions

In this section, we review [GHJ01]’s approach to automating the construction of over-
and under- approximation abstractions. As mentioned earlier, over-approximation ab-
straction is conclusive only for the universal properties that hold positively in the ab-
stract model. In order to verify existential properties, we have to build an under-approximation
abstraction. Under-approximation abstraction preserves existential properties that hold
positively in the abstract model. Figure 7 shows the under-approximation abstraction of
the integer counter.

c < 0 c ≥ 0

a0 a1

Fig. 7. The under-approximation abstraction of the integer counter.

8

In most cases, neither over-approximation nor under-approximation is interesting to
us individually. This is because we cannot reason about properties with both universal
and existential operators in either type of abstraction.

The abstract model resulting from the combination of over- and under-approximation
models can be seen as a 3-valued (or a mixed) model [HJS01]: a transition between
two abstract states is assigned the value true if the transition exists in both over- and
under-approximations; maybe if it exists in the over-approximation but not in the under-
approximation; and false otherwise. Figure 8 shows a 3-valued abstraction of the integer
counter.

c < 0 c ≥ 0

M >

M

a0 a1

Fig. 8. 3-valued abstraction of the integer counter.

The automatic construction of abstract models as given in [GS97,DDP99] only dis-
cusses the generation of over-approximation abstraction. [GHJ01] extends this so as to
take into account the generation of under-approximation abstraction and gives a frame-
work for 3-valued abstraction.

Although [GHJ01] does not provide an implementation, its proposed algorithm is
substantially similar to that given in [DDP99]. This makes it possible to use the imple-
mentation provided in [DDP99] as a basis for generating 3-valued transition relation
abstractions. In addition to 3-valued transition relation abstraction, [GHJ01] discusses
the generation of abstractions based on the Cartesian abstraction technique [BPR01].
In Cartesian abstraction, predicates can be true, false, or maybe. This is in contrast to
predicate abstraction where predicates can be either true or false. Since the proposi-
tions in our examples are 2-valued, we will only talk about predicate abstraction in this
report.

The key observation for describing an under-approximation transition relation by a
quantifier-free formula is that a transition relation can be written as a (quantifier-free)
pre-image function [GS97]: let {ϕ1, . . . , ϕn} be a set of abstraction predicates, and
let b1, . . . , bn be the corresponding abstract boolean variables. As before, each abstract
state is represented as a formula f(b1, . . . , bn).

Definition 1 For any predicate ψ = γ(f(b1, . . . , bn)), post and pre functions are
defined as follows:

post(ψ) , {s′ ∈ S | ∃s ∈ S ·R(s, s′) ∧ s |= ψ}

pre(ψ) , {s ∈ S | ∀s′ ∈ S ·R(s, s′) ⇒ s′ |= ψ}

9

post(ψ) is the set of successors of those states that satisfy ψ; and pre(ψ) is the
set of the states all of whose successors satisfy ψ. For a program in guarded command
form, if ψ is quantifier-free then pre(ψ) can be written in quantifier-free form, as well.

The following theorem from [GHJ01] shows how the computation of over- and
under-approximation transition relations can be expressed in terms of satisfiability prob-
lems:

Theorem 1 Let f(b1, . . . , bn) and g(b1, . . . , bn) be abstract states. And let
ψ1 = γ(f(b1, . . . , bn)) and ψ2 = γ(g(b1, . . . , bn)).

1. There is an over-approximation transition from f(b1, . . . , bn) to g(b1, . . . , bn) iff
the formula ψ1 ∧ ¬pre(¬ψ2) is satisfiable.

2. There is an under-approximation transition from f(b1, . . . , bn) to g(b1, . . . , bn) iff
the formula ψ1 ∧ pre(¬ψ2) is unsatisfiable.

Proof.

over-approximation transitions:
∃s · ψ1(s) ∧ s ∈ ¬pre(¬ψ2)

⇒ (by Definition of pre)
∃s · ψ1(s) ∧ ∃s′ ·R(s, s′) ∧ s′ 2 ¬ψ2

⇒ (by Definition of negation)
∃s · ψ1(s) ∧ ∃s′ ·R(s, s′) ∧ ψ2(s

′)
⇒ (by the Assumptions that ψ1 = γ(f(b1, . . . , bn)) and ψ2 = γ(g(b1, . . . , bn)))

∃s, s′ · s ∈ γ(f(b1, . . . , bn)) ∧ s′ ∈ γ(g(b1, . . . , bn)) ∧R(s, s′)

under-approximation transitions:
∀s · ψ1(s) ⇒ s /∈ pre(¬ψ2)

⇒ (by Definition of pre)
∀s · ψ1(s) ⇒ ∃s′ ·R(s, s′) ∧ s′ 2 ¬ψ2

⇒ (by Definition of negation)
∀s · ψ1(s) ⇒ ∃s′ ·R(s, s′) ∧ ψ2(s

′)
⇒ (by the Assumptions that ψ1 = γ(f(b1, . . . , bn)) and ψ2 = γ(g(b1, . . . , bn)))

∀s · s ∈ γ(f(b1, . . . , bn)) ⇒ ∃s′ · s′ ∈ γ(g(b1, . . . , bn)) ∧R(s, s′)

