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1 Introduction

If A is an m× n, real-valued matrix recall that the discrepancy of A is

disc(A) = min
x∈{±1}n

‖Ax‖∞.

We have seen in the last lecture that matrix discrepancy generalizes combinatorial discrepancy (if
S is a set system with m sets, take A to be the 0-1 incidence matrix of S, and the ±1 vector x
is the colouring of the underlying elements), which means that the study of disc(A) is particularly
interesting when the entries of A are bounded in the interval [−1, 1]. In this regime we can get an
upper bound of disc(A) = O(

√
n logm) by taking a uniformly random vector x ∈ {±1}n.

Exercise 1. Prove that for any A ∈ [−1, 1]m×n a uniformly random x{−1, 1}n has discrepancy
‖Ax‖∞ = O(

√
n logm) with constant probability.

The seminal “Six Standard Deviations Suffice” theorem improves this when m is small:

Theorem 1 (Six Standard Deviations Suffice [3]). Let A be any m×n matrix with entries bounded
by [−1, 1]. Then disc(A) = O(

√
n log(m/n)). In particular, any set system (U,S) of m = |S| sets

over a universe of size n = |U | has discrepancy O(
√
n log(m/n)).

This is especially interesting when m = O(n) and we have disc(A) = O(
√
n). Then the theorem

shows that you can make the discrepancy of every set bounded by a constant times the standard
deviation of a random coloring. With more careful analysis the constant can be shown to be smaller
than 6, hence the name of the theorem, and of Spencer’s famous paper.

In this lecture we give a constructive proof (by way of a simple randomized algorithm) due to
Lovett and Meka [1] of the previous theorem.

Exercise 2. For n = 2k for some positive integer k, let Hn be the n × n Hadamard matrix, i.e.
a matrix with ±1 entries so that any two of its rows are orthogonal. Show that its discrepancy is
disc(H) = Ω(

√
n). Use this to show that there exists a set system with discrepancy Ω(

√
n).

2 The Algorithm

Theorem 2. Let m,n be positive integers with m ≥ n and let A be any m× n matrix with entries
from [−1, 1]. There is a randomized algorithm running in time polynomial in m,n which, when
given A as input, outputs an x ∈ {±1}n such that ‖Ax‖∞ = O(

√
n logm/n) with high probability.
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In specifying and analyzing the algorithm we take a geometric viewpoint. Let m,n be positive
integers with m ≥ n, and let A be any m× n matrix with entries from the interval [−1, 1]. Let C
be a universal constant to be specified later, and consider the convex polytope

K = {x ∈ Rn | ‖Ax‖∞ ≤ C
√
n log(8m/n)}.

If a1, a2, . . . , am are the rows of A we can re-write the previous definition as

K = {x ∈ Rn | ∀i ∈ [m], |〈ai, x〉| ≤ C
√
n log(8m/n)},

which will be more useful. Intuitively, K is a convex polytope defined as the intersection of a set
of “slabs” of the form

|〈ai, x〉| ≤ C
√
n log(8m/n).

The algorithm will work as follows: we perform (an approximation of) a continuous random walk,
starting from the origin, in the convex polytope K ∩ [−1, 1]n. When the random walk intersects a
facet of K ∩ [−1, 1]n we restrict further steps of the walk to remain on that facet, until we end up
at a vertex of K ∩ [−1, 1]n. Ideally we would like this vertex to be a point in {−1,+1}n, and this
would be clearly enough to prove the theorem. This is too much to hope for, but we will show that
the resulting vertex has a constant fraction of its coordinates in {−1, 1}n.

We reduce Theorem 2 to the following theorem.

Theorem 3. Let m ≥ n be positive integers and let δ = 1/
√
n. There is a randomized, polynomial-

time algorithm and a constant C such that, when given an m × n matrix A and a vector x(0) ∈
[−1, 1]n, finds an x ∈ [−1, 1]n such that the following holds, with probability at least 1/6− ε for any
1/6 > ε > 0.

1. For each i = 1, 2, . . . ,m we have |〈ai, x− x(0)〉| ≤ C‖ai‖2
√

log(8m/n)

2. |xi| > 1− δ for at least n/10 indices i.

Proof of Theorem 2 from Theorem 3. Start with x(0) = 0, run the algorithm from Theorem 3 and
obtain an x ∈ [−1, 1]n. Let x′ be the vector obtained by choosing all indices from x for which (2)
fails, and apply the algorithm recursively on x(0) = x′ and on the matrix A′ obtained by deleting
the columns corresponding to the indices satisfying (2). At each recursive step we fix a constant
fraction of the coordinates of x, and so we end up with a vector x∗ for which all indices satisfy (2)
after S = 10 log n recursive steps. The discrepancy of the resulting vector is

‖Ax∗‖∞ < C
√
n
√

log(8m/n) + C
√
n/10

√
log(8m/(n/10)) + · · ·+ C

√
n/10S

√
log(8m/(n/10S))

<
√
n

∞∑
s=0

C
√

log 8m · 10s/n

10s/2
< C ′

√
n log(m/n)

for some constant C ′. Finally, we round each coordinate in x∗ to the nearest integer. It is easy to
see that this can change the discrepancy by at most O(n/δ) = O(

√
n).

