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1 Computing Discrepancy

In a previous lecture, we showed that given A ∈ [−1, 1]m×n, we can compute x ∈ {±1}m such that
‖Ax‖∞ = O(

√
n log (2m/n)). This leads to further questions:

• Assume disc(A) is small (e.g. disc(A) = 0), can we compute x that does better than Spencer’s
bound (that is, o(

√
n log (2m/n)) in polylog(m,n) time?

• More generally, can we efficiently approximate combinatorial discrepancy?

Unfortunately, the answer to both these questions is that we cannot (unless P = NP ).

Theorem 1 ([3]). For A ∈ {0, 1}O(n)×n, it is NP−hard to distinguish between the cases:

1. disc(A) = 0

2. disc(A) = Ω(
√
n) (Spencer’s bound)

Note: The same holds for set systems, where A is the incidence matrix.

In some sense this hardness is due to the lack of robustness of discrepancy. For example, if we
take any matrix A, possibly with maximum discrepancy, and make another copy of every one of
its columns, we would get a matrix of discrepancy 0. Recall, however, that we have seen a more
robust notion of discrepancy back in our first lecture. This is hereditary discrepancy, defined for a
matrix A as

herdiscA = max
S⊆[n]

disc(AS)

where A ∈ Rm×n and AS the matrix which consists of the columns of A which are indexed by S.
For set systems (S,U), this is equivalent to the maximum discrepancy of any set system induced
by a subset of U . It turns out that hereditary discrepancy can be efficiently approximated. This is
the topic of this lecture.

Theorem 2 ([6]). There exists a polytime computable function γ2 such that ∀A ∈ Rm×n:

γ2(A)

O(log (m))
≤ herdisc (A) ≤ O(

√
logm)γ2(A)

The notation γ2(·) in the theorem is standard and we keep it to be consistent with the literature.
We are going to define this function shortly.
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2 Upper bounds from Factorization

Given that hereditary discrepancy is a maximum over exponentially many quantities (each of them
itself hard to compute), our first task is to develop a good efficiently computable upper bound on
hereditary discrepancy. We derive such an upper bound from a powerful theorem of Banaszczyk.

Let us start with some notation. We will denote the largest norm of a row/column of a matrix A
by:

r(A) =
m

max
i=1
‖ai∗‖2,

c(A) =
n

max
j=1
‖a∗j‖2.

Exercise 1. Show that for any m× n matrix A, disc(A) = O(
√

logm)r(A).

In addition to this exercise, recall that in an exercise from the last lecture we showed that disc(A) =
O(
√

logm)c(A). We will use the following theorem by Banaszczyk to combine these two bounds.

Theorem 3 ([1]). Let K ⊆ Rm be convex and closed, with:

P(g ∈ K) ≥ 1/2 where g ∼ N(0, I)

Then for A ∈ Rm×n, ∃x ∈ {±1}n s.t. Ax ∈ 5 · c(A) ·K

A recent algorithmic proof of this theorem was given in [2], using the tools we saw in the last
lecture.

We are now ready to state our good upper bound on hereditary discrepancy.

Theorem 4 ([4]). For A ∈ Rm×n with A = UV , where U, V arbitrary, we have that:

disc(A) ≤ r(U) · c(V ) ·O(
√

log 2m)

Proof. Define K as follows:

K = {y : ‖Uy‖∞ ≤ 2 · r(U) ·
√

log (2m)}

Exercise 2. Show that for a standard Gaussian g ∼ N(0, I), Pr(g ∈ K) ≥ 1
2 .

The above exercise means we can apply Theorem 3 with K and the matrix V :

∃x ∈ {±1}n s.t. V x ∈ 5 · c(V ) ·K

⇔ disc(A) ≤ ‖UV x‖∞ ≤ 10 · c(V ) · r(U) ·
√

log 2m

2



Definition 5 (γ2 norm). We can define the γ2 norm of a matrix A ∈ Rn×m as:

γ2(A) = min {r(U) · c(V ) : UV = A}

Theorem 4 then becomes:

disc(A) = γ2(A) ·O
(√

log (2m)
)

We additionally note that since AS = UVS , then c(VS) ≤ c(V )⇒ γ2(AS) ≤ γ2(A), and, therefore,

herdiscA ≤ γ2(A) ·O
(√

log (2m)
)
.

This proves the right hand side inequality in Theorem 2

3 Vector Program for γ2

A vector program is an optimization problem with vector variables {vi}ni=1 ∈ Rn, whose objective
function and constraints are linear in 〈vi, vj〉 where i, j ∈ [n]. It is known that every vector program
can be solved efficiently by recasting it as a semidefinite program (SDP). Thus, if we can show that
γ2(A) can be written as a vector program, this suffices to show that it is efficiently computable.

Lemma 6. For A ∈ Rm×n, γ2(A) can be written as

min t

subject to 〈ui, vj〉 = Aij

〈ui, ui〉 ≤ t
〈vj , vj〉 ≤ t
ui, vj ∈ Rm+n

where (i, j) ∈ [m]× [n],

Exercise 3. Prove Lemma 6.

4 γ2 and herdisc: the Lower Bound

It remains to show the first inequality in Theorem 2. We are going to use the determinant lower
bound on hereditary discrepancy, due to Lovász, Spencer, and Vesztergombi.

