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Abstract 

This paper is a survey of the BLAST, which is a software model checker for C programs 
developed at Berkeley.  Based on the popular abstract-check-refine paradigm, the concept of lazy 
abstraction is introduced in the BLAST project.  Lazy abstraction is a new idea for the 
optimization of the abstract-check-refine loop.  We present the lazy abstraction concept and the 
implementation framework of BLAST.  In the end, an example of using the BLAST is also given. 

 

1 Introduction 

In recent decades, the growing importance of software and the increasing complexity of system 
design are driving the technologies of software verification.  Traditionally, the language syntax 
and the type system convention are statically checked by the compilers while the program 
behavior can only be checked at runtime by using assertions and perform testing.  Many efforts 
have recently contributed to enable statically checking the program behavior against the given 
properties.  For example, the MOPS [1] targets to finding security bugs, and the SLAM project [2] 
aims at checking whether a program obeys the “API usage rules”.  Despite its difficulty, statically 
reasoning the semantics of a program does reduce the overhead incurred during checking the 
behavior at runtime.  In this paper, we survey the BLAST (Berkeley Lazy Abstraction Software 
Verification Tool) [3], which is a new effort in this domain. 

Developed at Berkeley, the BLAST is a software model checker for C programs.  The BLAST 
shares the same goal of the SLAM project – checking whether a program obeys the given “API 
usage rules”, and both of them are constructed based on the popular abstract-check-refine 
paradigm.  However, the BLAST applies the concept of lazy abstraction to optimize the abstract-
check-refine loop.  We will focus on the discussion of the lazy abstraction idea and briefly 
describe the corresponding implementation in BLAST.  Also, we have tried using the recent 
release of BLAST (version 1.0) on Windows under Cygwin.  It is found that the current release of 
BLAST is still not sophisticated enough to work for arbitrary verification purpose.  In the end, we 
will share our experience of using BLAST. 

The remainder of this paper is organized as follows.   Section 2 states the problem addressed by 
the BLAST.  Section 3 presents the lazy abstraction methodology.  Section 4 is the description of 
the implementation framework of BLAST.  We discuss our experience of using the current 
release of BLAST (version 1.0) in Section 5, which is followed by the conclusion in Section 6. 

 



2 Problem Statement 

We first describe the problem addressed by BLAST in Section 2.1.  The abstract-check-refine 
approach, based on which is the BLAST constructed, is then discussed in Section 2.2. 

 

2.1 The Software Verification Problem of BLAST 

The BLAST is to check the safety properties of C programs.  This is done by reasoning whether 
the line(s) labeled by ERROR is reachable.  Ideally, if the checking algorithm terminates, the 
checker either tells the user the program is safe (the ERROR label is not reachable) or gives the 
user a feasible execution path to the ERROR label (a counterexample). 

Figure 1 gives a simple example.  Given the program in Figure 1(a), the model checker will 
determine that the program is safe.  However, the program 1(b) is unsafe because the ERROR 
label can be reached.  These answers can be deduced through static analysis despite the values of 
x and y. 

 

 

  

 

 

 

    (a) Safe program.     (b) Unsafe program. 

Figure 1: A simple example (modified from [4]). 

 

 

2.2 The Abstract-Check-Refine Approach 

The abstract-check-refine approach has been adopted by many previous works [2, 5, 6].  Figure 2 
illustrates the naïve abstract-check-refine loop.  At the “Abstract” stage, a set of predicates is 
chosen to abstract the program such that each abstracted state is represented by the truth 
assignments of the chosen predicates.  At the “Check” stage, the abstracted model will be used to 
check the safety property.  If the abstracted model is safe, the concrete model is safe also.  
Otherwise, an abstract counterexample is generated and it is checked whether it corresponds to a 
concrete counterexample.  The model checker outputs the concrete counterexample if it is proved 
to be a real bug; otherwise, the spurious counterexample may be used to guide the “Refine” stage 
[12].  At the “Refine” stage, new predicates are generated and they will be used to build a new 
abstracted model in the “Abstract” stage.  This loop iterates until an answer can be generated. 

 
int foo(int x, int y) { 
    if (x > y) { 
        x = x – y ; 
        if (x <= 0) 
            ERROR: 
    } 
} 

 
int foo(int x, int y) { 
    if (x > y) { 
        x = y – x ; 
        if (x <= 0) 
            ERROR: 
    } 
} 



 

 

 

 

 

 

 

Figure 2: The naïve abstract-check-refine loop. 