Let N (µ, σ2) denote the mean µ Gaussian distribution with variance σ2. The algorithm is formally
described in Algorithm 1. As stated, the algorithm includes several scalar parameters δ, γ, T, C that
we fix during the analysis: for now, think of δ, γ as being small reals with, say, 1/

√
n ≥ δ � γ > 0
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Algorithm 1: Main Algorithm

Input : An m× n matrix A. A vector x(0) ∈ [−1, 1]n.
Output: A vector x ∈ [−1, 1]n satisfying the properties in Theorem 3.
for t = 1, 2, . . . , T do

Set Dt = {i ∈ [m] | |〈ai, x(t− 1)− x(0)〉| ≥ C‖ai‖2
√

log(8m/n)− δ};
Set Vt = {j ∈ [n] | |xj(t− 1)| > 1− δ};
Let Wt = {y ∈ Rn | ∀i ∈ Dt, 〈ai, y〉 = 0 and ∀j ∈ Vt, yj = 0};
Let w1, w2, . . . , wk be an orthonormal basis of the subspace Wt;
Let g1, g2, . . . , gk ∼ N (0, 1) be sampled i.i.d.;

Set ∆x(t) =
∑k

i=1 giwi;
Set x(t) = x(t− 1) + γ∆x(t);

end
return x(T )

and T being some large integer on the order of 1/γ2. The set Dt contains the facets of K for
which the vector x(t− 1) is “almost tight”, and the set Vt contains the set of facets of [−1, 1]n for
which x(t− 1) is “almost tight”. The subspace Wt contains all vectors orthogonal to the Dt facets
and the Vt facets. In each iteration of the algorithm, we take the vector x(t − 1) and perturb it
by Gaussian random noise in the subspace Wt. By moving in the subspace Wt, we never increase
the discrepancy with respect to the facets in Dt and we never modify any coordinates that are
sufficiently close to ±1.

The parameters γ, δ should be viewed as tolerance parameters that we must introduce since we
are approximating a continuous random walk. The parameter δ defines a small region around the
facets of K∩ [−1, 1]n which we use to define when a vector x(t) is tight with respect to the facet. By
choosing δ to be small enough we are guaranteed that the coordinates are close enough to the ±1
constraints so that we do not introduce too much extra discrepancy when rounding the fractional
coordinates. The parameter γ controls the step-size of our discretized walk — we choose a vector
∆x(t) of variance-1 Gaussian random noise, projected to the subspace Wt, and make a γ-length
step in that direction.

Gaussian random variables enjoy a number of useful properties (e.g. exponential tail bounds), but
key to the analysis is the next property that states that a linear combination of samples of Gaussian
noise is again Gaussian.

Stability of Gaussians. Let g1, g2, . . . , gk be i.i.d. samples fromN (0, 1), and let g = (g1, g2, . . . , gk).
Then 〈a, g〉 ∼ N (0, ‖a‖22) for any a ∈ Rk.

To prove our Main Lemma we will also use following Azuma-type martingale concentration inequal-
ity.

Lemma 4. Let σ ∈ R satisfy 0 < σ ≤ τ . Suppose y1, y2, . . . , y` are random variables where
y1 ∼ N (0, σ2), and for all i > 1, the conditional distribution of yi − yi−1 given the values of
y1, y2, . . . , yi−1 is N (0, σ2i ) for some random variable 0 < σi ≤ τ depending on y1, y2, . . . , yi−1.
Then

Pr[|y`| > tτ
√
`] ≤ 2e−t

2/2
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for any t > 0.

The main lemma now follows from the martingale concentration bound and the Stability of Gaus-
sians. It says that if the random walk is not “too long” then, on average, the number of tight
discrepancy constraints will be small.

Lemma 5. If T = O(1/γ2) then there exists a constant C such that

E |DT+1| = E |{i ∈ [m] | |〈ai, x(T )− x(0)〉| ≥ C‖ai‖2
√

log(8m/n)}| ≤ n/4.

Proof. Let C be a constant that will be fixed later. By linearity of expectation we can write

E |DT+1| =
m∑
i=1

Pr[|〈ai, xT − x(0)〉| ≥ C‖ai‖2
√

log(8m/n)].

We expand the inner product as

〈ai, xT − x(0)〉 =
∑
t=1

(T )γ〈ai,∆x(t)〉

where ∆x(t) =
∑k

j=1 gjwj for i.i.d. Gaussian samples g1, g2, . . . , gk ∼ N (0, 1). The Stability of
Gaussians implies that

γ〈ai,∆x(t)〉 = γ

k∑
j=1

gj〈ai, wj〉 ∼ N (0, σ2)

where σ2 = γ2
∑k

j=1〈ai, wj〉2 ≤ γ2‖ai‖22 since the basis w1, . . . , wk is an orthonormal basis of a
subspace. For each t = 1, 2, . . . , T let yt = 〈ai, x(t)−x(0)〉. It follows that the sequence of variables
y1, y2, . . . , yT satisfy the conditions of Lemma 4 with τ = γ‖ai‖2, thus

Pr[|〈ai, x(T )− x(0)〉| > tγ‖ai‖2
√
T ] = Pr[|yT | > tγ‖ai‖2

√
T ] ≤ 2e−t

2/2.

