Balancing Vectors in Any Norm

Aleksandar (Sasho) Nikolov
University of Toronto

Based on joint work with
Daniel Dadush, Kunal Talwar, and Nicole Tomczak-Jaegermann

Outline

(2) Volume Lower Bound

(3) Factorization Upper Bounds

4. Conclusion

Discrepancy

$$
\left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{r}
-1 \\
1 \\
1 \\
-1 \\
1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

$$
\operatorname{disc}\left(U,\|\cdot\|_{\infty}\right)=\min _{\varepsilon \in\{ \pm 1\}^{N}}\|U \varepsilon\|_{\infty}
$$

Discrepancy

$$
\begin{aligned}
& \left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{r}
-1 \\
1 \\
1 \\
- \\
1 \\
-1 \\
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right) . \\
& \quad \operatorname{disc}(U,\|\cdot\| \infty)=\min _{\varepsilon \in\{ \pm 1\}^{N}}\|U \varepsilon\|_{\infty}
\end{aligned}
$$

Natural to consider arbitrary norms: any norm can be written as $\|U \cdot\|_{\infty}$.

Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in\{0,1\}^{n \times N}$, $\operatorname{disc}(U) \lesssim \sqrt{n}$

Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in\{0,1\}^{n \times N}$, $\operatorname{disc}(U) \lesssim \sqrt{n}$
- Implied by: For any $u_{1}, \ldots, u_{N} \in B_{\infty}^{n}=[-1,1]^{n}$, there exist $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}$ s.t. $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{\infty} \lesssim \sqrt{n}$.

Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in\{0,1\}^{n \times N}$, $\operatorname{disc}(U) \lesssim \sqrt{n}$
- Implied by: For any $u_{1}, \ldots, u_{N} \in B_{\infty}^{n}=[-1,1]^{n}$, there exist $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}$ s.t. $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{\infty} \lesssim \sqrt{n}$.
- [Beck and Fiala, 1981]: For any matrix $U \in\{0,1\}^{n \times N}$ with at most t ones per column, $\operatorname{disc}(U) \leq 2 t-1$

Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in\{0,1\}^{n \times N}$, $\operatorname{disc}(U) \lesssim \sqrt{n}$
- Implied by: For any $u_{1}, \ldots, u_{N} \in B_{\infty}^{n}=[-1,1]^{n}$, there exist $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}$ s.t. $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{\infty} \lesssim \sqrt{n}$.
- [Beck and Fiala, 1981]: For any matrix $U \in\{0,1\}^{n \times N}$ with at most t ones per column, $\operatorname{disc}(U) \leq 2 t-1$
- Implied by: For any $u_{1}, \ldots, u_{N} \in B_{1}^{n}$, there exist

$$
\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\} \text { s.t. }\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{\infty}<2 .
$$

Basic Bounds

- [Spencer, 1985; Gluskin, 1989]: For any matrix $U \in\{0,1\}^{n \times N}$, $\operatorname{disc}(U) \lesssim \sqrt{n}$
- Implied by: For any $u_{1}, \ldots, u_{N} \in B_{\infty}^{n}=[-1,1]^{n}$, there exist $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}$ s.t. $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{\infty} \lesssim \sqrt{n}$.
- [Beck and Fiala, 1981]: For any matrix $U \in\{0,1\}^{n \times N}$ with at most t ones per column, $\operatorname{disc}(U) \leq 2 t-1$
- Implied by: For any $u_{1}, \ldots, u_{N} \in B_{1}^{n}$, there exist $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}$ s.t. $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{\infty}<2$.

Most combinatorial discrepancy bounds are implied by geometric vector balancing arguments.

The Vector Balancing Problem

Given $u_{1}, \ldots, u_{N} \in \mathbb{R}^{n}$, and symmetric convex body $K \subset \mathbb{R}^{n}(K=-K)$, find the smallest t such that

$$
\exists \varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}: \varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N} \in t K
$$

The Vector Balancing Problem

Given $u_{1}, \ldots, u_{N} \in \mathbb{R}^{n}$, and symmetric convex body $K \subset \mathbb{R}^{n}(K=-K)$, find the smallest t such that

$$
\exists \varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}: \varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N} \in t K
$$

Minkowski Norm: $\|x\|_{K}=\inf \{t \geq 0: x \in t K\} ; t=\operatorname{disc}\left(\left(u_{i}\right)_{i=1}^{N},\|\cdot\|_{K}\right)$.

The Vector Balancing Problem

Given $u_{1}, \ldots, u_{N} \in \mathbb{R}^{n}$, and symmetric convex body $K \subset \mathbb{R}^{n}(K=-K)$, find the smallest t such that

$$
\exists \varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,+1\}: \varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N} \in t K
$$

Minkowski Norm: $\|x\|_{K}=\inf \{t \geq 0: x \in t K\} ; t=\operatorname{disc}\left(\left(u_{i}\right)_{i=1}^{N},\|\cdot\|_{K}\right)$.
Vector Balancing Constant: worst case over sequences in C
$\operatorname{vb}(C, K)=\sup \left\{\operatorname{disc}\left(U,\|\cdot\|_{K}\right): N \in \mathbb{N}, u_{1}, \ldots, u_{N} \in C, U=\left(u_{i}\right)_{i=1}^{N}\right\}$

Questions and Prior Results

- [Dvoretzky, 1963] "What can be said" about vb (K, K) ?
- [Bárány and Grinberg, 1981] $\mathrm{vb}(K, K) \leq n$ for all K.