 

 

 

 

 

 

 

 

 

 

(a) Concrete Model        (b) Abstraction Model 

Figure 3: The scenario of abstraction (modified from slides of [7]) 

 

 

Figure 3 shows the scenario of abstraction.  Here, we will define some terminologies used in the 
rest of the paper also.  The diagram in Figure 3 (a) represents the concrete program model.  Each 
point in the diagram represents one state in the concrete model.  Figure 3(a) represents a safe 
model since the error states are not reachable.  Figure 3 (b) is an abstraction of Figure 3(a).  In the 
abstraction model, a set of states is abstracted as a region, which is represented as a square in the 
diagram.  A region is an overapproximation (describing a bigger world) of a set of concrete states.  
From Figure 3(b), it is observed that it is possible to have a path to a region which overlaps with 
the error region, even though the concrete counterpart doesn’t exist. This is the reason that we 
have to refine the model.  
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3 Lazy Abstraction 

The lazy abstraction concept, which is proposed and implemented in the BLAST project, is aimed 
at optimizing the naïve abstract-check-refine loop by integrating the three steps.  It means that the 
three steps (abstraction, checking, and refinement) are performed in an interleaving manner.  The 
lazy abstraction is based on the following two principles: 

1. On-the-fly abstraction: The naïve approach generates the entire abstract model at the 
“Abstract” stage.  However, some abstracted regions may never be visited (e.g. 
unreachable regions).  The lazy abstraction concept suggests abstracting a region only 
when it is needed in the next step of checking.  In this case, the abstraction task is driven 
by the checking process.  Figure 4 illustrates the scenario of on-the-fly abstraction.  By 
comparing Figure 3(b) and Figure 4, it is observed that a lighter abstraction task is 
involved in lazy abstraction. 

 

 

 

 

 

Figure 4: The scenario of on-the-fly abstraction (modified from slides of [7]) 

 

 

2. On-demand refinement: In the naïve approach, the entire abstract model has to be re-
built after refinement.  The lazy abstraction concept suggests that we can re-use the 
partial answer that is obtained in previous iterations.  As a result, we can avoid refining 
those regions that have already been proved to be safe.  Refinement is applied starting 
from the earliest state at which the abstract counterexample fails to have a concrete 
counterpart.  This state is called pivot state.  The identification of the pivot state becomes 
the new task in the new abstract-check-refine approach.  Figure 5 shows the scenario of 
on-demand refinement.  In Figure 5, two regions are involved at the first iteration and the 
pivot state is located at the second region being visited and the refinement starts at there 
also.  The first visited region, which is shaded with grey, has been proved to be safe at the 
first iteration.  As a result, we don’t have to apply refinement there.   
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Figure 5: The scenario of on-demand refinement (modified from slides of [7]) 

 

 

The lazy abstraction starts from abstracting the initial region.  According to the current region, the 
corresponding next region is abstracted.  For every next region, if it reaches the ERROR region, 
we have to check whether it is a real bug.  If refinement is required, the pivot state is identified 
and starting from which the refinement is applied, and then the abstraction and checking 
procedure goes on.  When we check a region, we can re-use the partial answers in the past 
iterations, such that the region is safe if it is included inside any region that has been proved to be 
safe.  In Figure 6, the region labeled ‘A’ resides in the grey area, that has been proved to be safe.  
By reusing the previously proved answer (the grey area), we can determine that region A is safe 
without performing the model checking algorithm.  

 

 

 

 

 

 

 

 

Figure 6: Reusing the partial answer on model checking. 

 

The lazy abstraction concept applies to any abstract-check-refine model checking approach, even 
though it is implemented for checking C programs in BLAST.  The generic lazy abstraction 
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algorithm is presented in [7] by representing the concrete model as a labeled transition system [8].  
In addition, an example of applying lazy abstraction on checking a C program is also given in [7].  
We don’t want to “copy” the description and discussion to this survey paper, so please read [7] 
for the detailed algorithm.  However, we will try to summarize the important concepts with the 
simplified example from [7] in the follows. 

 

 

 

 

 

 

 

 

 

Figure 7: Our example program. 

