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Range Counting

Private Range Counting

Public Input: A ground set P ⊆ Rd ; a range space, i.e. collection of
sets R ⊆ 2P induced by some natural geometric sets

Private input: Integer weight xp for each p ∈ P.

Goal: For all ranges R ∈ R, approximate privately

R(x) =
∑
p∈R

xp

Accuracy: Mean squared error of an algorithm M is

1

|R|
∑
R∈R

(R(x)−M(R, x))2

Muthu, A. Nikolov (Rutgers) Private Range Counting 3 / 21



Range Counting

Halfspace Counting

Each R ∈ R is the points of P contained in some halfspace in Rd .

Query: what is the total weight of all points of P in halfspace R?

Fundamental in Computational Geometry. Other range queries can be
expressed as halfspace queries by “lifting” them to a higher dimension.
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Range Counting

Private Linear Queries

More general algebraic problem:

Public Input: A query matrix A ∈ Rm×n

In range counting: each row of A is the indicator of a range

Private Input: A vector x ∈ Zn

In range counting: the private point weights

Goal: An algorithm M that approximates Ax and satisfies a privacy
guarantee ((ε, δ)-differential privacy).

Accuracy: Mean squared error is 1
m‖Ax−M(A, x)‖22
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Range Counting

Differential Privacy

Definition

An algorithm M with input domain Zn and output range Y is
(ε, δ)-differentially private if for every n, every x, x′ with ‖x− x′‖1 ≤ 1,
and every measurable S ⊆ Y , M satisfies

Pr[M(x) ∈ S ] ≤ eε Pr[M(x′) ∈ S ] + δ.
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Range Counting

What is Known about Halfspace Counting?

Lower Bounds:
Ω(n) squared error necessary for arbitrary 0-1 A when m > n [DN03]

Does not apply to halfspace counting! No superconstant lower bound
known.

Upper Bounds:
Randomized response gives O(n log m).
For halfspaces m = O(nd), therefore O(nd log n) error is sufficient.

Muthu, A. Nikolov (Rutgers) Private Range Counting 7 / 21



Range Counting

Our Results

Lower bounds
Private halfspace counting in Rd requires Ω(n1−1/d) mean squared
error.

More generally: linear queries A require noise lower bounded by the
(hereditary) combinatorial discrepancy of A (up to a log factor).

Upper bounds
Halfspace counting can be approximated privately with O(n1−1/d)
mean squared error.

More generally: range counting for ranges with shatter functions
exponent d can be approximated with the same error.
Bounds also extend to worst case error (up to polylog factors).

Both results use discrepancy theory.
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Lower Bounds

Lower bound: Dinur-Nissim attack

Assume: There exists M such that for any x w.h.p.
‖Ax−M(A, x)‖2 ≤ E .

Adversary’s Goal: Given output of M(A, x), compute x′, ‖x− x′‖1 � n.
So M is not private.

Procedure: Output any x′ s.t. ‖Ax′ −M(A, x)‖2 � E (succeeds w.p.
1− β).

We have ‖Ax− Ax′‖2 ≤ ‖Ax′ −M(A, x)‖2 + ‖Ax−M(A, x)‖2 � E .

Needed: E such that ‖Ax′ − Ax‖2 � E ⇒ ‖x− x′‖1 � n.
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Lower Bounds

Discrepancy connection

Discrepancy: The adversary can succeed when

E � discα(A) = min
b∈{0,±1}n
‖b‖1≥αn

‖Ab‖2

When α = 0, this is trivially 0.
When α = 1, this is the classical combinatorial `2 discrepancy.

Can we connect discα to disc1 when α ∈ (0, 1)?
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Lower Bounds

A More Robust Lower Bound

herdiscα(A) = maxS⊆[n] discα(A|S)

Weaker success condition for the adversary: choose a subset S of [n]
(based only on A) and then guess most of x restricted to S :

still implies a contradiction with (ε, δ)-differential privacy

adversary can succeeds when E � herdiscα(A)

herdiscα(A) ≥ herdisc1(A)/O(log n) (for constant α)
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Lower Bounds

Putting it together

Theorem (Main Lower Bound)

No algorithm M that satisfies

∀x ∈ {0, 1}n : Pr[‖Ax−M(A, x)‖2 = o(herdisc1(A)/ log n)] ≥ 1− β,

is (ε, δ)-differentially private for ε = O(1), and constant δ < 1 and β < 1.

Halfspace counting:

Mean squared error for private halfspace queries is Ω(n1−1/d/ log n)

Using the hereditary structure of halfspace range spaces, we can show
mean squared error is Ω(n1−1/d).
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Upper Bounds

Two Tools: Input and Output Perturbation

Input perturbation: Compute x̃ = x + Lap(1/ε)n and output Ax̃.

Output perturbation: Output Ax + Lap(1/ε′)m for ε′ chosen to
satisfy (ε, δ)-differential privacy.
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Upper Bounds

When Do the Tools Work?

For range counting:

input perturbation works well with small ranges (squared error linear
in size of range)

output perturbation works well when each point belongs to few
ranges (squared error linear in maximum degree)

But for halfspaces most ranges are large and most points belong to many
ranges.
Solution from discrepancy theory: halfspace ranges admit a nice
decomposition [Mat95]. (works for range spaces with VC dimension d and
shatter function exponent d)
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Upper Bounds

Decomposition

Decompose R into a series of new range spaces {Ti}log ni=1 such that
approximating counts for each Ti gives the counts for R.

R is decomposed into:

Ti with many small sets (i large): can use input perturbation

Ti with few large sets (i small): can use output perturbation

Do we achieve the right balance? No!

Values of i s.t. noise variances is O(n1−1/d):

i0 = logn
di1 = logn

d − logn
d2

Output perturbation Input perturbation
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Upper Bounds

How to Make It work

For i ∈ (i1, i0):

For any Ti , there are points p that belong to a lot of sets and incur
large privacy loss

i.e. we need noise with variance Ω(n) to preserve their privacy

But we control both maximum set size and number of sets in Ti !
Idea: use average privacy loss (privacy loss averaged over all p)

The “average” p requires only O(n1−1/d) noise to preserve its privacy

We find a set X s.t.

the privacy of each p ∈ X can be preserved by noise with variance
O(n1−1/d)
|X | ≥ |P|/2.
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Upper Bounds

A partial coloring style algorithm:

For i ≥ i0 use input perturbation to approximate counts for Ti w.r.t.
X

For i < i0, we add Laplace noise with variance O(n1−1/d2(i0−i)(1−d))
to approximate counts for Ti w.r.t. X

This allows us to compute halfspace counts over X with squared error
O(n1−1/d).

Recurse on P \ X (still a halfspace range space)
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Conclusion

This work:

Optimal upper and lower bounds for private halfspace counting

Connection between discrepancy theory and noise lower bounds for
differential privacy

Other results: A lower bound of Ω((log n)d−1) for orthogonal range
counting. Tight up to the dependence on d .

Open question: Does discrepancy always characterize the error needed to
preserve privacy of linear queries?

Thank you!
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