Questions and Prior Results

- [Dvoretzky, 1963] "What can be said" about vb (K, K) ?
- [Bárány and Grinberg, 1981] $\mathrm{vb}(K, K) \leq n$ for all K.
- [Spencer, 1985; Gluskin, 1989] $\mathrm{vb}\left(B_{\infty}^{n}, B_{\infty}^{n}\right) \lesssim \sqrt{n}$
- [Beck and Fiala, 1981] vb $\left(B_{1}^{n}, B_{\infty}^{n}\right)<2$

Questions and Prior Results

- [Dvoretzky, 1963] "What can be said" about vb (K, K) ?
- [Bárány and Grinberg, 1981] $\mathrm{vb}(K, K) \leq n$ for all K.
- [Spencer, 1985; Gluskin, 1989] $\mathrm{vb}\left(B_{\infty}^{n}, B_{\infty}^{n}\right) \lesssim \sqrt{n}$
- [Beck and Fiala, 1981] vb $\left(B_{1}^{n}, B_{\infty}^{n}\right)<2$
- [Banaszczyk, 1998] $v b\left(B_{2}^{n}, K\right) \leq 5$ if K has Gaussian measure $\gamma_{n}(K) \geq \frac{1}{2}$
- Komlós Problem: Prove or disprove $\mathrm{vb}\left(B_{2}^{n}, B_{\infty}^{n}\right) \lesssim 1$.
- Banaszczyk's theorem implies vb $\left(B_{2}^{n}, B_{\infty}^{n}\right) \lesssim \sqrt{\log 2 n}$.

Vector Balancing and Rounding

For any $w \in[0,1]^{N}$, any $U=\left(u_{i}\right)_{i=1}^{N}, u_{i} \in C$, and any symmetric convex K, there exists a $x \in\{0,1\}^{N}$ such that

$$
\left\|U x-U_{w}\right\|_{K} \leq \operatorname{vb}(C, K)
$$

Our Results

We initiate a systematic study of upper and lower bounds on $\mathrm{vb}(C, K)$ and its computational complexity:

Our Results

We initiate a systematic study of upper and lower bounds on $\mathrm{vb}(C, K)$ and its computational complexity:

- A natural volumetric lower bound on $\mathrm{vb}(C, K)$ is tight up to a $O(\log n)$ factor.
- The proof implies an efficient algorithm to compute $\varepsilon \in\{-1,1\}^{N}$ given $u_{1}, \ldots, u_{N} \in C$, so that $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{K} \lesssim(1+\log n) \mathrm{vb}(C, K)$.
- Also rounding version.

Our Results

We initiate a systematic study of upper and lower bounds on $\mathrm{vb}(C, K)$ and its computational complexity:

- A natural volumetric lower bound on $\mathrm{vb}(C, K)$ is tight up to a $O(\log n)$ factor.
- The proof implies an efficient algorithm to compute $\varepsilon \in\{-1,1\}^{N}$ given $u_{1}, \ldots, u_{N} \in C$, so that $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{K} \lesssim(1+\log n) \mathrm{vb}(C, K)$.
- Also rounding version.
- An efficiently computable upper bound on $\mathrm{vb}(C, K)$ is tight up to factors polynomial in $\log n$.
- Based on an optimal application of Banaszczyks' theorem.
- Implies an efficient approximation algorithm for $\mathrm{vb}(C, K)$.

Our Results

We initiate a systematic study of upper and lower bounds on $\mathrm{vb}(C, K)$ and its computational complexity:

- A natural volumetric lower bound on $\mathrm{vb}(C, K)$ is tight up to a $O(\log n)$ factor.
- The proof implies an efficient algorithm to compute $\varepsilon \in\{-1,1\}^{N}$ given $u_{1}, \ldots, u_{N} \in C$, so that $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{K} \lesssim(1+\log n) \mathrm{vb}(C, K)$.
- Also rounding version.
- An efficiently computable upper bound on $\mathrm{vb}(C, K)$ is tight up to factors polynomial in $\log n$.
- Based on an optimal application of Banaszczyks' theorem.
- Implies an efficient approximation algorithm for $\mathrm{vb}(C, K)$.
- The results extend to hereditary discrepancy with respect to arbitrary norms.

Our Results

We initiate a systematic study of upper and lower bounds on $\mathrm{vb}(C, K)$ and its computational complexity:

- A natural volumetric lower bound on $\mathrm{vb}(C, K)$ is tight up to a $O(\log n)$ factor.
- The proof implies an efficient algorithm to compute $\varepsilon \in\{-1,1\}^{N}$ given $u_{1}, \ldots, u_{N} \in C$, so that $\left\|\varepsilon_{1} u_{1}+\ldots+\varepsilon_{N} u_{N}\right\|_{K} \lesssim(1+\log n) \mathrm{vb}(C, K)$.
- Also rounding version.
- An efficiently computable upper bound on $\mathrm{vb}(C, K)$ is tight up to factors polynomial in $\log n$.
- Based on an optimal application of Banaszczyks' theorem.
- Implies an efficient approximation algorithm for $\mathrm{vb}(C, K)$.
- The results extend to hereditary discrepancy with respect to arbitrary norms.

Prior work [Bansal, 2010; Nikolov and Talwar, 2015] implies bounds which deteriorate with the number of facets of K.

Outline

(1) Introduction

(2) Volume Lower Bound

(3) Factorization Upper Bounds

4. Conclusion

Hereditary Discrepancy

Issue: $\operatorname{disc}(U, K)=\operatorname{disc}\left(U,\|\cdot\|_{K}\right)$ is

- not robust to slight changes in U (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]

Hereditary Discrepancy

Issue: $\operatorname{disc}(U, K)=\operatorname{disc}\left(U,\|\cdot\|_{K}\right)$ is

- not robust to slight changes in U (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]
$\mathrm{vb}(C, K)$ is more robust, but not about a specific matrix U.