In [DDP99], the implementation of over-approximation computation uses the CMU
BDD library and SVC [DDP99] which is an efficient decision procedure for quantifier-
free first order logic. Given a predicate ψ represented as a BDD, a pair of BDDs ψover

and ψunder is constructed. The two BDDs respectively characterize the set of over-
and under-approximation successors of ψ in the abstract model. To construct ψover and
ψunder for a predicateψ, there may be at most 2n calls to the theorem prover. Intuitively,
given n predicates ϕ1, . . . , ϕn, the number of possible boolean combinations (i.e. the
number of all possible abstract states) is 2n. To decide whether there is an over- or
under-approximation transition between two abstract states, one call to the theorem
prover should be made. Therefore, we may need 2n calls to the theorem prover in order
to determine the set of all successors of a single abstract state.

10

Based on Theorem 1, it is easy to see that the questions to be asked from the the-
orem prover follow certain patterns: for the over-approximation, the pattern is ψ1 ∧
¬pre(¬ψ2), and for the under-approximation, the pattern is ψ1 ∧ ¬pre(¬ψ2). Ob-
viously, these questions can be automatically produced in a straight-forward fashion
using a tool. In this report, however, we will not be using any tools for producing these
questions.

mixedcounter:THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -4

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

b1(s): bool = c(s) < 0
b2(s): bool = c(s) >= 0

preb1(s): bool = c(s) + 1 < 0
preb2(s): bool = c(s) + 1 >= 0

%% over-approximation transitions
%% (1) a0 = b1 /\ ˜b2 --> a0 = b1 /\ ˜b2
a0a0may: THEOREM Not ((b1(s) AND Not b2(s)) AND Not (preb2(s))) %SAT
%% (2) a0 = b1 /\ ˜b2 --> a1 = ˜b1 /\ b2
a0a1may: THEOREM Not ((b1(s) AND Not b2(s)) AND Not (preb1(s))) %SAT
%% (3) a1 = ˜b1 /\ b2 --> a1 = ˜b1 /\ b2
a1a1may: THEOREM NOT ((Not b1(s) AND b2(s)) AND Not (preb1(s))) %SAT
%% (4) a1 = ˜b1 /\ b2 --> a0 = b1 /\ ˜b2
a1a0may: THEOREM NOT ((Not b1(s) AND b2(s)) AND Not (preb2(s))) %VALID

%% under-approximation transitions
%% (5) a0 = b1 /\ ˜b2 --> a0 = b1 /\ ˜b2
a0a0must: THEOREM Not ((b1(s) AND Not b2(s)) AND (preb2(s))) %SAT
%% (6) a0 = b1 /\ ˜b2 --> a1 = ˜b1 /\ b2
a0a1must: THEOREM Not ((b1(s) AND Not b2(s)) AND (preb1(s))) %SAT
%% (7) a1 = ˜b1 /\ b2 --> a1 = ˜b1 /\ b2
a1a1must: THEOREM Not ((Not b1(s) AND b2(s)) AND (preb1(s))) %VALID
%% (8) a1 = ˜b1 /\ b2 --> a0 = b1 /\ ˜b2
a1a0must: THEOREM Not ((Not b1(s) AND b2(s)) AND (preb2(s))) %SAT

END mixedcounter

Fig. 9. Constraints for over- and under-approximation abstractions

11

Figure 9 shows a PVS program that computes the over- and under-approximation
abstractions of the integer counter. In the figure, the abstraction predicates are b1 and
b2. The corresponding pre-image functions preb1 and preb2 respectively give the set of
states all of whose successors satisfy b1 and b2. Since b1 and b2 are mutually exclusive,
we have only two abstract states: a0 = b1 ∧¬b2 and a1 = ¬b1 ∧ b2. The abstract states
corresponding to b1 ∧ b2 and ¬b1 ∧¬b2 cannot exist. The admissibility of each abstract
state can be checked by a call to the theorem prover. This may require a total of 2n calls
to the theorem prover for all states.

We ask the questions aiajmust (i, j = 0, 1) for the under-approximation transition
relation and the questions aiajmay (i, j = 0, 1) for the over-approximation transition
relation. There are four questions in each group, so computing a mixed abstraction
transition relation for our integer counter requires a total of eight calls to the theorem
prover.

Given a predicate p(x1, . . . , xn), checking the unsatisfiability of p(x1, . . . , xn) (i.e.
proving ¬∃x1, . . . , xn ·p(x1, . . . , xn)) is equivalent to checking the validity of the nega-
tion of p(x1, . . . , xn), (i.e. proving ∀x1, . . . , xn · ¬p(x1, . . . , xn)). Since the negated
formula is in quantifier-free form, (grind) can automatically prove it if it is indeed
valid. For this reason, in Figure 9, we check the negation of the questions in Theorem 1:

1. There is an over-approximation transition from ψ1 to ψ2 iff the formula ¬(ψ1 ∧
¬pre(¬ψ2)) is not valid.

2. There is an under-approximation transition from ψ1 to ψ2 iff the formula ¬(ψ1 ∧
pre(¬ψ2)) is valid.

The PVS code for the mixed abstraction of the integer counter is shown in Figure 10.
Since the properties of interest (Table 1) are negation-free, if a universal property is true
(resp. false) in the over- (reps. under-) approximation abstraction, it will be true (resp.
false) in the original model. Dually, if an existential property is true (reps. false) in the
under- (reps. over-) approximation abstraction, it will be true (resp. false) in the original
model [HJS01]. Table 3 shows the results of model-checking the mixed abstraction.
As expected, the result is more conclusive compared to the case where only the over-
approximation abstraction was considered.