Since T = O(1/γ2), choosing t = C
√

log 8m/n and C any constant such that C ≥ 1/γ
√
T yields

Pr[|〈ai, x(T )− x(0)〉| > C‖ai‖2
√

log 8m/n] ≤ 2e− log 8m/n =
n

4m
.

By summing this inequality over all i ∈ [m] we get E |DT+1| ≤ n/4.

With this lemma we can prove Theorem 3.

Proof of Theorem 3. Let x = x(T ) be the output of Algorithm 1. It is not hard to show that for γ
much smaller than δ, x(t) ∈ K ∩ [−1, 1]n for all t with high probability. We leave this detail as an
exercise. This immediately gives that x(T ) ∈ [−1, 1]n and that the first propety in Theorem 3 is
satisfied.

It remains to prove the second property in Theorem 3. We do so by estimating E |VT | and using
Markov’s inequality. By the definition of the algorithm, E ‖x(T ) − x(0)‖22 ≤ n and x(T ) − x(0) =∑

t=1(T )γ∆x(t). For any t = 1, 2, . . . , T , if w1, w2, . . . , wk is the orthonormal basis of Wt we have

E ‖∆x(t)‖22 = E〈
k∑
j=1

gjwj ,

k∑
j=1

gjwj〉 =

k∑
j=1

E g2j = k = dimWt ≥ n− E |Dt| − E |Vt|,
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where E g2j = 1 for any j since the Gaussian samples have variance 1. Since the Gaussian samples
used by the algorithm are independent and have mean 0, we have

n ≥ E ‖x(T )− x(0)‖22 = E〈
T∑
t=1

γ∆x(t),
T∑
t=1

γ∆x(t)〉

= γ2
T∑
t=1

〈∆x(t),∆x(t)〉 = γ2
T∑
t=1

E ‖x(t)‖22.

For each t = 1, 2, . . . , T we have |Dt| ≤ |Dt+1| and |Vt| ≤ |Vt+1|, since whenever the random walk
is tight to a facet in Dt or Vt it remains tight to that facet for all further steps. Using this fact we
continue the calculation:

n ≥ γ2
T∑
t=1

E ‖∆x(t)‖22 ≥ γ2
T∑
t=1

n− E |Dt| − E |Vt| ≥ γ2(T )(n− E |DT | − E |VT |).

Choose T = 2/γ2 and using the fact that |DT | ≤ |DT+1| rearrange to get

E |VT | ≥
1

2
(n− 2E |DT |) ≥ n/4.

Applying Markov’s inequality to the random variable n− |VT | we get

Pr[n− |VT | > 9n/10] = Pr[n/10 > |VT |] ≤
n− E |VT |

9n/10
≤ 3n/4

9n/10
=

5

6

and thus |VT | ≥ n/10 with probability at least 1/6.

It is easy to verify that the algorithm runs in polynomial time.

In fact the proof above gives the following powerful statement which can be used to give many
other discrepancy upper bounds. Some applications are indicated in the exercises that follow.

Theorem 6. Let m ≥ n be positive integers and let δ = 1/n. Let λ1, . . . , λm ≥ 0 be such that∑m
i=1 e

−λ2i /2 ≤ n
4 . There is a randomized, polynomial-time algorithm such that, when given an

m × n matrix A and a vector x(0) ∈ [−1, 1]n, finds an x ∈ [−1, 1]n such that the following holds,
with probability at least 1/6− ε for any 1/6 > ε > 0.

1. For each i = 1, 2, . . . ,m we have |〈ai, x− x(0)〉| ≤ λi‖ai‖2;

2. |xi| > 1− δ for at least n/10 indices i.

Exercise 3. Let A ∈ {0, 1}m×n be a binary matrix with at most d ones per column.

a. Bound (in terms of n and d) the numbers of rows of A with at least s ones, for any integer
1 ≤ s ≤ n.

b. Use Theorem 6 to show that for any x(0) ∈ [−1, 1]n there exists an x such that ‖A(x −
x(0))‖∞ = O(

√
d) and for at least n/10 indices i we have |xi| > 1− δ.

c. Show that disc(A) = O(
√
d log n).
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Exercise 4. Fix k permutations π1, . . . , πk of [n] = {1, . . . , n}. Let S be the set system consisting
of the kn sets Sij = {πi(1), πi(2), . . . , πi(j)}, and let A ∈ {0, 1}kn×n be its incidence matrix.

a. Use Theorem 6 to show that for any x(0) ∈ [−1, 1]n there exists an x such that ‖A(x −
x(0))‖∞ = O(k) and for at least n/10 indices i we have |xi| > 1− δ.

Hint: Consider a different set system, derived by breaking each permutation into consecutive
intervals of size Ck for a large enough constant C

b. Show that disc(S) = disc(A) = O(k log n).

c. (More challenging) Imrpove the bound from the first subproblem to O(
√
k) and the bound from

the second subproblem to O(
√
k log n).
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