Hereditary Discrepancy

Issue: $\operatorname{disc}(U, K)=\operatorname{disc}\left(U,\|\cdot\|_{K}\right)$ is

- not robust to slight changes in U (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]
$\mathrm{vb}(C, K)$ is more robust, but not about a specific matrix U.
Hereditary discrepancy is a robust analog of discrepancy:

$$
\operatorname{hd}(U, K)=\max _{S \subseteq[N]} \operatorname{disc}\left(U_{S}, K\right)
$$

where $U_{S}=\left(u_{i}\right)_{i \in S}$ is the submatrix of U indexed by S.

Hereditary Discrepancy

Issue: $\operatorname{disc}(U, K)=\operatorname{disc}\left(U,\|\cdot\|_{K}\right)$ is

- not robust to slight changes in U (e.g. repeat each column)
- hard to approximate [Charikar, Newman, and Nikolov, 2011]
$\mathrm{vb}(C, K)$ is more robust, but not about a specific matrix U.
Hereditary discrepancy is a robust analog of discrepancy:

$$
\operatorname{hd}(U, K)=\max _{S \subseteq[N]} \operatorname{disc}\left(U_{S}, K\right)
$$

where $U_{S}=\left(u_{i}\right)_{i \in S}$ is the submatrix of U indexed by S.

Observation:

$$
\operatorname{vb}(C, K)=\sup \left\{\operatorname{hd}(U, K): N \in \mathbb{N}, u_{1}, \ldots, u_{N} \in C, U=\left(u_{i}\right)_{i=1}^{N}\right\}
$$

The Volume Lower Bound

Define $L=\left\{x \in \mathbb{R}^{N}: U x \in K\right\}$: the set of "good x ".

- $\operatorname{disc}(U, K)=\min \left\{t: t L \cap\{-1,1\}^{N} \neq \emptyset\right\}$.

The Volume Lower Bound

Define $L=\left\{x \in \mathbb{R}^{N}: U_{x} \in K\right\}$: the set of "good x ".

- $\operatorname{disc}(U, K)=\min \left\{t: t L \cap\{-1,1\}^{N} \neq \emptyset\right\}$.
[Lovász, Spencer, and Vesztergombi, 1986]:
If $t=h d(U, K)$, then $[0,1]^{N} \subseteq \bigcup_{x \in\{0,1\}^{N}}(x+t L)$.

The Volume Lower Bound

Define $L=\left\{x \in \mathbb{R}^{N}: U_{x} \in K\right\}$: the set of "good x ".

- $\operatorname{disc}(U, K)=\min \left\{t: t L \cap\{-1,1\}^{N} \neq \emptyset\right\}$.
[Lovász, Spencer, and Vesztergombi, 1986]:
If $t=h \mathrm{~h}(U, K)$, then $[0,1]^{N} \subseteq \bigcup_{x \in\{0,1\}^{N}}(x+t L)$.

[Banaszczyk, 1993]:

$$
1=\operatorname{vol}\left([0,1]^{N}\right) \geq \operatorname{vol}(t L)=t^{N} \operatorname{vol}(L)
$$

The Volume Lower Bound

Define $L=\left\{x \in \mathbb{R}^{N}: U x \in K\right\}$: the set of "good x ".

- $\operatorname{disc}(U, K)=\min \left\{t: t L \cap\{-1,1\}^{N} \neq \emptyset\right\}$.
[Lovász, Spencer, and Vesztergombi, 1986]:
If $t=\operatorname{hd}(U, K)$, then $[0,1]^{N} \subseteq \bigcup_{x \in\{0,1\}^{N}}(x+t L)$.

[Banaszczyk, 1993]:

$$
1=\operatorname{vol}\left([0,1]^{N}\right) \geq \operatorname{vol}(t L)=t^{N} \operatorname{vol}(L) \Longleftrightarrow \operatorname{hd}(U, K) \geq \operatorname{vol}(L)^{-1 / N}
$$

A Hereditary Volume Lower Bound

A simple strengthening:

$$
\operatorname{hd}(U, K) \geq \operatorname{volLB}(U, K)=\max _{S \subseteq[N]} \operatorname{vol}\left(\left\{x \in \mathbb{R}^{S}: U_{S} x \in K\right\}\right)^{-1 /|S|}
$$

A Hereditary Volume Lower Bound

A simple strengthening:

$$
\operatorname{hd}(U, K) \geq \operatorname{volLB}(U, K)=\max _{S \subseteq[N]} \operatorname{vol}\left(\left\{x \in \mathbb{R}^{S}: U_{S} x \in K\right\}\right)^{-1 /|S|}
$$

Lower Bound on vb($C, K)$:

$$
\operatorname{vb}(C, K) \geq \operatorname{volLB}(C, K)=\sup \left\{\operatorname{volLB}\left(\left(u_{i}\right)_{i=1}^{N}, K\right): u_{1}, \ldots, u_{N} \in C\right\}
$$

A Hereditary Volume Lower Bound

A simple strengthening:

$$
\operatorname{hd}(U, K) \geq \operatorname{volLB}(U, K)=\max _{S \subseteq[N]} \operatorname{vol}\left(\left\{x \in \mathbb{R}^{S}: U_{S} x \in K\right\}\right)^{-1 /|S|}
$$

Lower Bound on $\mathrm{vb}(C, K)$:

$$
\operatorname{vb}(C, K) \geq \operatorname{volLB}(C, K)=\sup \left\{\operatorname{volLB}\left(\left(u_{i}\right)_{i=1}^{N}, K\right): u_{1}, \ldots, u_{N} \in C\right\}
$$

Theorem

For any $n \times N$ matrix U, and any symmetric convex $C, K \subset \mathbb{R}^{n}$, $\operatorname{volLB}(U, K) \leq h d(U, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(U, K)$ $\operatorname{volLB}(C, K) \leq \operatorname{vb}(C, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(C, K)$

Rothvoß's Algorithm

Algorithm [Rothvoß, 2014]: given $K \subset \mathbb{R}^{n}$,
(1) Sample a standard Gaussian $G \sim N\left(0, I_{n}\right)$;
(2) Output

$$
X=\arg \min \left\{\|x-G\|_{2}^{2}: x \in K \cap[-1,1]^{n}\right\} .
$$

Goal: $\left|\left\{i: X_{i} \in\{-1,+1\}\right\}\right| \geq \alpha n$ for a constant α. (X is a partial coloring.)
Intuition: If K is "big enough," then in an average direction $\partial[-1,1]^{n}$ is closer to the origin than ∂K and is more likely to be hit by X.

