Tight Hardness Results for Minimizing Discrepancy

Moses Charikar Alantha Newman Aleksandar Nikolov

Discrepancy Minimization

We consider the following discrepancy minimization problem:

Discrepancy Minimization

We consider the following discrepancy minimization problem: Input: M sets S_{1}, \ldots, S_{M} on N elements.

Discrepancy Minimization

We consider the following discrepancy minimization problem: Input: M sets S_{1}, \ldots, S_{M} on N elements.

Goal: Find an assignment χ of $\{ \pm 1\}$ to the elements so as to minimize:

$$
\begin{equation*}
\max _{j}\left|\sum_{i \in S_{j}} \chi(i)\right| \tag{1}
\end{equation*}
$$

Discrepancy Minimization

We consider the following discrepancy minimization problem: Input: M sets S_{1}, \ldots, S_{M} on N elements.

Goal: Find an assignment χ of $\{ \pm 1\}$ to the elements so as to minimize:

$$
\max _{j}\left|\sum_{i \in S_{j}} \chi(i)\right|
$$

Discrepancy of $\left\{S_{1}, \ldots, S_{M}\right\}$: minimum of (1) over all assignments.

Example

What is the discrepancy of the five-cycle?

$$
\begin{aligned}
S_{1} & =\left\{x_{1}, x_{2}\right\} \\
S_{2} & =\left\{x_{2}, x_{3}\right\} \\
S_{3} & =\left\{x_{3}, x_{4}\right\} \\
S_{4} & =\left\{x_{4}, x_{5}\right\} \\
S_{5} & =\left\{x_{1}, x_{5}\right\}
\end{aligned}
$$

Example

What is the discrepancy of the five-cycle?

$$
\begin{aligned}
S_{1} & =\left\{x_{1}, x_{2}\right\} \\
S_{2} & =\left\{x_{2}, x_{3}\right\} \\
S_{3} & =\left\{x_{3}, x_{4}\right\} \\
S_{4} & =\left\{x_{4}, x_{5}\right\} \\
S_{5} & =\left\{x_{1}, x_{5}\right\}
\end{aligned}
$$

2: No matter how we alternate -1 and +1 , one edge will be monochromatic.

Upper and Lower Bounds

A system of $O(N)$ random sets on N elements has discrepancy $\Omega(\sqrt{N})$ with high probability.

Upper and Lower Bounds

A system of $O(N)$ random sets on N elements has discrepancy $\Omega(\sqrt{N})$ with high probability.
Lower bound achieved explicitly by a set system based on Hadamard matrices.

Upper and Lower Bounds

A system of $O(N)$ random sets on N elements has discrepancy $\Omega(\sqrt{N})$ with high probability.
Lower bound achieved explicitly by a set system based on Hadamard matrices.

Spencer[Spe85]: every system of $O(N)$ sets has $O(\sqrt{N})$ discrepancy.

Upper and Lower Bounds

A system of $O(N)$ random sets on N elements has discrepancy $\Omega(\sqrt{N})$ with high probability.
Lower bound achieved explicitly by a set system based on Hadamard matrices.

Spencer[Spe85]: every system of $O(N)$ sets has $O(\sqrt{N})$ discrepancy.

Bansal[Ban10]: algorithm to find the assignment in polynomial time.

Our Contribution

Bansal's work leaves a few interesting questions open:

Our Contribution

Bansal's work leaves a few interesting questions open:

- If we know that the discrepancy of the set system is 0 , can we find an assignment that achieves discrepancy $o(\sqrt{N})$?

Our Contribution

Bansal's work leaves a few interesting questions open:

- If we know that the discrepancy of the set system is 0 , can we find an assignment that achieves discrepancy $o(\sqrt{N})$?
- This work: No!

Our Contribution

Bansal's work leaves a few interesting questions open:

- If we know that the discrepancy of the set system is 0 , can we find an assignment that achieves discrepancy $o(\sqrt{N})$?
- This work: No!

Consequence: Discrepancy cannot be approximated to within any multiplicative factor.