 

Figure 7 shows the C program example used in the following discussion.  The global variable 
LOCK is used to keep track of the usage of the functions lock() and unlock().  The ERROR 
label will be reached if two consecutive lock() or two consecutive unlock() is invoked at 
execution.  The (*) represents a condition that is irrelevant to the checking, the (*) can be 
true or false at runtime. 

 

 

 

 

 

 

 

 

 

 

 

 

1:  do  {    lock() { 
      lock();     if (LOCK == 0) { 
      old = new;       LOCK = 1; 
2: if (*) {     } else { 
3:    unlock();       ERROR 
   new++;     } 
 }     } 
4:  } while( new != old); 
5:  unlock();   unlock() { 
    return;      if (LOCK == 1) { 
         LOCK = 0; 
       } else {   
         ERROR 
       } 
     } 

Figure 8: Control flow automaton. 
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First of all, the input C program is translated into a control flow automaton (CFG), which is 
similar to a control flow graph.  The edges of the graph are labeled with either an assume 
predicate corresponding to the condition that must be satisfied for that branch to be taken, or the 
basic block of instructions that are executed in the transition.  The control flow automaton 
translated from the program in Figure 7 is given in Figure 8. 

Given a CFG, the verification process loops through two phases: forward search and backwards 
counterexample analysis.  A distinct predicate set for abstraction is used for each iteration.  There 
is no new idea about predicate discovery is proposed from the BLAST project.  In the 
implementation, the BLAST depends on predicate discovery engine from others’ project.  The 
forward search is responsible for abstraction and checking, while the backwards counterexample 
analysis is responsible for checking the feasibility of an abstract counterexample. 

With the CFG and the predicate set, the forward search constructs in depth-first order a search 
tree whose nodes correspond to vertices of the CFG.  Each node of the constructing tree is labeled 
with a formula, called reachable regions, which represent what is known about the state of the 
program with respect to the predicate set.  The reachable region is computed from the reachable 
region of the parent node and the instructions on the corresponding edge in CFG.  The forward 
search keeps on until we hit the ERROR region or the traversal safely finishes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Forward search with predicates ([LOCK==1] and [LOCK==0]). 
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In our example, we start the forward search with two predicates – (LOCK == 1) and (LOCK 
== 0).  Figure 9 is the forward search result of our example.  The reachable region, by showing 
the predicates whose truth value is true, is attached beside each node. The reachable region is 
calculated from the reachable region of the parent node and taken the effect of the edge.  Since 
the information carried in the traversal consists of the chosen predicates only, so we traverse from 
node 4 to node 5 in Figure 9 as no information about new and old is available.  With (LOCK == 
0), the ERROR label (error node) is reached when unlock() is invoked after node 5. 

The backwards counterexample analysis is activated when we hit an error node in the forward 
search process.  As implied from the name, the backwards counterexample analysis is tracing 
from the error node back to its predecessors.  At each node of the trace, the weakest precondition 
(in the concrete model) that would lead to the error node is calculated; it is called the bad region.  
We try to identify the first node in the search tree where the intersection of the bad region with 
the reachable region is empty, and this is called the pivot node.  The pivot node is the pivot state 
that we mentioned previously, and it is the impossible to reach the error node from the pivot node 
via the given trace.  According to the pivot node, new predicates are added for abstraction.  From 
the pivot node, the verification would resume with the forward search.  However, if we cannot 
find any pivot node before the root node is reached in the backward tracing, it means that the 
model is proved to be unsafe and the trace path is a concrete counterexample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Backwards counterexample analysis after forward search shown in Figure 9. 
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Figure 10 shows the result of applying backwards counterexample analysis in our example.  At 
each node, the bad region is beside the reachable region in a curly bracket ({ }).  The backward 
trace stops at node 1 as it is the intersection of its reachable region and its bad region is empty.  
Node 1 is then identified to be the pivot node. 

We have mentioned that the lazy abstraction encourages using partial answers from previous 
iterations.  This is done in the forward search process.  The reachable region of a node is covered, 
if it resides in a safe reachable region of the same node. In this case, any error found from this 
point on would have been found by the previous exploration.  So, we can stop the forward search 
if the node is covered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Forward search with new predicates ([LOCK==1], [LOCK==0] and [new==old]). 
 