(1) c < 0 ⇒ AF (c ≥ 0) Inconclusive
(2) c < 0 ⇒ EF (c ≥ 0) Inconclusive
(3) c ≥ 0 ⇒ AG(c ≥ 0) true
(4) c ≥ 0 ⇒ EG(c ≥ 0) true

Table 3. Results of model-checking the mixed abstraction.

12

a_state: TYPE = [# b1: bool, b2: bool #]

as, as0, as1 : VAR a_state

a_init(as): bool = b1(as) AND Not b2(as)

a_may_next(as0,as1): bool =
(
(as1 = as0) OR
((b1(as0) AND Not b2(as0)) AND as1 = as0

WITH [b1 := false, b2 := true])
)

a_must_next(as0, as1): bool =
(
((Not b1(as0) AND b2(as0)) AND as1 = as0

WITH [b1 := false, b2 := true])
)

apos(as): bool = Not b1(as) AND b2(as)
aneg(as): bool = b1(as) AND Not b2(as)

%over-approximation transitions
a_may_prop1: THEOREM aneg(as) IMPLIES AF(a_may_next, apos)(as) % false
a_may_prop2: THEOREM aneg(as) IMPLIES EF(a_may_next, apos)(as) % true
a_may_prop3: THEOREM apos(as) IMPLIES AG(a_may_next, apos)(as) % true
a_may_prop4: THEOREM apos(as) IMPLIES EG(a_may_next, apos)(as) % true

%under approximation transitions
a_must_prop1: THEOREM aneg(as) IMPLIES AF(a_must_next, apos)(as) % true
a_must_prop2: THEOREM aneg(as) IMPLIES EF(a_must_next, apos)(as) % false
a_must_prop3: THEOREM apos(as) IMPLIES AG(a_must_next, apos)(as) % true
a_must_prop4: THEOREM apos(as) IMPLIES EG(a_must_next, apos)(as) % true

Fig. 10. PVS specification for mixed abstraction of our integer counter.

13

4 Optimizations to Mixed Abstraction

[NGC03] proposes some optimization techniques for sharpening 3-valued abstractions
by weakening the relation between concrete and abstract models. The most useful op-
timization proposed there is perhaps the employment of a distance-bounded reachability
relation, rather than an immediate-successor relation, for computing under-approximation
transition relations. Intuitively speaking, using distance-bounded reachability yields
more realistic transitions in the under-approximation abstraction by reducing the gap
between the over- and under-approximation abstractions. This makes the result of ab-
straction more conclusive.

It is well-known that reachability is not expressible in first order logic (cf. e.g. [Lib03]).
We can, of course, use first order logic extended with fixpoint operators to describe
reachability but this will not be of much help in the case of our integer counter because
the transition system corresponding to the counter is infinite. Furthermore, if we were
able to check the fixpoint operators on the concrete model, then there would be no need
to generate the abstract model.

Instead of computing reachability, we compute distance-bounded reachability. That
is, given a state s and an integer k, we find those states that are reachable from s by
taking at most k transitions. By convention, a path of length zero is an acceptable path;
therefore, every state will have a self-loop in the abstract model. Some of these self-
loops may be spurious and can affect the preservation of EG and AF properties from
the abstract to the concrete model [NGC03]. Later in this section, we will provide some
heuristics to reduce the number of spurious paths in the abstract model.

The following theorem shows how the computation of a k-bounded under-approximation
transition relation can be expressed in terms of satisfiability:

Theorem 2 Let k be a fixed number, let f(b1, . . . , bn) and g(b1, . . . , bn) be abstract
states, and let ψ1 = γ(f(b1, . . . , bn)) and ψ2 = γ(g(b1, . . . , bn)).

– There is an under-approximation transition from f(b1, . . . , bn) to g(b1, . . . , bn) iff
the following formula is unsatisfiable

∧

0≤i≤k ψ1 ∧ Φi(ψ1, ψ2) (F2)

where
Φ0(ψ1, ψ2) = ¬ψ2

Φ1(ψ1, ψ2) = pre(¬ψ2)
Φi(ψ1, ψ2) = pre(¬ψ1 ∨ Φi−1(ψ1, ψ2)) for 1 < i ≤ k

Proof. We prove that the formula (F2) is unsatisfiable if and only if for every state s0

satisfying ψ1, there exists some path π = s0 . . . si with length i ≤ k such that sj |= ψ1

and si |= ψ2 for all 1 ≤ j < i. The argument can be proved by induction on the length
of the path. Clearly, the formula (F2) is unsatisfiable iff every state s0 satisfying ψ1 fails
to satisfy Φi(ψ1, ψ2) for some 0 ≤ i ≤ k. We show that for any state s0 that does not
satisfy Φi(ψ1, ψ2), there exists a path π = s0 . . . si such that sj |= ψ1 and si |= ψ2 for
all 1 ≤ j < i.