Rothvoß's Algorithm

Algorithm [Rothvoß, 2014]: given $K \subset \mathbb{R}^{n}$,
(1) Sample a standard Gaussian $G \sim N\left(0, I_{n}\right)$;
(2) Output

$$
X=\arg \min \left\{\|x-G\|_{2}^{2}: x \in K \cap[-1,1]^{n}\right\}
$$

Goal: $\left|\left\{i: X_{i} \in\{-1,+1\}\right\}\right| \geq \alpha n$ for a constant α. (X is a partial coloring.)
Intuition: If K is "big enough," then in an average direction $\partial[-1,1]^{n}$ is closer to the origin than ∂K and is more likely to be hit by X.
[Rothvoß, 2014] For any small enough α there is a δ so that if K has Gaussian measure $\gamma_{n}(K) \geq e^{-\delta n}$, then with high probability $\mid\left\{i: X_{i} \in\{-1,+1\} \mid \geq \alpha n\right.$.

Rothvoß's Algorithm

Algorithm [Rothvoß, 2014]: given $K \subset \mathbb{R}^{n}$,
(1) Sample a standard Gaussian $G \sim N\left(0, I_{n}\right)$;
(2) Output

$$
X=\arg \min \left\{\|x-G\|_{2}^{2}: x \in K \cap[-1,1]^{n}\right\} .
$$

Goal: $\left|\left\{i: X_{i} \in\{-1,+1\}\right\}\right| \geq \alpha n$ for a constant α. (X is a partial coloring.)
Intuition: If K is "big enough," then in an average direction $\partial[-1,1]^{n}$ is closer to the origin than ∂K and is more likely to be hit by X.
[Rothvoß, 2014] For any small enough α there is a δ so that if there exists a dimension $(1-\delta) n$ subspace W for which $K \cap W$ has Gaussian measure $\gamma_{W}(K \cap W) \geq e^{-\delta n}$, then with high probability $\left|\left\{i: X_{i} \in\{-1,+1\}\right\}\right| \geq \alpha n$.

Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^{n}$ $\operatorname{hd}(U, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(U, K)$.

Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^{n}$

$$
\operatorname{hd}(U, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(U, K)
$$

Proof by an algorithm:
Find a partial coloring with discrepancy \lesssim volLB (U, K) and recurse.

Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^{n}$

$$
\operatorname{hd}(U, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(U, K)
$$

Proof by an algorithm:
Find a partial coloring with discrepancy \lesssim volLB (U, K) and recurse.
(1) Preprocess so that $N=n, U=I_{n}$;
(2) Apply Rothvoß's algorithm to $t K, t \asymp \operatorname{volLB}\left(I_{n}, K\right)$;

- If conditions hold, gives a partial coloring $X \in t K$;
(3) $S=\left\{i:-1<X_{i}<1\right\}$; Project K on \mathbb{R}^{S} and recurse.
- Need a "recentered" variant of Rothvoß's algorithm.

Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^{n}$

$$
\operatorname{hd}(U, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(U, K)
$$

Proof by an algorithm:
Find a partial coloring with discrepancy \lesssim volLB (U, K) and recurse.
(1) Preprocess so that $N=n, U=I_{n}$;
(2) Apply Rothvoß's algorithm to $t K, t \asymp \operatorname{volLB}\left(I_{n}, K\right)$;

- If conditions hold, gives a partial coloring $X \in t K$;
(3) $S=\left\{i:-1<X_{i}<1\right\}$; Project K on \mathbb{R}^{S} and recurse.
- Need a "recentered" variant of Rothvoß's algorithm.

After $k \lesssim 1+\log n$ iterations, we have $X^{1}, \ldots X^{k}$ so that

$$
\begin{aligned}
X^{1}+\ldots+X^{k} & \in\{-1,1\}^{n} \\
\left\|X^{1}+\ldots+X^{k}\right\|_{K} & \leq k t \lesssim(1+\log n) \operatorname{volLB}\left(I_{n}, K\right)
\end{aligned}
$$

Tightness of the Volume Lower Bound

Need to show: for any $U \in \mathbb{R}^{n \times N}$ and symmetric convex $K \subset \mathbb{R}^{n}$

$$
\operatorname{hd}(U, K) \lesssim(1+\log n) \cdot \operatorname{volLB}(U, K)
$$

Proof by an algorithm:
Find a partial coloring with discrepancy \lesssim volLB (U, K) and recurse.
(1) Preprocess so that $N=n, U=I_{n}$;
(2) Apply Rothvoß's algorithm to $t K, t \asymp \operatorname{volLB}\left(I_{n}, K\right)$;

- If conditions hold, gives a partial coloring $X \in t K$;
(3) $S=\left\{i:-1<X_{i}<1\right\}$; Project K on \mathbb{R}^{S} and recurse.
- Need a "recentered" variant of Rothvoß's algorithm.