 

Adding a new predicate, (new == old), to our example and resume the forward search.   
The result is illustrated in Figure 11.  The forward search finishes without error this time.  
Because the relationship between new and old is carried in the traversal this time, the path [node 
1 – node 2 - node 3 – node 4 – node 5] is not possible anymore.  In the path [node 1 – node 2 – 
node 3 – node 4 -  node 1], we can stop the traverse at node 1 because it is covered as node 1 with 
reachable region (LOCK == 0) has been proved to be safe. 
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It is observed that, two operations are very important to the lazy abstraction algorithm; they are 
abstract post and concrete pre.  The abstract post operation is used in the forward search process 
for calculating the abstract successor of the current node.  It is mentioned in [7] that the abstract 
post operation can be efficiently implemented by the Cartesian abstract post [9] operation.  On 
the other hand, the concrete pre operation is used in the backward analysis process for calculating 
the concrete predecessor of a node.  It can be achieved by computing the weakest pre-condition.    

 

 

4 The BLAST 

 

 

Figure 12: The BLAST architecture (modified from slides of [7]) 

 

 

Figure 12 gives an overview of the architecture of the BLAST system.  The tool is written in 
Objective Caml.  Some functions of BLAST are dependent to other tools.  For example, the 
Simplify [10] is responsible for the abstract post computation and the Vampyre [11] provides 
predicate discovery support. 

The experimental results presented in [7] are all verification of the device drivers, the complexity 
of which ranges from 40 lines of code to 6473 lines of code.  The predicate language used in 
BLAST contains the quantifier-free formulas of the theory of equality with uninterpreted 
functions and of the theory of integers with addition.    

The current release of BLAST is 1.0.  We found that support of multithreading programs is not 
provided in the current release.  Support of multithreading programs in BLAST is discussed in 
[13]. 

 

 
LAZY  

ABSTRACTION

CIL 
(C to CFA) 

 
REGION  

STRUCTURE 

BDD Engine 
(Boolean)  

Simplify 
(abstract post) 

Vampyre 
(predicates)  



5  Using the BLAST 

The discussion in this section is based on our experience of using the BLAST (version 1.0) on 
Cygwin [14].  We will discuss the use of BLAST in Section 5.1.  In Section 5.2, we discuss our 
attempt of performing model checking with BLAST on a simple linklist package. 

 

5.1 Model Checking with BLAST 

The problem addressed by BLAST is described in Section 2.1.  The basic command to run 
BLAST is pblast.opt filename –main mainfunction –L ErrorLabel, where 
filename is the file we want to check, mainfunction is the name of the starting function 
(the default is main), and ErrorLabel is an error label (the default is ERROR).  The BLAST 
tool provides two features to facilitate the users – static assertion checking and specification 
language. 

 

Static Assertion Checking 

Using the assert() function is a common approach to check for safety at runtime in C.  By 
providing a modified assert.h file, the BLAST allows the users to use the assert() function, 
in the way as we usually do, to check the safety properties of a program at runtime.  Using the 
assert() function defined in the provided assert.h file causes branching to an ERROR label 
when the truth value of the given predicate is false.   

To use the static assertion feature, the user has to produce a preprocessed file with the given 
assert.h file and use it for model checking.  An example of using the static assertion in BLAST 
is given in Figure 13. 

 

 

 

 

 

 

 

 

Figure 13: The static assertion checking. 

 

 

 
int foo(int x, int y) { 
    if (x > y) { 
        x = x – y ; 
   assert(x > 0); 
    } 
} 
 

> gcc –E foo.c > foo.i 
> pblast.opt foo.i –main foo 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: BLAST Output of the program in Figure 13. 

 
 

The output of BLAST consists of information more than telling the users whether the program is 
safe.  We discuss some interesting information in the follows.  Showing in Figure 14 is the partial 
output of model checking the example in Figure 13 with BLAST.  First of all, the BLAST reports 
that the “The system is safe” with one statement.  Predicates that have been used in 
abstraction are listed at the output also.  According to the output in Figure 14, three predicates are 
used.  ”x@foo” refers to the variable x in the function foo.  The “maximum number of 
predicates active together” refers to the size of the largest predicate set used in the 
forward search verification process.  At the end, the time consumed for model checking is 
reported also (time taken by each checking stage is reported in detail).   

Another program modified from that in Figure 13 is checked by BLAST and the output is shown 
in Figure 15.  This is an unsafe program, so the trace of a counterexample is reported at output.  
The size parameter gives the length of the counterexample trace.  The numbers on the left give 
the line numbers in the source code for the corresponding action statement. 

...... 

...... 
 