14

∀s0 · s0 |= ψ1 ⇒ s0 |= ¬Φi+1(ψ1, ψ2)
⇔ (by the Definition of Φi+1(ψ1, ψ2))

∀s0 · s0 |= ψ1 ⇒ ∃s1 ·R(s0, s1) ∧ s1 |= ψ1 ∧ s1 |= ¬Φi(ψ1, ψ2)
⇔ (by the Inductive Hypothesis)

∀s0 · s0 |= ψ1 ⇒ ∃s1, s2, . . . , si+1 ·R(sj−1, sj) ∧ sj−1 |= ψ1 ∧ si+1 |= ψ2 for 1 ≤ j ≤ i+ 1
⇔ ∀s0 · s0 |= ψ1 ⇒ there exists a path π = s0 . . . si+1 such that sj |= ψ1 ∧ si+1 |= ψ2 for 1 ≤ j ≤ i

c < 0 c ≥ 0

>>

>
a0 a1

Fig. 11. The optimized abstraction of the integer counter.

Figure 11 shows the abstraction of the integer counter generated according to The-
orem 2 with k = 4. As shown in this figure, the transition from a0 to a1 is an under-
approximation transition because it is possible to reach to a state s’ with c(s’) >=
0 from every state s with c(s) < 0 by taking four transitions (see Figure 1). Further-
more, there is a self-loop transition for each a0 and a1 in the under-approximation.

Figure 12 shows the PVS code snippet for computing the under-approximation tran-
sition relation of the abstract model in Figure 11.

As in the previous section, we check the validity of the negation of the formulae
in Theorem 2. Since a0a0must opt, a0a1must opt, and a1a1must opt are valid,
then in the under-approximation abstraction there are transitions from a0 to a0, a0 to a1

and a1 to a1.
The abstract models computed based on Theorem 2 are sound and complete only for

existential CTL−X properties1 with finite witnesses and universal CTL−X properties
with infinite counter-examples [NGC03]. More precisely, if an EG property is true, or
if an AU or AF property is false in the concrete model, no conclusions can be made as
to what the value of that property is in the concrete model. However, if an EG property
evaluates to false, or if an AU or AF property evaluates to true in the concrete model,
the property has the same value when evaluated in the concrete model.

Table 4 shows the results of checking the properties of interest over the optimized
abstraction (Figure 11). The second property, i.e. neg ⇒ EFpos, evaluates to true in
the abstraction. Since the property has a finite witness, the abstraction is conclusive
for this property regardless of whether it evaluates to true or false [NGC03]. However,
the first property, i.e. neg ⇒ AFpos, evaluates to false in the abstraction, making it
inconclusive, because AF properties have infinite counter-examples.

1 CTL
−X is the set of CTL properties that do not contain next operators.

15

b1(s): bool = c(s) < 0
b2(s): bool = c(s) >= 0
b_init(s): bool = c(s) >= -4
f(s): state = (# c := c(s) + 1 #)

%(1) a0 = b1 --> a0 = b1 VALID
a0a0must_opt: THEOREM b_init(s) IMPLIES

Not (
(b1(s) AND Not b1(s)) AND
(b1(s) AND b2(f(s))) AND
(b1(s) AND b2(f(s)) OR b2(f(f(s))))) AND
(b1(s) AND b2(f(s)) OR b2(f(f(s))) OR b2(f(f(s)))))

)
%(2) a0 = b1 --> a1 = b2 VALID
a0a1must_opt: THEOREM b_init(s) IMPLIES

Not (
(b1(s) AND Not b2(s)) AND
(b1(s) AND b1(f(s))) AND
(b1(s) AND (b2(f(s)) OR b1(f(f(s))))) AND
(b1(s) AND (b2(f(s)) OR b2(f(f(s))) OR

b1(f(f(f(s))))))) AND
(b1(s) AND (b2(f(s)) OR b2(f(f(s))) OR

b2(f(f(f(s)))) OR b1(f(f(f(f(s)))))))
)

%(3) a1 = b2 --> a1 = b2 VALID
a1a1must: THEOREM b_init(s) IMPLIES

Not (
(b2(s) AND Not b2(s)) AND
(b2(s) AND b1(f(s))) AND
(b2(s) AND (b1(f(s)) OR b1(f(f(s))))) AND
(b2(s) AND (b1(f(s)) OR b1(f(f(s))) OR

b1(f(f(f(s))))))) AND
(b2(s) AND (b1(f(s)) OR b1(f(f(s))) OR

b1(f(f(f(s)))) OR b1(f(f(f(f(s)))))))
)

%(4) a1 = b2 --> a0 = b1 SAT
a1a0must: THEOREM b_init(s) IMPLIES

Not (
(b2(s) AND Not (Not b2(s) AND b1(s)) AND
(b2(s) AND b2(f(s))) AND
(b2(s) AND (b1(f(s)) OR b2(f(f(s))))) AND
(b2(s) AND (b1(f(s)) OR b1(f(f(s))) OR

b2(f(f(f(s))))))) AND
(b2(s) AND (b1(f(s)) OR b1(f(f(s))) OR

b1(f(f(f(s)))) OR b2(f(f(f(f(s)))))))
)

Fig. 12. Constraints on the optimized abstraction

16

(1) c < 0 ⇒ AF (c ≥ 0) Inconclusive
(2) c < 0 ⇒ EF (c ≥ 0) true
(3) c ≥ 0 ⇒ AG(c ≥ 0) true
(4) c ≥ 0 ⇒ EG(c ≥ 0) true

Table 4. Results of model-checking the optimized abstraction.