Our Contribution

Bansal's work leaves a few interesting questions open:

- If we know that the discrepancy of the set system is 0 , can we find an assignment that achieves discrepancy $o(\sqrt{N})$?
- This work: No!

Consequence: Discrepancy cannot be approximated to within any multiplicative factor.

Theorem (Main Theorem)

Let $\left\{S_{1}, \ldots, S_{M}\right\}$ be a set system on N elements and $M=O(N)$ sets. It is NP-hard to distinguish between the following cases:

1. the set system has discrepancy 0
2. the set system has discrepancy $\Omega(\sqrt{N})$.

Notation

Set system \Leftrightarrow incidence matrix $A\left(A_{j *}\right.$: indicator vector of $\left.S_{j}\right)$.

Notation

Set system \Leftrightarrow incidence matrix $A\left(A_{j *}\right.$: indicator vector of $\left.S_{j}\right)$. Discrepancy is defined as:

$$
D_{\infty}(A)=\min _{x \in\{ \pm 1\}^{N}}\|A x\|_{\infty}
$$

Notation

Set system \Leftrightarrow incidence matrix $A\left(A_{j *}\right.$: indicator vector of $\left.S_{j}\right)$. Discrepancy is defined as:

$$
D_{\infty}(A)=\min _{x \in\{ \pm 1\}^{N}}\|A x\|_{\infty}
$$

We will need a related notion of discrepancy, ℓ_{2}^{2} discrepancy:

$$
D_{2}^{2}(A)=\min _{x \in\{ \pm 1\}^{N}}\|A x\|_{2}^{2}
$$

Fact

$$
D_{\infty}^{2}(A) \geq \frac{D_{2}^{2}(A)}{M} \quad \Rightarrow \quad D_{\infty}(A) \geq \sqrt{\frac{D_{2}^{2}(A)}{M}} .
$$

We prove:
Theorem
Given an $M \times N$ 0-1 matrix A with $M=O(N)$, it is NP-hard to distinguish between the cases

1. $D_{2}^{2}(A)=0\left(\Rightarrow D_{\infty}=0\right)$,
2. $D_{2}^{2}(A) \geq \Omega\left(N^{2}\right)\left(\Rightarrow D_{\infty}=\Omega(\sqrt{N})\right)$.

We prove:
Theorem
Given an $M \times N$ 0-1 matrix A with $M=O(N)$, it is $N P$-hard to distinguish between the cases

1. $D_{2}^{2}(A)=0\left(\Rightarrow D_{\infty}=0\right)$,
2. $D_{2}^{2}(A) \geq \Omega\left(N^{2}\right)\left(\Rightarrow D_{\infty}=\Omega(\sqrt{N})\right)$.

This theorem implies the main theorem.

Reduction Overview

Plan:

Reduction Overview

Plan:

- Max-2-2-Set-Splitting: small inapproximability gap;

Reduction Overview

Plan:

- Max-2-2-Set-Splitting: small inapproximability gap;
- Amplify: compose with a strong discrepancy lower bound instance.

Reduction Overview

Plan:

- Max-2-2-Set-Splitting: small inapproximability gap;
- Amplify: compose with a strong discrepancy lower bound instance.
- Simple composition: hardness for multisets;

Reduction Overview

Plan:

- Max-2-2-Set-Splitting: small inapproximability gap;
- Amplify: compose with a strong discrepancy lower bound instance.
- Simple composition: hardness for multisets;
- Decomposing Max-2-2-Set-Splitting + simple composition: hardness for sets.