 
No error found.  The system is safe :-) 
 
...... 
...... 
 
 
List of predicates: 
 
//Index = 2 Predicate:  
y@foo<x@foo; 
 
//Index = 1 Predicate:  
x@foo==x@foo-y@foo; 
 
//Index = 0 Predicate:  
0<x@foo; 
 
 
Number of predicates =3 
 
Maximum number of predicates active together (discounting scope) = 3 
 
...... 
...... 
 
 
modelCheck                     0.040 s 
 
...... 
...... 
 



 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 15: Counterexample output from BLAST. 

 
 
 
 

Specification Language 

In order to check the temporal safety properties of a program, we always need to add some 
observer variables and adding statements to take the corresponding values.  The program in 
Figure 7 is an example – the observer variable LOCK and corresponding code modification is 
added to help checking that the program manipulates locks in a safe manner. To facilitate this 
task and especially avoid code modification, a specification language is available to allow the 
users specify the code modification in another file. 

Consider the program in Figure 7, we use the BLAST specification language to specify the 
modification we wish to make on the program and the specification file (lock.spc) is given in 
Figure 16.  The statement “global int LOCK = 0” defines the observer variable and 
initializes it to 0.  There are two interesting events in this specification.  The first event is raised 
when the pattern ”lock();” is matched.  The guard statement in the event specifies the 
condition that must be met when the event happens.  The guard statement of the first event 
specifies that LOCK must be equal to 0.  The program is regarded as unsafe if the guarded 
condition is not satisfied.  The action statement describes the action statement associated with 

...... 

...... 
 
counterex. size:6 
 
...... 
...... 
 
 
4 :: 4:   Pred(x@foo>y@foo) :: 5  
5 :: 5:   Block(x@foo = y@foo  -  x@foo;) :: 6  
6 :: 6:   Pred(Not (x@foo>0)) :: 6  
6 :: 6:   FunctionCall(__assert_fail("x > 0", "foo.c", 6, "foo")) :: -1 
77 :: 77:   FunctionCall(__blast_assert()) :: -1 
 
...... 
...... 
 
 
Error found! The system is unsafe :-( 
 

 
int foo(int x, int y) { 
    if (x > y) { 
        x = y – x ; 
   assert(x > 0); 
    } 
} 



the event.  As specified in the first event of our example, the LOCK variable is set to be 1 when 
the event is raised.  Please consult the BLAST manual [4] for additional features of the 
specification language. 

 

 

 

 

 

 

 

 

 

 

lock.c          lock.spc 

Figure 16: Using the specification language. 

 

The BLAST comes with an instrumentation tool that takes a specification and a C program and 
builds an instrumented program (instrumented.c), which is the result of applying the specified 
code modification to the given C program.  A predicate file (instrumented.pred), which contains 
the predicate set which guards the model checking process, is generated along with the 
instrumented file also.  The commands to build the instrumented file and invoke the model 
checker  for the example in Figure 16 is as follows: 

 

> spec.opt lock.spc lock.c 
> pblast.opt –pred instrumented.pred instrumented.c 

 

 

 

5.2 Model Checking a Simple Linklist Package 

We tried to do model checking with BLAST on a simple linklist package.  A lot of limitations or 
errors hinder us trying a reasonable model.   

Consider the three files in Appendix: linklist_1.h, linklist_1.spc and linklist_1.c.  The 
specification given in linklist_1.spc is used to help checking the temporal safety properties of the 
program.  It describes two events and one variable (list_size) is used in checking.  The first 

1:  do  {    
      lock();     
      old = new;   
2: if (*) {   
3:    unlock();       
   new++;     
 }     
4:  } while( new != old); 
5:  unlock();   
    return;    
     
     
  
     
     

global int LOCK = 0; 
 
event { 
  pattern { lock(); } 
  guard { LOCK == 0 } 
  action { LOCK = 1; } 
} 
 
event { 
  pattern { unlock(); } 
  guard { LOCK == 1 } 
  action { LOCK = 0; } 
} 



event describes that just before the method addNode() is invoked, we will increase list_size by 
1.  The second event describes that just before the method removeNode() is invoked, we have to 
verify (list_size > 0), and then decrease list_size by 1.  The program in linklist_1.c 
invokes addNode() three times and followed by removeNode() once.  We run it by the 
following command:  

 

 

 

 

 

 

 

There are one predicate generated in the instrumented.pred file – (list_size > 0), and 
the result shows that the “system is safe”.  This is our expected result. 