The reason why the result of abstraction is not conclusive forEG properties holding
in the abstraction is that there may be infinite paths made entirely of under-approximation
transitions in the abstract model. Such paths do not necessarily have corresponding infi-
nite paths in the concrete model. In other words, weakening the condition for generating
under-approximation transitions may cause spurious infinite paths. Below, we propose
two ways to improve the result of abstraction by removing some of the spurious paths:

– Revising Condition 2 of Theorem 2 as follows:

“There is an under-approximation transition from f(b1, . . . , bn) to
g(b1, . . . , bn) iff there is an over-approximation transition (Theorem 1 Part
(1)) from f(b1, . . . , bn) to g(b1, . . . , bn) and

∧

0≤i≤k ψ1 ∧ Φi(ψ1, ψ2) is
unsatisfiable.”

Notice that, by Theorem 2, any state in an optimized under-approximation abstrac-
tion has a self-loop. The revised version of Condition 2 excludes some of the spuri-
ous self-loops from the under-approximation transition relation by requiring that a
transition not present in the over-approximation should not be present in the under-
approximation, either. Clearly, any such self-loop is spurious.

– Adding fairness constraints:
It is known that fairness constraints can be employed to exclude spurious behaviors.
Here, we describe how appropriate fairness constraints can sharpen the results of
abstraction.
Whenever an EG property holds in the abstract model, the model-checker returns
an infinite under-approximation path πα = a0 . . . a`〈a`+1 . . . an〉

ω as a witness for
the property. Each ai (0 ≤ i ≤ n) is an abstract state and hence corresponds to a
boolean function fi(b1, . . . , bn). Let ψi = γ(fi(b1, . . . , bn)) for 0 ≤ i ≤ n. The
concrete path that corresponds to πα is πc = ψ1, . . . , ψ`, 〈ψ`+1, . . . , ψn〉

ω . Since
the abstraction introduced in [NGC03] preserves the finite paths of the abstract
model in the concrete one, we know that the finite path ψ1, . . . , ψ`, ψ`+1, . . . , ψn

is not spurious. However, we do not know if ψ`+1, . . . , ψn indeed occurs an infinite
number of times in the concrete model. If ψ`+1, . . . , ψn occurs only a finite num-
ber of times in the concrete model, then πα is spurious. In this case, the fairness
constraint c that excludes πα is c = ¬(a`+1 ∧ . . . ∧ an).
We cannot use first order PVS theorems for showing that ψ`+1, . . . , ψn occurs a
finite number of times because doing so would require infinite conjunctions and
this is not expressible in first order logic. What we can do is to fix an infinity
threshold w and show that ψ`+1, . . . , ψn occurs no more than w times. Obviously,

17

this cannot distinguish between the case where ψ`+1, . . . , ψn occurs an infinite
number of times and the case where ψ`+1, . . . , ψn occurs only a finite number of
times but more than w times.

Theorem 3 Let τ = ψ`+1, . . . , ψn be the repeating suffix of a path πc = ψ1 . . . ψl〈ψl+1 . . . ψn〉
ω ,

and letw be a fixed number. The suffix does not occur more thanw times in the con-
crete model iff the following formula is unsatisfiable:

ψ` ∧ ¬Ψw(ψ`+1, . . . , ψn)

where

Ψ0(ψ`+1, . . . , ψn) = pre(¬ψ`+1 ∨ pre(¬ψ`+2 ∨ . . . ∨ pre(¬ψn) · · ·)
Ψw(ψ`+1, . . . , ψn) = pre(¬ψ`+1 ∨ pre(¬ψ`+2 ∨ . . . ∨ Ψw−1(ψ`+1, . . . , ψn) · · ·)

Proof. By induction on the number of iterations w, we can prove that the formula
ψ1∧¬Ψw(ψl, . . . , ψn) is unsatisfiable if and only if there is no path s0〈s1 . . . sn−`〉

w

such that si |= ψi for 0 ≤ i ≤ n− `.

Consider the abstract model in Figure 11. Earlier we saw that the property neg ⇒
AFpos is inconclusive in this abstract model. The abstract path that violates this prop-
erty is 〈a0〉

ω . Using the following PVS theorem, we check to see if the concrete transi-
tion corresponding to the self-loop at state a0 can be repeated more than w = 4 times.

% a0 = b1 -> a0 -> a0 -> a0
fairness-check: THEOREM b_init(s) IMPLIES

b2(f(s)) OR
b2(f(f(s))) OR
b2(f(f(f(s)))) OR
b2(f(f(f(f(s)))))

% VALID

As before, we check the negation of the formula in Theorem 3. Since fairness-
check is valid, the abstraction path 〈a0〉

ω is spurious. We check the property neg ⇒
AFpos again. This time we add a fairness constraint to that property:

% fairness: ˜(a0)
fair(as): bool = Not (b1(as) AND Not b2(as))
a_fair_prop1: THEOREM aneg(as) IMPLIES

fairAF(a_may_next, apos)(fair)(as) % true

Table 5 shows the results of checking the properties of interest. As the table shows, all
the four properties are conclusive in the abstract model.