After $k \lesssim 1+\log n$ iterations, we have $X^{1}, \ldots X^{k}$ so that

$$
\begin{aligned}
X^{1}+\ldots+X^{k} & \in\{-1,1\}^{n} \\
\left\|X^{1}+\ldots+X^{k}\right\|_{K} & \leq k t \lesssim(1+\log n) \operatorname{volLB}\left(I_{n}, K\right)
\end{aligned}
$$

Main Challenge: Show that the conditions of Rothvoß's algorithm are satisfied.

From Volume To Gaussian Measure

For Rothvoß's algorithm, we need that on some subspace of large dimension, the body $t K, t \asymp \operatorname{volLB}\left(I_{n}, K\right)$, has large Gaussian measure.

From Volume To Gaussian Measure

For Rothvoß's algorithm, we need that on some subspace of large dimension, the body $t K, t \asymp \operatorname{volLB}\left(I_{n}, K\right)$, has large Gaussian measure.
From the definition of volLB $\left(I_{n}, K\right)$:

$$
\forall S \subseteq[n]: \operatorname{vol}\left(\left(\operatorname{volLB}\left(I_{n}, K\right) \cdot K\right) \cap \mathbb{R}^{S}\right) \geq 1
$$

From Volume To Gaussian Measure

For Rothvoß's algorithm, we need that on some subspace of large dimension, the body $t K, t \asymp \operatorname{volLB}\left(I_{n}, K\right)$, has large Gaussian measure.
From the definition of volLB $\left(I_{n}, K\right)$:

$$
\forall S \subseteq[n]: \operatorname{vol}\left(\left(\operatorname{volLB}\left(I_{n}, K\right) \cdot K\right) \cap \mathbb{R}^{S}\right) \geq 1
$$

Theorem (Structural result)

For any δ there exists a $m=m(\delta)$ so that the following holds. Let L be a symmetric convex body s.t. $\operatorname{vol}\left(L \cap \mathbb{R}^{S}\right) \geq 1$ for all $S \subseteq[n]$. There exists a subspace W of dimension $(1-\delta) n$ for which

$$
\gamma_{W}((m L) \cap W) \geq e^{-\delta n} .
$$

Apply to $L=\operatorname{volLB}\left(I_{n}, K\right) \cdot K$ to get that the conditions of Rothvoß's algorithm are satisfied.

Proof Ideas

Generally applicable strategy:
(1) Prove the theorem for an ellipsoid $E=T\left(B_{2}^{n}\right)$.

- Reduces to linear algebra!

Proof Ideas

Generally applicable strategy:
(1) Prove the theorem for an ellipsoid $E=T\left(B_{2}^{n}\right)$.

- Reduces to linear algebra!
(2) Approximate a general convex body L by an appropriate ellipsoid.

Theorem (Regular M-ellipsoid, [Milman, 1986; Pisier, 1989])
For any symmetric convex $L \subseteq \mathbb{R}^{n}$ there exists an ellipsoid E such that for any $t \geq 1$

$$
\max \{N(L, t E), N(E, t L)\} \leq e^{c n / t}
$$

where c is a constant.
$N(K, L)=$ number of translates of L needed to cover K.
E preserves "large scale" information about L.

Proof Ideas

Generally applicable strategy:
(1) Prove the theorem for an ellipsoid $E=T\left(B_{2}^{n}\right)$.

- Reduces to linear algebra!
(2) Approximate a general convex body L by an appropriate ellipsoid.

Theorem (Regular M-ellipsoid, [Milman, 1986; Pisier, 1989])
For any symmetric convex $L \subseteq \mathbb{R}^{n}$ there exists an ellipsoid E such that for any $t \geq 1$

$$
\max \{N(L, t E), N(E, t L)\} \leq e^{c n / t}
$$

where c is a constant.
$N(K, L)=$ number of translates of L needed to cover K.
E preserves "large scale" information about L.

- $L \cap \mathbb{R}^{S}$ has large volume $\Longrightarrow E \cap \mathbb{R}^{S}$ has large volume.
- $E \cap W$ has large Gaussian measure $\Longrightarrow L \cap W$ has large Gaussian measure.

Partial Colorings

The bound $\operatorname{hd}(U, K) \lesssim(1+\log n)$ volLB (U, K) is in general tight.

Partial Colorings

The bound $\operatorname{hd}(U, K) \lesssim(1+\log n)$ volLB (U, K) is in general tight. Is the hereditary discrepancy of partial colorings $\asymp \operatorname{volLB}(U, K)$?

Partial Colorings

The bound $\operatorname{hd}(U, K) \lesssim(1+\log n)$ volLB (U, K) is in general tight. Is the hereditary discrepancy of partial colorings $\asymp \operatorname{volLB}(U, K)$?

- The hereditary discrepancy of partial colorings is $\lesssim \operatorname{volLB}(U, K)$.

Partial Colorings

The bound $\operatorname{hd}(U, K) \lesssim(1+\log n)$ volLB (U, K) is in general tight. Is the hereditary discrepancy of partial colorings $\asymp \operatorname{volLB}(U, K)$?

- The hereditary discrepancy of partial colorings is $\lesssim \operatorname{volLB}(U, K)$.
- A lower bound would follow from

Conjecture

Suppose $K \subset \mathbb{R}^{n}$ is a symmetric convex body of volume ≤ 1. Then there exists a $S \subseteq[n]$ s.t. $\operatorname{diam}_{\ell_{2}}\left(K \cap \mathbb{R}^{S}\right) \lesssim \sqrt{|S|}$.

Partial Colorings

The bound $\operatorname{hd}(U, K) \lesssim(1+\log n)$ volLB (U, K) is in general tight. Is the hereditary discrepancy of partial colorings $\asymp \operatorname{volLB}(U, K)$?

