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Discrepancy Minimization

We consider the following discrepancy minimization problem:

Input: M sets S1, . . . ,SM on N elements.

Goal: Find an assignment χ of {±1} to the elements so as to
minimize:

max
j

∣∣∣∣∣∣
∑
i∈Sj

χ(i)

∣∣∣∣∣∣. (1)

Discrepancy of {S1, . . . ,SM}: minimum of (1) over all
assignments.
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Example

What is the discrepancy of the five-cycle?

S1 = {x1, x2}
S2 = {x2, x3}
S3 = {x3, x4}
S4 = {x4, x5}
S5 = {x1, x5}

2: No matter how we alternate -1 and +1, one edge will be
monochromatic.

Introduction 3/20
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Upper and Lower Bounds

A system of O(N) random sets on N elements has discrepancy
Ω(
√

N) with high probability.

Lower bound achieved explicitly by a set system based on
Hadamard matrices.

Spencer[Spe85]: every system of O(N) sets has O(
√

N)
discrepancy.

Bansal[Ban10]: algorithm to find the assignment in polynomial
time.

Introduction 4/20
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Our Contribution

Bansal’s work leaves a few interesting questions open:

I If we know that the discrepancy of the set system is 0, can we
find an assignment that achieves discrepancy o(

√
N)?

I This work: No!

Consequence: Discrepancy cannot be approximated to within any
multiplicative factor.

Theorem (Main Theorem)

Let {S1, . . . ,SM} be a set system on N elements and M = O(N)
sets. It is NP-hard to distinguish between the following cases:

1. the set system has discrepancy 0

2. the set system has discrepancy Ω(
√

N).
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Notation

Set system ⇔ incidence matrix A (Aj∗: indicator vector of Sj).

Discrepancy is defined as:

D∞(A) = min
x∈{±1}N

‖Ax‖∞.

We will need a related notion of discrepancy, `22 discrepancy:

D2
2 (A) = min

x∈{±1}N
‖Ax‖22.

Hardness for Systems of Multisets 6/20
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Fact

D2
∞(A) ≥ D2

2 (A)
M ⇒ D∞(A) ≥

√
D2

2 (A)
M .

Hardness for Systems of Multisets 7/20
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We prove:

Theorem
Given an M × N 0-1 matrix A with M = O(N), it is NP-hard to
distinguish between the cases

1. D2
2 (A) = 0 (⇒ D∞ = 0),

2. D2
2 (A) ≥ Ω(N2) (⇒ D∞ = Ω(

√
N)).

This theorem implies the main theorem.

Hardness for Systems of Multisets 8/20
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Reduction Overview

Plan:

I Max-2-2-Set-Splitting: small inapproximability gap;

I Amplify: compose with a strong discrepancy lower bound
instance.

I Simple composition: hardness for multisets;

I Decomposing Max-2-2-Set-Splitting + simple
composition: hardness for sets.

Hardness for Systems of Multisets 9/20
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Multisets

We start with an easier theorem:

Theorem
Given an M × N matrix B with M = O(N) and entries in
{0, . . . , b}, where b is a constant, it is NP-hard to distinguish
between the cases:

1. ∃y ∈ {−1, 1}N for which ||By ||22 = 0;

2. ∀y ∈ {−1, 1}N , ||By ||22 ≥ Ω(N2).

Corresponds to discrepancy of multisets.

Hardness for Systems of Multisets 10/20
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Set Splitting

We reduce from:

Max-2-2-Set-Splitting: given a set system of m sets on n
elements, each consisting of 4 elements, and each element
appearing in ≤ b sets, b a constant (m = O(n)).

C : incidence matrix of a Max-2-2-Set-Splitting instance.
[Gur03]:it is NP-hard to distinguish between:

1. There is an assignment such that each set has discrepancy 0
(D2

2 (C ) = 0).

2. For any assignment at least a constant fraction of the sets
have nonzero discrepancy (D2

2 (C ) = Ω(n)).

We need to amplify the 0 vs Ω(n) gap to 0 vs Ω(n2).
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Hadamard Matrices

Hadamard matrices are ±1 symmetric matrices whose columns and
rows are pairwise orthogonal. The easiest to construct are:

H2 =

(
1 1
1 −1

)
; Hn =

(
Hn/2 Hn/2

Hn/2 −Hn/2

)
.

0-1 matrix W ← replace the -1 entries in Hn with 0.

Lemma
Let W be a k × k matrix as defined above. Let x ∈ Rk be a vector
such that

∑
i>1 x2

i = Ω(k). Then ‖Wx‖22 = Ω(k2).

A slight strengthening of the lower bound for ±1
assignments [Cha91].

Hardness for Systems of Multisets 12/20
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The Reduction

Let W be m ×m, and let B = WC , where C is the incidence
matrix of a Max-2-2-Set-Splitting instance. Then:

I Each entry of B is in {0, . . . , b}.
I If D2

2 (C ) = 0, ∃y : By = W (Cy) = W 0 = 0.

I If D2
2 (C ) = Ω(n), ∀y : ‖By‖22 = ‖W (Cy)‖22 = Ω(n2).
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From Multisets to Sets

Reduction is to multisets because an element in a
Max-2-2-Set-Splitting instance can appear in more than one
set.

Workaround:

I partition the sets so that in each partition each element
appears once;

I apply the reduction to each partition.

Hardness for Systems of Sets 14/20
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Partitioning

I Construct a graph G , where the vertices are the sets of the set
splitting instance;

I two vertices are connected if they share an element.

I G is constant degree, i.e. has constant chromatic number.
There is a constant number of color classes, each containing
non-overlapping sets.
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x1, x2, x3, x10

x1, x4, x5, x11

x2, x4, x6, x12

x5, x7, x8, x20

x3, x8, x9, x30
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Reduction for Set Systems

The reduction is:

I apply the multiset reduction to each color class;

I A← union of resulting systems.

I Since in each partition each element appears once, A is 0-1.

I When D2
2 (C ) = 0, D2

2 (A) = 0.

I When D2
2 (C ) = Ω(n), then for any assignment y , there exists

a partition with incidence matrix C ′ such that
‖C ′y‖22 ≥ Ω(1)‖Cy‖22 = Ω(n) (by averaging). Then
‖Ay‖22 ≥ ‖WC ′y‖22 = Ω(n2).
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I When D2
2 (C ) = Ω(n), then for any assignment y , there exists

a partition with incidence matrix C ′ such that
‖C ′y‖22 ≥ Ω(1)‖Cy‖22 = Ω(n) (by averaging). Then
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General Recipe

Lower Bounds → Hardness:

We can replace W with another set system that witnesses a lower
bound on the discrepancy of some class of set systems.

Under technical conditions, the construction results in 0 vs
worst case lower bound hardness.

Using this idea we prove a tight hardness result for set systems
with bounded shatter function.
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Open Problems

Our hardness results are for set systems with M = O(N). Can we
show hardness results for other regimes of M?

Other notions of discrepancy exist (e.g. hereditary discrepancy,
linear discrepancy). What is the computational complexity of those
notions of discrepancy?
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Thank you!
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