5 Conclusion

We surveyed some of the approaches to automated generation of abstract models and
illustrated the important details of each approach through examples. In addition, we

18

(1) c < 0 ⇒ AF (c ≥ 0) true
(2) c < 0 ⇒ EF (c ≥ 0) true
(3) c ≥ 0 ⇒ AG(c ≥ 0) true
(4) c ≥ 0 ⇒ EG(c ≥ 0) true

Table 5. Results of model-checking the optimized abstraction with fairness.

demonstrated how the optimizations proposed in [NGC03] can be integrated with the
3-valued abstraction framework in [GHJ01] to generate more conclusive abstractions.

We gained hands-on experience with the PVS toolkit and observed the limitations of
its current abstraction framework. One of the biggest limitations, in our view, is that the
concrete transition relation in the PVS abstraction framework is described as a binary
predicate. While computing the over-approximation abstraction transitions is straight-
forward using this encoding, automatic computation of the under-approximation transi-
tion relation seems to be impossible. To remedy this problem, we followed the approach
taken in [GS97,GHJ01] where transition systems are described using a guarded com-
mand specification language.

References

[BPR01] T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model
Checking C Programs”. In Proceedings of 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’01), volume 2031 of
LNCS, pages 268–283, April 2001.

[CC77] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints”. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York, NY.

[CGP00] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
[DDP99] S. Das, D. Dill, and S. Park. “Experience with Predicate Abstraction”. In Computer

Aided Verification, pages 160–171, 1999.
[DGG97] D. Dams, R. Gerth, and O. Grumberg. “Abstract Interpretation of Reactive Systems”.

ACM Transactions on Programming Languages and Systems, 2(19):253–291, 1997.
[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. “Abstraction-based Model Checking using

Modal Transition Systems”. In K.G. Larsen and M. Nielsen, editors, Proceedings of
12th International Conference on Concurrency Theory (CONCUR’01), volume 2154
of LNCS, pages 426–440, Aalborg, Denmark, 2001. Springer.

[GS97] S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS”. In O. Grum-
berg, editor, Proceedings of the 9th International Conference on Computer-Aided Ver-
ification (CAV’97), volume 1254 of LNCS, Haifa, Israel, 1997. Springer.

[HJS01] M. Huth, R. Jagadeesan, and D. A. Schmidt. “Modal Transition Systems: A Foundation
for Three-Valued Program Analysis”. In Proceedings of 10th European Symposium on
Programming (ESOP’01), volume 2028 of LNCS, pages 155–169, 2001.

[Koz83] D Kozen. “Results on the Propositional µ-calculus”. Theoretical Computer Science,
27:334–354, 1983.

19

[Lib03] L. Libkin. Elements of Finite Model Theory. Springer-Verlag, 2003. to appear.
[Mil71] R. Milner. ”An Algebraic Definition of Simulation between Programs”. In Proceedings

of 2nd International Joint Conference on Artificial Intelligence, pages 481–489, 1971.
[NGC03] S. Nejati, A. Gurfinkel, and M. Chechik. “Weaker Relations, Better Abstractions”.

manuscript, 2003.
[ORS92] S. Owre, J. Rushby, and N. Shankar. “PVS: A prototype verification system”. In

Proceedings of the 11th International Conference on Automated Deduction, volume
607 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[RSS95] S. Rajan, N. Shankar, and M. K. Srivas. “An Integration of Model Checking with Au-
tomated Proof Checking”. In P. Wolper, editor, Proceedings of the 7th International
Conference On Computer Aided Verification, volume 939, pages 84–97, Liege, Bel-
gium, 1995. Springer Verlag.

[SS99] H. Saidi and N. Shankar. “Abstract and Model Check While you Prove”. In Proc. of
the 11th Int. Conf. on Computer Aided Verification, pages 443–454, 1999.

A Appendix

A.1 Complete Code for Figure 1

counter:THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -5

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

pos(s): bool = c(s) >= 0
neg(s): bool = c(s) < 0

prop1: THEOREM neg(s) IMPLIES AF(next, pos)(s)
prop2: THEOREM neg(s) IMPLIES EF(next, pos)(s)
prop3: THEOREM pos(s) IMPLIES AG(next, pos)(s)
prop4: THEOREM pos(s) IMPLIES EG(next, pos)(s)

END counter

A.2 Complete Code for Figures 5 and 6

acounter:THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -4

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

pos(s): bool = c(s) >= 0
neg(s): bool = c(s) < 0

prop1: THEOREM neg(s) IMPLIES AF(next, pos)(s)
prop2: THEOREM neg(s) IMPLIES EF(next, pos)(s)
prop3: THEOREM pos(s) IMPLIES AG(next, pos)(s)