- The hereditary discrepancy of partial colorings is $\lesssim \operatorname{volLB}(U, K)$.
- A lower bound would follow from

Conjecture

Suppose $K \subset \mathbb{R}^{n}$ is a symmetric convex body of volume ≤ 1. Then there exists a $S \subseteq[n]$ s.t. $\operatorname{diam}_{\ell_{2}}\left(K \cap \mathbb{R}^{S}\right) \lesssim \sqrt{|S|}$.

- True for ellipsoids and reduces to the Restricted Invertibility Principle.
- True for general bodies K if we replace \mathbb{R}^{S} with an arbitrary subspace W and $|S|$ with $\operatorname{dim} W$.

Outline

(1) Introduction

(2) Volume Lower Bound

(3) Factorization Upper Bounds

(4) Conclusion

Upper Bounds from Banaszczyk's Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,1\}$ for any u_{1}, \ldots, u_{N}.
But what if we want to compute $\mathrm{vb}(C, K)$ or $\mathrm{hd}(U, K)$?

Upper Bounds from Banaszczyk's Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,1\}$ for any u_{1}, \ldots, u_{N}.
But what if we want to compute $\mathrm{vb}(C, K)$ or $\mathrm{hd}(U, K)$?

- We do not know how to efficiently compute volLB(C,K).
- We need a natural upper bound on $\mathrm{vb}(C, K)$.

Upper Bounds from Banaszczyk's Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,1\}$ for any u_{1}, \ldots, u_{N}.
But what if we want to compute $\mathrm{vb}(C, K)$ or $\mathrm{hd}(U, K)$?

- We do not know how to efficiently compute volLB(C,K).
- We need a natural upper bound on $\mathrm{vb}(C, K)$.

Recall [Banaszczyk, 1998]:
For any convex $K \subset \mathbb{R}^{n}$ such that $\gamma_{n}(K) \geq \frac{1}{2}, \mathrm{vb}\left(B_{2}^{n}, K\right) \leq 5$.

Upper Bounds from Banaszczyk's Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,1\}$ for any u_{1}, \ldots, u_{N}.
But what if we want to compute $\mathrm{vb}(C, K)$ or hd (U, K) ?

- We do not know how to efficiently compute volLB(C,K).
- We need a natural upper bound on $\mathrm{vb}(C, K)$.

Recall [Banaszczyk, 1998]:
For any convex $K \subset \mathbb{R}^{n}$ such that $\gamma_{n}(K) \geq \frac{1}{2}, \mathrm{vb}\left(B_{2}^{n}, K\right) \leq 5$.

Observations:

- If $\mathbb{E}\|G\|_{K} \leq 1$ for $G \sim N\left(0, I_{n}\right)$, then $\gamma_{n}(2 K) \geq \frac{1}{2}$.
- $\operatorname{vb}\left(B_{2}^{n}, K\right) \lesssim \mathbb{E}\|G\|_{K}$.

Upper Bounds from Banaszczyk's Theorem

We showed how to efficiently compute near optimal signs $\varepsilon_{1}, \ldots, \varepsilon_{N} \in\{-1,1\}$ for any u_{1}, \ldots, u_{N}.
But what if we want to compute $\mathrm{vb}(C, K)$ or hd (U, K) ?

- We do not know how to efficiently compute volLB(C,K).
- We need a natural upper bound on $\mathrm{vb}(C, K)$.

Recall [Banaszczyk, 1998]:
For any convex $K \subset \mathbb{R}^{n}$ such that $\gamma_{n}(K) \geq \frac{1}{2}, \mathrm{vb}\left(B_{2}^{n}, K\right) \leq 5$.

Observations:

- If $\mathbb{E}\|G\|_{K} \leq 1$ for $G \sim N\left(0, I_{n}\right)$, then $\gamma_{n}(2 K) \geq \frac{1}{2}$.
- $\operatorname{vb}\left(B_{2}^{n}, K\right) \lesssim \mathbb{E}\|G\|_{K}$.
- $\operatorname{vb}(C, K) \lesssim\left(\mathbb{E}\|G\|_{K}\right) \cdot \operatorname{diam}_{\ell_{2}}(C)$.

Last bound can be very loose! Can we do better?

A Better Upper Bound

Idea: Map C into B_{2}^{n} using a linear map.

$$
\lambda(C, K)=\inf \left\{\left(\mathbb{E}\|G\|_{T(K)}\right) \cdot \operatorname{diam}_{\ell_{2}}(T(C)): T \text { a linear map }\right\} .
$$

Claim: $\mathrm{vb}(C, K) \lesssim \lambda(C, K)$.

A Better Upper Bound

Idea: Map C into B_{2}^{n} using a linear map.

$$
\lambda(C, K)=\inf \left\{\left(\mathbb{E}\|G\|_{T(K)}\right) \cdot \operatorname{diam}_{\ell_{2}}(T(C)): T \text { a linear map }\right\} .
$$

Claim: $\operatorname{vb}(C, K) \lesssim \lambda(C, K)$.

- Take a linear map T achieving $\lambda(C, K)$;
- Can assume $\operatorname{diam}_{\ell_{2}}(T(C))=1$, so $\mathbb{E}\|G\|_{T(K)}=\lambda(C, K)$;

A Better Upper Bound

Idea: Map C into B_{2}^{n} using a linear map.

$$
\lambda(C, K)=\inf \left\{\left(\mathbb{E}\|G\|_{T(K)}\right) \cdot \operatorname{diam}_{\ell_{2}}(T(C)): T \text { a linear map }\right\} .
$$

Claim: $\mathrm{vb}(C, K) \lesssim \lambda(C, K)$.

- Take a linear map T achieving $\lambda(C, K)$;
- Can assume $\operatorname{diam}_{\ell_{2}}(T(C))=1$, so $\mathbb{E}\|G\|_{T(K)}=\lambda(C, K)$;
- $\mathrm{vb}(C, K)=\mathrm{vb}(T(C), T(K))$ and apply Banaszczyk's theorem.