In the second test, we modified linklist_1.c and made the program invoke removeNode() one 
more time at the end of the program.  We run it with the same procedure.  Two same predicates 
are generated in the instrumented.pred file this time – (list_size > 0) and 
(list_size > 0).  However, exception occurs this time with the following error trace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> spec.opt linklist_1.spc linklist_1.c 
spec.work:1:9: warning: no newline at end of file 
Parsing sources.... 
Spec read 
Process patterns 
Add definitions 
Parsing 
Done 
> pblast.opt –pred instrumented.pred instrumented.c 

8 :: 8:   FunctionCall(__initialize__()) :: -1  
7 :: 7:   Block(list_size = 0;) :: 17  
17 :: 17:   Block(Return(0);) :: -1  
-1 ::    Skip :: 12  
12 :: 12:   Block(list_size = list_size  +  1;) :: 7  
7 :: 7:   FunctionCall(addNode(l@main, n@main)) :: -1  
-1 ::    Skip :: 12  
12 :: 12:   Block(list_size = list_size  +  1;) :: 8  
8 :: 8:   FunctionCall(addNode(l@main, n@main)) :: -1  
-1 ::    Skip :: 12  
12 :: 12:   Block(list_size = list_size  +  1;) :: 9  
9 :: 9:   FunctionCall(addNode(l@main, n@main)) :: -1  
-1 ::    Skip :: 19  
19 :: 19:   Pred(list_size>0) :: 20  
20 :: 20:   Block(list_size = list_size  -  1;) :: 11  
11 :: 11:   FunctionCall(removeNode(l@main)) :: -1  
-1 ::    Skip :: 19  
19 :: 19:   Pred(Not (list_size>0)) :: 21  
21 :: 21:   FunctionCall(__error__()) :: -1  
Ack! The gremlins againAck! The gremlins again! 
Fatal error: exception Failure("No new preds found !-- and not running 
allPreds ...") 



From the above error trace, we can observe that list_size is incremented three times.  However, 
the trace branches to “Pred(Not (list_size>0))” at the second time the removeNode() 
method is invoked.  We tried many different similar examples and got the same problem. 

Another modeling attempt is shown in the other three files of Appendix: linklist_2.h, 
linklist_2.spc and linklist_2.c.  First, it seems that pointer operations inside methods are invisible 
to the BLAST, so we are forced put the statements outside the corresponding method.  For 
example, in linklist_2.c, we define the relevant statements of the initList() method at 
CALL_INIT_LIST(l).  The C source code of the invoked methods must be provided at the input; 
otherwise, the BLAST assumes the method has no effect to the variables.  It is however difficult, 
especially due to the fact that many C library functions are coded in assembly.  In the linklist_2.c, 
we tried to model the effect of some library functions (e.g. malloc() and strdup()).  
Unfortunately, we found that it is not good enough for checking our linklist package as the value 
returned from the malloc() function does matter to the state of the link list.  Generally 
speaking, we found that the static analysis implemented in BLAST is not good enough to keep 
track of the state of the link list.  Without correctly keeping track the state of the link list (at least 
the relationship and the position of the carried nodes), it is difficult to check whether the 
functions (makeNode(), addNode() and removeNode()) in the package are being 
used in a safe manner. 

 

 

6 Conclusion 

In this survey, we discuss the lazy abstraction idea proposed and implemented in the BLAST.  
The concept seems theoretically applicable to the abstract-check-refine model checking approach 
and optimization seems promising.  However, due to the instability and the incomplete of the 
current release, it is difficult to evaluate the ability of BLAST so far.  We think the BLAST is 
very similar to the SLAM project by Microsoft.  However, the SLAM is not free software. It 
hinders from evaluating the efficiency achieved by lazy abstraction through comparing the 
BLAST and the SLAM model checker. 
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Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_1.h 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct node *Node; 
typedef struct list *List; 
typedef char *String; 
 
struct list { 
 Node  head; 
 Node tail; 
 }; 
 
struct node { 
 String str; 
 Node next; 
 Node  prev; 
 }; 
  