20

prop4: THEOREM pos(s) IMPLIES EG(next, pos)(s)

a_state: TYPE = [# b1: bool, b2: bool #]

as, as0, as1 : VAR a_state

a_init(as): bool = b1(as) AND Not b2(as)

a_may_next(as0,as1): bool =
(
(as1 = as0) OR
((b1(as0) AND Not b2(as0)) AND as1 = as0 WITH [b1 := false, b2 := true])

)
a_must_next(as0, as1): bool =

(
((Not b1(as0) AND b2(as0)) AND as1 = as0 WITH [b1 := false, b2 := true])

)

apos(as): bool = Not b1(as) AND b2(as)
aneg(as): bool = b1(as) AND Not b2(as)

abst(s): a_state =
(

IF (c(s) < 0) THEN (# b1 := true, b2 := false #)
ELSE (#b1 := false, b2 := true #)
ENDIF

)

conc(as): state =
(

IF(b1(as) AND NOT b2(as)) THEN (# c := -1 #)
ELSE (# c := 0 #)
ENDIF

)

init_simulation: THEOREM
init(s) IMPLIES a_init(abst(s))

may_next_simulation: THEOREM
next(s0, s1) IMPLIES a_may_next(abst(s0), abst(s1))

must_next_simulation: THEOREM
Not next(s0, s1) IMPLIES Not a_must_next(abst(s0), abst(s1))

%EE
a_may_prop1: THEOREM aneg(as) IMPLIES AF(a_may_next, apos)(as) % wrong
a_may_prop2: THEOREM aneg(as) IMPLIES EF(a_may_next, apos)(as) % correct
a_may_prop3: THEOREM apos(as) IMPLIES AG(a_may_next, apos)(as) % correct
a_may_prop4: THEOREM apos(as) IMPLIES EG(a_may_next, apos)(as) % correct

%AE
a_must_prop1: THEOREM aneg(as) IMPLIES AF(a_must_next, apos)(as) % correct
a_must_prop2: THEOREM aneg(as) IMPLIES EF(a_must_next, apos)(as) % wrong
a_must_prop3: THEOREM apos(as) IMPLIES AG(a_must_next, apos)(as) % correct
a_must_prop4: THEOREM apos(as) IMPLIES EG(a_must_next, apos)(as) % correct

% fairness: ˜(a0)
fair(as): bool = Not (b1(as) AND Not b2(as))
a_fair_prop1: THEOREM aneg(as) IMPLIES fairAF(a_may_next, apos)(fair)(as) % correct

END acounter

21

abscounter:THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -5

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

pos(s): bool = c(s) >= 0
neg(s): bool = c(s) < 0

prop1: THEOREM neg(s) IMPLIES AF(next, pos)(s) %false
prop2: THEOREM neg(s) IMPLIES EF(next, pos)(s) %false
prop3: THEOREM pos(s) IMPLIES AG(next, pos)(s) %true
prop4: THEOREM pos(s) IMPLIES EG(next, pos)(s) %false

END abscounter

%(abstract-and-mc ("lambda(s):c(s) >= 0" "lambda(s):c(s) < 0") (grind))
%(abstract ("lambda(s):c(s) >= 0" "lambda(s):c(s) < 0"))

A.3 Complete Code for Figure 9

mixedcounter:THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -5

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

pos(s): bool = c(s) >= 0
neg(s): bool = c(s) < 0

prop1: THEOREM neg(s) IMPLIES AF(next, pos)(s)
prop2: THEOREM neg(s) IMPLIES EF(next, pos)(s)
prop3: THEOREM pos(s) IMPLIES AG(next, pos)(s)
prop4: THEOREM pos(s) IMPLIES EG(next, pos)(s)

b1(s): bool = c(s) >= 0
b2(s): bool = c(s) < 0

preb1(s): bool = c(s) + 1 >= 0
preb2(s): bool = c(s) + 1 < 0

%a0 = ˜b1 /\ b2 --> a0 = ˜b1 /\ b2
a0a0may: THEOREM ((Not b1(s) AND b2(s)) AND Not (preb1(s))) %SAT
%a0 = ˜b1 /\ b2 --> a1 = b1 /\ ˜b2
a0a1may: THEOREM Not ((Not b1(s) AND b2(s)) AND Not (preb2(s))) %SAT
%a1 = b1 /\ ˜b2 --> a1 = b1 /\ ˜b2
a1a1may: THEOREM NOT ((b1(s) AND Not b2(s)) AND Not (preb2(s))) %SAT
%a1 = b1 /\ ˜b2 --> a0 = ˜b1 /\ b2
a1a0may: THEOREM NOT ((b1(s) AND Not b2(s)) AND Not (preb1(s))) %VALID

%a0 = ˜b1 /\ b2 --> a0 = ˜b1 /\ b2
a0a0must: THEOREM Not ((Not b1(s) AND b2(s)) AND (preb1(s))) %SAT
%a0 = ˜b1 /\ b2 --> a1 = b1 /\ ˜b2
a0a1must: THEOREM Not ((Not b1(s) AND b2(s)) AND (preb2(s))) %SAT

22

%a1 = b1 /\ ˜b2 --> a1 = b1 /\ ˜b2
a1a1must: THEOREM Not ((b1(s) AND Not b2(s)) AND (preb2(s))) %VALID
%a1 = b1 /\ ˜b2 --> a0 = ˜b1 /\ b2
a1a0must: THEOREM Not ((b1(s) AND Not b2(s)) AND (preb1(s))) %SAT