Tightness of the Upper Bound

Theorem

For any symmetric convex $C, K \subset \mathbb{R}^{n}$,

$$
\frac{\lambda(C, K)}{(1+\log n)^{5 / 2}} \lesssim \mathrm{vb}(C, K) \lesssim \lambda(C, K) .
$$

Moreover, given membership oracle access to K and a vertex representation of C, we can efficiently compute $\lambda(C, K)$.

For a matrix $U \in \mathbb{R}^{n \times N}$, we can take $C=\operatorname{conv}\left\{ \pm u_{1}, \ldots, \pm u_{N}\right\}$, and then $\lambda(C, K)$ approximates $\operatorname{hd}(U, K)$.

Tightness of the Upper Bound

Theorem
For any symmetric convex $C, K \subset \mathbb{R}^{n}$,

$$
\frac{\lambda(C, K)}{(1+\log n)^{5 / 2}} \lesssim \mathrm{vb}(C, K) \lesssim \lambda(C, K)
$$

Moreover, given membership oracle access to K and a vertex representation of C, we can efficiently compute $\lambda(C, K)$.

For a matrix $U \in \mathbb{R}^{n \times N}$, we can take $C=\operatorname{conv}\left\{ \pm u_{1}, \ldots, \pm u_{N}\right\}$, and then $\lambda(C, K)$ approximates $h d(U, K)$.
Proof outline:
(1) Formulate $\lambda(C, K)$ as a convex minimization problem;
(2) Derive the Lagrange dual: an equivalent maximization problem;
(3) Relate dual solutions to the volume lower bound.

Convex Formulation

$\|x\|_{T(K)}=\left\|T^{-1} x\right\|_{K}$
First attempt: $\inf \left\{\mathbb{E}\left\|T^{-1} G\right\|_{K}: \operatorname{diam}_{\ell_{2}}(T(C)) \leq 1\right\}$

- Not convex: the objective is ∞ for $T=0$ and finite for any invertible T, but $0=\frac{1}{2}(T+(-T))$.

Convex Formulation

$\|x\|_{T(K)}=\left\|T^{-1} x\right\|_{K}$
First attempt: $\inf \left\{\mathbb{E}\left\|T^{-1} G\right\|_{K}: \operatorname{diam}_{\ell_{2}}(T(C)) \leq 1\right\}$

- Not convex: the objective is ∞ for $T=0$ and finite for any invertible T, but $0=\frac{1}{2}(T+(-T))$.

Observation: $\mathbb{E}\left\|T^{-1} G\right\|_{K}$ is defined entirely by $A=T^{*} T$, because the covariance of $T^{-1} G$ is given by A^{-1}.

Convex Formulation

$\|x\|_{T(K)}=\left\|T^{-1} x\right\|_{K}$
First attempt: $\inf \left\{\mathbb{E}\left\|T^{-1} G\right\|_{K}: \operatorname{diam}_{\ell_{2}}(T(C)) \leq 1\right\}$

- Not convex: the objective is ∞ for $T=0$ and finite for any invertible T, but $0=\frac{1}{2}(T+(-T))$.

Observation: $\mathbb{E}\left\|T^{-1} G\right\|_{K}$ is defined entirely by $A=T^{*} T$, because the covariance of $T^{-1} G$ is given by A^{-1}.
Formulation:

$$
\begin{aligned}
\lambda(C, K)= & \inf f(A) \\
\text { s.t. } & \langle x, A x\rangle \leq 1 \quad \forall x \in C \\
& A \succ 0 .
\end{aligned}
$$

- $f(A)=\mathbb{E}\left\|T^{-1} G\right\|_{K}$ for any T such that $T^{*} T=A$;
- f is well defined over positive definite A;

Convex Formulation

$\|x\|_{T(K)}=\left\|T^{-1} x\right\|_{K}$
First attempt: $\inf \left\{\mathbb{E}\left\|T^{-1} G\right\|_{K}: \operatorname{diam}_{\ell_{2}}(T(C)) \leq 1\right\}$

- Not convex: the objective is ∞ for $T=0$ and finite for any invertible T, but $0=\frac{1}{2}(T+(-T))$.
Observation: $\mathbb{E}\left\|T^{-1} G\right\|_{K}$ is defined entirely by $A=T^{*} T$, because the covariance of $T^{-1} G$ is given by A^{-1}.
Formulation:

$$
\begin{aligned}
\lambda(C, K)= & \inf f(A) \\
\text { s.t. } & \langle x, A x\rangle \leq 1 \quad \forall x \in C \\
& A \succ 0 .
\end{aligned}
$$

- $f(A)=\mathbb{E}\left\|T^{-1} G\right\|_{K}$ for any T such that $T^{*} T=A$;
- f is well defined over positive definite A;
- The first constraint encodes $\operatorname{diam}_{\ell_{2}}(T(C)) \leq 1$:

$$
\langle x, A x\rangle=\left\langle x, T^{*} T x\right\rangle=\langle T x, T x\rangle=\|T x\|_{2}^{2}
$$

Properties of the Formulation

- The function $f(A)$ is convex in A, and the constraints are also convex;
- Lagrange Duality: there exists an equivalent dual maximization problem, whose value also equals $\lambda(U, C)$;

Properties of the Formulation

- The function $f(A)$ is convex in A, and the constraints are also convex;
- Lagrange Duality: there exists an equivalent dual maximization problem, whose value also equals $\lambda(U, C)$;
- Each dual solution gives a lower bound on volLB (C, K), and, therefore, on $\mathrm{vb}(C, K)$;
- Tools: K-convexity, and Sudakov minoration;
- $\Longrightarrow \lambda(C, K)$ gives a lower bound on $\mathrm{vb}(C, K)$.