#define NULL  0 
#define TRUE  1 
#define FALSE  0 
 
#define LIST_SIZE 5 
#define NODE_SIZE 5 
#define STR_SIZE 10 
 
#define SOME_STR 1 
 
void *malloc(int s); 
void addNode(List l, Node n); 
void removeNode(List l); 
Node makeNode(String name); 
String strdup(String s); 
List initList(void); 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_1.spc 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_1.c 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include "linklist_1.h" 
 
global int list_size = 0; 
 
event { 
  pattern { addNode($1, $2); } 
  action { list_size++; } 
} 
 
event { 
  pattern { removeNode($1); } 
  guard { list_size > 0 } 
  action { list_size--; } 
} 

#include "linklist_1.h" 
 
int main() { 
 List  l; 
 Node   n; 
 
 addNode(l,n); 
 addNode(l,n); 
 addNode(l,n); 
 
 removeNode(l); 
// removeNode(l); // add it at 2nd test 
  
 return 0; 
 } 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_2.h 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct node *Node; 
typedef struct list *List; 
typedef char *String; 
 
struct list { 
 Node  head; 
 Node tail; 
 }; 
 
struct node { 
 String str; 
 Node next; 
 Node  prev; 
 }; 
  
#define NULL  0 
#define TRUE  1 
#define FALSE  0 
 
#define LIST_SIZE 5 
#define NODE_SIZE 5 
#define STR_SIZE 10 
 
#define SOME_STR 1 
 
void *malloc(int s); 
void addNode(List l, Node n); 
void removeNode(List l); 
Node makeNode(String name); 
String strdup(String s); 
List initList(void); 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_2.spc 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include "linklist_2.h" 
 
global int list_size = 0; 
 
event { 
  after 
  pattern { $1 = initList(); } 
  guard { $1 != NULL } 
  action { list_size = 0; } 
} 
 
event { 
  pattern { $? = strdup($1); } 
  guard { $1 != NULL } 
} 
 
event { 
  pattern { $1 = makeNode($2); } 
  guard { $2 != NULL } 
} 
 
event { 
  pattern { addNode($1, $2); } 
  guard { $1 != NULL && $2 != NULL } 
  action { list_size++; } 
} 
 
event { 
  pattern { removeNode($1); } 
  guard { $1 != NULL && list_size > 0 } 
  action { list_size--; } 
} 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_2.c 
 
 

 

#include "linklist_2.h" 
 
void *malloc(int s) { 
 return (void *)1; 
 } 
 
char *strdup(char *s) { 
 char *clone; 
 
 clone = malloc(STR_SIZE); 
 
 return clone; 
 } 
 
List initList(void) { 
 List  l; 
 
 l = malloc(LIST_SIZE); 
 
 return l; 
 } 
 
Node makeNode(String name) { 
 Node  n; 
 
 n = malloc(NODE_SIZE); 
  
 return n; 
 } 
 
#define CALL_INIT_LIST(l) \ 
    (l) = initList(); \ 
    (l)->head = NULL; \ 
    (l)->tail = NULL; 
 
#define CALL_MAKE_NODE(s,n) \ 
    (n) = makeNode((s)); \ 
    (n) = node_addr++;  \ 
    (n)->str = s; \ 
    (n)->next = NULL; \ 
    (n)->prev = NULL; 
 
#define CALL_ADD_NODE(l,n) \ 
    if((l)->head == NULL) { \ 
        (l)->head = (n);  \ 
        (l)->tail = (n); }  \ 
    else {     \ 
        (l)->tail->next = (n); \ 
        (n)->prev = (l)->tail; \ 
        (l)->tail = (n); } \ 
    addNode(l,n); 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

File: linklist_2.c (cont’d) 
 
 
 
 

#define CALL_REMOVE_NODE(l) \ 
    if((l)->tail != NULL) { \ 
        if((l)->head == (l)->tail) { \ 
           (l)->head = NULL; \ 
           (l)->tail = NULL; } \ 
        else { \ 
           (l)->tail->prev->next = NULL; \ 
           (l)->tail = (l)->tail->prev; } \ 
        removeNode(l); } \ 
    else \ 
        chkRemoveNode(l); 
     
 
 
int main() { 
 List  l; 
 Node   n; 
 String  name; 
 struct node _node_place[10]; 
 int node_addr = 0; 
 
 CALL_INIT_LIST(l); 
  
 name = strdup(SOME_STR); 
 CALL_MAKE_NODE(name,n); 
 CALL_ADD_NODE(l,n); 
 
 return 0; 
 } 
 
 