END mixedcounter

A.4 Complete Code for Figure 12

stutcounter:THEORY
BEGIN

state: TYPE = [# c: int #]

s, s0, s1 : VAR state

init(s): bool = c(s) = -4

next(s0,s1): bool = s1 = s0 WITH [c := c(s0) + 1]

pos(s): bool = c(s) >= 0
neg(s): bool = c(s) < 0

prop1: THEOREM neg(s) IMPLIES AF(next, pos)(s)
prop2: THEOREM neg(s) IMPLIES EF(next, pos)(s)
prop3: THEOREM pos(s) IMPLIES AG(next, pos)(s)
prop4: THEOREM pos(s) IMPLIES EG(next, pos)(s)

b1(s): bool = c(s) >= 0
b2(s): bool = c(s) < 0
b_init(s): bool = c(s) > -5

f(s): state = (# c := c(s) + 1 #)

%a0 = ˜b1 /\ b2 --> a0 = ˜b1 /\ b2
a0a0may: THEOREM ((Not b1(s) AND b2(s)) AND Not (b1(f(s)))) %SAT
%a0 = ˜b1 /\ b2 --> a1 = b1 /\ ˜b2
a0a1may: THEOREM Not ((Not b1(s) AND b2(s)) AND Not (b2(f(s)))) %SAT
%a1 = b1 /\ ˜b2 --> a1 = b1 /\ ˜b2
a1a1may: THEOREM NOT ((b1(s) AND Not b2(s)) AND Not (b2(f(s)))) %SAT
%a1 = b1 /\ ˜b2 --> a0 = ˜b1 /\ b2
a1a0may: THEOREM NOT ((b1(s) AND Not b2(s)) AND Not (b1(f(s)))) %VALID

%a0 = ˜b1 /\ b2 --> a0 = ˜b1 /\ b2 VALID
a0a0must: THEOREM b_init(s) IMPLIES

Not (((Not b1(s) AND b2(s)) AND Not (Not b1(s)
AND b2(s))) AND % length zero

((Not b1(s) AND b2(s)) AND b1(f(s))) AND
((Not b1(s) AND b2(s)) AND (b1(f(s)) OR b1(f(f(s))))) AND
((Not b1(s) AND b2(s)) AND (b1(f(s)) OR b1(f(f(s))) OR

b1(f(f(s)))))
)

%a0 = ˜b1 /\ b2 --> a1 = b1 /\ ˜b2 VALID
a0a1must: THEOREM b_init(s) IMPLIES

Not (((Not b1(s) AND b2(s)) AND Not (b1(s) AND Not b2(s)) AND
((Not b1(s) AND b2(s)) AND b2(f(s))) AND
((Not b1(s) AND b2(s)) AND (b1(f(s)) OR b2(f(f(s))))) AND
((Not b1(s) AND b2(s)) AND (b1(f(s)) OR b1(f(f(s))) OR

b2(f(f(f(s))))))) AND
((Not b1(s) AND b2(s)) AND (b1(f(s)) OR b1(f(f(s))) OR

b1(f(f(f(s)))) OR b2(f(f(f(f(s)))))))

23

)

%a1 = b1 /\ ˜b2 --> a1 = b1 /\ ˜b2 VALID
a1a1must: THEOREM b_init(s) IMPLIES

Not (((b1(s) AND Not b2(s)) AND Not (b1(s) AND Not b2(s)) AND
((b1(s) AND Not b2(s)) AND b2(f(s))) AND
((b1(s) AND Not b2(s)) AND (b2(f(s)) OR b2(f(f(s))))) AND
((b1(s) AND Not b2(s)) AND (b2(f(s)) OR b2(f(f(s))) OR

b2(f(f(f(s))))))) AND
((b1(s) AND Not b2(s)) AND (b2(f(s)) OR b2(f(f(s))) OR

b2(f(f(f(s)))) OR b2(f(f(f(f(s)))))))
)

%a1 = b1 /\ ˜b2 --> a0 = ˜b1 /\ b2 SAT
a1a0must: THEOREM b_init(s) IMPLIES

Not (((b1(s) AND Not b2(s)) AND Not (Not b1(s) AND b2(s)) AND
((b1(s) AND Not b2(s)) AND b1(f(s))) AND
((b1(s) AND Not b2(s)) AND (b2(f(s)) OR b1(f(f(s))))) AND
((b1(s) AND Not b2(s)) AND (b2(f(s)) OR b2(f(f(s))) OR

b1(f(f(f(s))))))) AND
((b1(s) AND Not b2(s)) AND (b2(f(s)) OR b2(f(f(s))) OR

b2(f(f(f(s)))) OR b1(f(f(f(f(s)))))))
)

% a0 -> a0
fairnesscheck: THEOREM b_init(s) IMPLIES b1(f(s)) OR b1(f(f(s))) OR b1(f(f(f(s)))) OR

b1(f(f(f(f(s)))))

faircheck: THEOREM b2(s) IMPLIES Not b1(f(s))

END stutcounter

24