Properties of the Formulation

- The function $f(A)$ is convex in A, and the constraints are also convex;
- Lagrange Duality: there exists an equivalent dual maximization problem, whose value also equals $\lambda(U, C)$;
- Each dual solution gives a lower bound on volLB (C, K), and, therefore, on $\mathrm{vb}(C, K)$;
- Tools: K-convexity, and Sudakov minoration;
- $\Longrightarrow \lambda(C, K)$ gives a lower bound on $\mathrm{vb}(C, K)$.

Computation: The convex optimization problem can be solved using the ellipsoid method, given a membership oracle for K and a vertex representation of C.

Outline

(1) Introduction

(2) Volume Lower Bound

(3) Factorization Upper Bounds

4. Conclusion

Conclusion

In this work:

- Tightness of natural upper and lower bounds for vector balancing.
- Efficient algorithms to find nearly optimal vector balancing signs, and to compute $\mathrm{vb}(C, K)$, and hereditary discrepancy with respect to any norm.
- Our results strongly use the geometry of the underlying discrepancy problem.

Conclusion

In this work:

- Tightness of natural upper and lower bounds for vector balancing.
- Efficient algorithms to find nearly optimal vector balancing signs, and to compute $\mathrm{vb}(C, K)$, and hereditary discrepancy with respect to any norm.
- Our results strongly use the geometry of the underlying discrepancy problem.

Open questions:

- Does volLB (C, K) give lower bounds on partial colorings?
- $\operatorname{vb}(K, K) \asymp \operatorname{volLB}(K, K)$? (True for ℓ_{p}.)
- Can the bounds for $\lambda(C, K)$ be improved?
W. Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Structures \& Algorithms, 12(4):351-360, 1998.
Wojciech Banaszczyk. Balancing vectors and convex bodies. Studia Math., 106(1):93-100, 1993. ISSN 0039-3223.
Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2010, pages 3-10. IEEE, 2010.
Nikhil Bansal, Moses Charikar, Ravishankar Krishnaswamy, and Shi Li. Better algorithms and hardness for broadcast scheduling via a discrepancy approach. In SODA, pages 55-71, 2014.
I. Bárány and VS Grinberg. On some combinatorial questions in finite-dimensional spaces. Linear Algebra and its Applications, 41:1-9, 1981.
J. Beck and T. Fiala. Integer-making theorems. Discrete Applied Mathematics, 3(1):1-8, 1981.
József Beck. Balanced two-colorings of finite sets in the square i.
Combinatorica, 1(4):327-335, 1981.

Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for minimizing discrepancy. In SODA, pages 1607-1614, 2011.
Aryeh Dvoretzky. Problem. In Proc. Sympos. Pure Math., Vol. VII. Amer. Math. Soc., Providence, R.I., 1963.
Efim Davydovich Gluskin. Extremal properties of orthogonal parallelepipeds and their applications to the geometry of banach spaces. Mathematics of the USSR-Sbornik, 64(1):85, 1989.
Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2616-2625. SIAM, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974782.172. URL https://doi.org/10.1137/1.9781611974782.172.
Kasper Green Larsen. On range searching in the group model and combinatorial discrepancy. SIAM J. Comput., 43(2):673-686, 2014. doi: 10.1137/120865240. URL http://dx.doi.org/10.1137/120865240.
L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancy of set-systems and matrices. European Journal of Combinatorics, 7(2):151-160, 1986.

Jiri Matousek. Approximations and optimal geometric divide-and-conquer. Journal of Computer and System Sciences, 50(2):203-208, 1995.

Vitali D. Milman. Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. C. R. Acad. Sci. Paris Sér. I Math., 302(1):25-28, 1986. ISSN 0249-6291.

Alantha Newman, Ofer Neiman, and Aleksandar Nikolov. Beck's three permutations conjecture: a counterexample and some consequences. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012, pages 253-262. IEEE Computer Soc., Los Alamitos, CA, 2012.

Aleksandar Nikolov. An improved private mechanism for small databases. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 1010-1021. Springer, 2015. doi: 10.1007/978-3-662-47672-7_82. URL http://dx.doi.org/10.1007/978-3-662-47672-7_82.

Aleksandar Nikolov and Kunal Talwar. Approximating hereditary discrepancy via small width ellipsoids. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 324-336. SIAM, Philadelphia, PA, 2015. doi: 10.1137/1.9781611973730.24. URL https://doi.org/10.1137/1.9781611973730.24.
Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: The small database and approximate cases. SIAM J. Comput., 45(2):575-616, 2016. doi: 10.1137/130938943. URL http://dx.doi.org/10.1137/130938943.
Gilles Pisier. A new approach to several results of V. Milman. J. Reine Angew. Math., 393:115-131, 1989. ISSN 0075-4102. doi: 10.1515/crll.1989.393.115. URL https://doi.org/10.1515/crll.1989.393.115.
Thomas Rothvoss. The entropy rounding method in approximation algorithms. In Symposium on Discrete Algorithms (SODA), pages 356-372, 2012.
Thomas Rothvoß. Constructive discrepancy minimization for convex setsaac

In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 140-145. IEEE Computer Society, 2014. doi: 10.1109/FOCS.2014.23. URL http://dx.doi.org/10.1109/FOCS. 2014.23.
Joel Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289:679-706, 1985.
Zhewei Wei and Ke Yi. The space complexity of 2-dimensional approximate range counting. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 252-264. SIAM, 2013. ISBN 978-1-61197-251-1. doi: 10.1137/1.9781611973105.19. URL http://dx.doi.org/10.1137/1.9781611973105.19.

