Automated Verification

\Symbolic Trajectory Evaluation - A Survey'

by

Mihaela Gheorghiu

Department of Computer Science
University of Toronto

Instructor: Prof. Marsha Chechik

January 31, 2004

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Motivation

e Simulation vs. verification

1 o 0 0 —— —]
1 ... 1 0 0 —— — —]
1 O 1 0 —— —]

e Multi-valued vs. symbolic simulation

1 X X 0 — a — a/ANbAc
1 X 0 X — — b —— —
1 0 X X — c —

e Symbolic Trajectory Evaluation (STE) - a multi-valued symbolic
verification method based on simulation

e STE vs. model-checking

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Basic STE Theory

Model

e Complete lattice (S,<) of states

e Monotonic next-state function Y :S — S
Behaviors

e Infinite sequences o1, 09, ... €8¢

e Infinite trajectories - sequences obeying next-state function,
Y(0;) <0441, foralli
e L attice order extended to sequences and trajectories pointwise,

01, 02, ... < Y1, V2, ... I ff 0i < Y, for all ¢

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Example (1)

Inverter circuit
5 o o n
Lo 15> >

XX (orl)

Information partial order

NS

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Example (11)

e Each circuit node has excitation, constraint on its next value
for all states s1s2, wi(s182) =X, ¥o(s182) = =81, SO

Y = Yi Yo
00 10
0l — X1 — XX=—X0-=—11
/ T \
O0X @ 1X
e Sequence 1X, X0, L, 1, ... Isatrajectory
e Sequence 00, L, L, ... isnot

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Logic

Trajectory formulas

e Atom - simple state predicate, monotonic, and having unique lowest
state, defining state, where true

e.g., (¢is1) withdefiningstate 1X
- true of a trajectory iff true of its initial state

e Conjunction of trajectory formulas o A ¢ - usual semantics

e Next-time formula N¢ - true of trajectory o1, oo, ... Iff
¢ trueof o9, o3, ...

e Nothing else

Exemple for inverter: (iis1) AN(ois 0)

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Specification

Assertions
A=C

with A, C trajectory formulas

e True of a model iff for every trajectory o
if o=A then oEC

e Better: set of trajectories satisfying A contained in that of those
satisfying C

Inverter specification:
(1i1s1) = N(ois0)
(11s0) = N(ois1)

InLTL: (¢ = 0-0) A (=i — 00)

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Verification (1)

Tocheck (iis1) = N(ois0)
e Consider defining sequence
1X, L, 1, ...
for (¢1s1)
all trajectories satisfying (i is 1) are those above this sequence
e Make it into defining trajectory
r=1X, X0, L, L, ...
the lowest trajectory satisfying (¢ is 1)
e Consider defining sequence
oc=1, X0, 1L, L, ...
for N(ois0)

e Check o<

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Verification (I1)

In general, to check A=C

check oc < Ta
where o, 74 are the defining sequence for C' and defining trajectory for
A, respectively

Justification

trajectories
satisfying

® TA

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Symbolic Version

Allow Boolean variables

e Inverter specification becomes
(¢i1sx) = N(ois —z)
e Checked by

1, X—x, L, L, ... < X, X—-x, L, 1L, ...

e True iff inequality holds for all possible interpretations of the
variables

e There are symbolic states, sequences, trajectories, formulas
e Symbolic means parameterized by Boolean variables

Implemented using BDDs!

M. Gheorghiu CSC 2108 Fall 2003 Final Project

A Few Points

N(ois0) = (iis1) fails:
1X, L, 1,... £ 1,X0,1,...

simulation only works forward
+ (4i1S0)A(¢is1) = (ois0) succeeds, but vacuity detected

defining sequence for (¢is0): 0X, 1, 1, ...

defining sequence for (¢is1): 1X, 1, 1, ...

defining trajectory for their conjunction T, 1, L, ...

by pointwise lub
+ \erification does not depend on the size of the state space

- Four-valued state space, but two-valued verification answer

- Very restricted verification capabilities - only over finite sequences,
cannot reason about eventuality, or support disjunction, etc.

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Beyond Basics

e Fixpoint computations for checking assertions of type (A = C)*; G

e Using enriched syntax and a four-valued information + truth lattice

PN
\X/ \ /

false

e Generalized STE for checking assertion graphs representing all
w-regular properties

no_overwrite
1S true write Q
O : O © O
true 01S dataLcorrect

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Forte Tool

e Forte is a formal verification environment implementing STE, used at
Intel

e First and current restricted academic version released January 2003
e Essentially performs symbolic simulation, not verification

e Example of STE invocation

let ant = [(T, "out[1]", T, 0, 1),
(T, "out[O]", T, 0O, 1),
(T, "c", F, 0, 1),
(T, "c", T, 1, 2)];
let cons = [(T, "out[1]", F, 1, 2),
(T, "out[O]", F, 1, 2)];
STE "" nodel [] ant cons trace;

M. Gheorghiu CSC 2108 Fall 2003 Final Project

Summary and Open Problems

e STE is a special-purpose model-checking method

e Successfully used in industry (Intel, IBM, Motorola) to verify large
memories and datapth circuits

e Relationship to standard model-checking still unclear

e Formally shown to be a form of data-flow analysis and its
multi-valued models of circuits to be over-approximations of
concrete ones

e To do: prove a direct relationship with multi-valued abstraction and
model-checking as we know them

e To do: see how standard model-checking can benefit from STE

M. Gheorghiu CSC 2108 Fall 2003 Final Project