Theorem 7 ([5]). The quantity

detlb (A) =
min (m,n)

max
k=1

max
S⊆[m]
T⊆[n]
|S|=|T |=k

|detAS,T |1/k,
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where AS,T is the submatrix of A indexed by S and T , satisfies:

herdisc (A) ≥ 1

2
detlb (A).

Then, to prove the first inequality in Theorem 2 it suffices to show

detlb (A) ≥ γ2(A) · Ω
(

1

log rankA

)
. (1)

Dual Characterization of γ2: The vector program in Lemma 6 and the duality theory for conic
programming imply that γ2(A) can also be written as the value of a maximization problem, namely

γ2(A) = max ‖B‖tr
subject to Bij = piqjAij

m∑
i=1

p2i =

n∑
j=1

q2j = 1

pi, qj ≥ 0

where (i, j) ∈ [m]× [n],

where ‖B‖tr is the trace or nuclear norm, which is equal to the sum of the singular values of B.

Proof of (1). We use an elementary but useful fact, given in the following exercise.

Exercise 4. Show that for any σ1 ≥ . . . ≥ σr ≥ 0 there exists an integer k such that

r∑
i=1

σi ≤ O(log r) · k

(
k∏

i=1

σi

)1/k

.

Notice that this is sort of a converse to the AM-GM inequality.

Let us now take a feasible solution (B, p, q) to the dual maximization problem for γ2(A). This
implies that γ2(A) = ‖B‖tr.

Now, let the singular value decomposition (SVD) of B be B = UΣV T . Here, r = rankB, U ∈ Rm×r,
V ∈ Rn×r, UTU = I and Σ a diagonal matrix with the singular values σ1 ≥ . . . ≥ σr of B on the
diagonal. Let k be as in the exercise above. If we define C := UT

k B, where Uk is the matrix whose
columns are the singular vectors of B corresponding to σ1, . . . , σk, then the singular values of C
are σ1, . . . , σk. This means that:

∣∣detCCT
∣∣ 1
2k =

∣∣∣∣∣
k∏

i=1

σi

∣∣∣∣∣
1
k

≥ 1

O(k log r)

r∑
i=1

σi =
1

O(k log r)
‖B‖tr. (2)

Cauchy-Binet Formula: For X,Y ∈ Rm×n:
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detXY T =
∑
S⊆[n]
|S|=m

detXS detYS

If we define P ∈ Rm×m and Q ∈ Rn×n as the diagonal matrices with pi and qj as the diagonal
entries respectively, then we have B = PAQ. Similarly, C = UT

k B = UT
k PAQ.

Define D := UT
k PA so that C = DQ. By applying Cauchy-Binet to C ∈ Rk×n we get:

det (CCT ) =
∑
S⊆[n]
|S|=k

detCS detCS =
∑
S⊆[n]
|S|=k

(detCS)2 =
∑
S⊆[n]
|S|=k

(detDSQS)2

=
∑
S⊆[n]
|S|=k

(detDS)2

∏
j∈S

q2j

 ≤
max

S⊆[n]
|S|=k

(detDS)2


∑

S⊆[n]
|S|=k

∏
j∈S

q2j

 .

By comparing monomials, we see that

∑
S⊆[n]
|S|=k

∏
j∈S

q2j ≤
1

k!

 n∑
j=1

q2j

k

=
1

k!
.

Thus,
max
S⊆[n]
|S|=k

| detDS |1/k ≥ (k!)1/2k · (detCCT )1/2k

Together with Stirling’s approximation, and (2), we get for some S ⊆ [n], |S| = k,

(detDS)1/k ≥ ‖B‖tr
O(
√
k log r)

. (3)

Consider the orthonormal matrix W ∈ Rm×m for which the first k columns are equal to the columns
of Uk. Such a matrix always exists since we can complete the orthonormal basis for Rm starting
with the column vectors of Uk. The m− k new vectors we get can be used to define the rest of the
columns of W .

Define ES := PAS ∈ Rm×k, meaning that DS = UT
RES . It can be shown that:

det(ET
SES) = det((ET

SW )(W TES)) = det((ET
SW )(ET

SW )T )

=
∑
T⊆[n]
|T |=k

det((ET
SW )T )2 =

∑
T⊆[n]
|T |=k

det(ET
SWT )2 ≥ det(ET

SUk)2 = det(UT
k ES)2
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∴ det(ET
SES) ≥ det(DS)2

Now, we can apply the exact same analysis as in (3), but this time to DT
S = (AS)TP instead of C.

This means that ∃T ∈ [m] for which:

max
T⊆[m]
|T |=k

(detAS,T )1/k ≥ (k!)1/2k · det (AT
SP

2AS)
1/2k

= (k!)1/2k · det (ET
SES)

1/2k

Putting all of this together and applying Stirling just like before, we get that:

max
S⊆[n]
T⊆[m]
|S|=|T |=k

| detAS,T |1/k ≥
‖B‖tr

Ω(log (2r))

By maximizing over all k, this yields the desired result.

Exercise 5. Show the following properties of γ2(A):

1. γ2(A) = γ2(A
T );

2. γ2(A+B) ≤ γ2(A) + γ2(B);

3. γ2(A⊗B) = γ2(A)γ2(B), where A⊗B is the Kronecker product.
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