Multisets

We start with an easier theorem:
Theorem
Given an $M \times N$ matrix B with $M=O(N)$ and entries in $\{0, \ldots, b\}$, where b is a constant, it is NP-hard to distinguish between the cases:

$$
\begin{aligned}
& \text { 1. } \exists y \in\{-1,1\}^{N} \text { for which }\|B y\|_{2}^{2}=0 \text {; } \\
& \text { 2. } \forall y \in\{-1,1\}^{N},\|B y\|_{2}^{2} \geq \Omega\left(N^{2}\right) \text {. }
\end{aligned}
$$

Multisets

We start with an easier theorem:
Theorem
Given an $M \times N$ matrix B with $M=O(N)$ and entries in $\{0, \ldots, b\}$, where b is a constant, it is NP-hard to distinguish between the cases:

$$
\begin{aligned}
& \text { 1. } \exists y \in\{-1,1\}^{N} \text { for which }\|B y\|_{2}^{2}=0 \text {; } \\
& \text { 2. } \forall y \in\{-1,1\}^{N},\|B y\|_{2}^{2} \geq \Omega\left(N^{2}\right) \text {. }
\end{aligned}
$$

Corresponds to discrepancy of multisets.

Set Splitting

We reduce from:
Max-2-2-Set-Splitting: given a set system of m sets on n elements, each consisting of 4 elements, and each element appearing in $\leq b$ sets, b a constant $(m=O(n))$.

Set Splitting

We reduce from:
Max-2-2-Set-Splitting: given a set system of m sets on n elements, each consisting of 4 elements, and each element appearing in $\leq b$ sets, b a constant $(m=O(n))$.

C: incidence matrix of a Max-2-2-Set-Splitting instance. [Gur03]:it is NP-hard to distinguish between:

1. There is an assignment such that each set has discrepancy 0 $\left(D_{2}^{2}(C)=0\right)$.
2. For any assignment at least a constant fraction of the sets have nonzero discrepancy $\left(D_{2}^{2}(C)=\Omega(n)\right)$.

Set Splitting

We reduce from:
Max-2-2-Set-Splitting: given a set system of m sets on n elements, each consisting of 4 elements, and each element appearing in $\leq b$ sets, b a constant $(m=O(n))$.

C: incidence matrix of a Max-2-2-Set-Splitting instance. [Gur03]:it is NP-hard to distinguish between:

1. There is an assignment such that each set has discrepancy 0 $\left(D_{2}^{2}(C)=0\right)$.
2. For any assignment at least a constant fraction of the sets have nonzero discrepancy $\left(D_{2}^{2}(C)=\Omega(n)\right)$.

We need to amplify the 0 vs $\Omega(n)$ gap to 0 vs $\Omega\left(n^{2}\right)$.

Hadamard Matrices

Hadamard matrices are ± 1 symmetric matrices whose columns and rows are pairwise orthogonal. The easiest to construct are:

$$
H_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) ; H_{n}=\left(\begin{array}{cc}
H_{n / 2} & H_{n / 2} \\
H_{n / 2} & -H_{n / 2}
\end{array}\right) .
$$

Hadamard Matrices

Hadamard matrices are ± 1 symmetric matrices whose columns and rows are pairwise orthogonal. The easiest to construct are:

$$
H_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) ; H_{n}=\left(\begin{array}{cc}
H_{n / 2} & H_{n / 2} \\
H_{n / 2} & -H_{n / 2}
\end{array}\right) .
$$

0-1 matrix $W \leftarrow$ replace the -1 entries in H_{n} with 0 .

Hadamard Matrices

Hadamard matrices are ± 1 symmetric matrices whose columns and rows are pairwise orthogonal. The easiest to construct are:

$$
H_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) ; H_{n}=\left(\begin{array}{cc}
H_{n / 2} & H_{n / 2} \\
H_{n / 2} & -H_{n / 2}
\end{array}\right) .
$$

0-1 matrix $W \leftarrow$ replace the -1 entries in H_{n} with 0 .

Lemma

Let W be a $k \times k$ matrix as defined above. Let $x \in \mathbb{R}^{k}$ be a vector such that $\sum_{i>1} x_{i}^{2}=\Omega(k)$. Then $\|W x\|_{2}^{2}=\Omega\left(k^{2}\right)$.

Hadamard Matrices

Hadamard matrices are ± 1 symmetric matrices whose columns and rows are pairwise orthogonal. The easiest to construct are:

$$
H_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) ; H_{n}=\left(\begin{array}{cc}
H_{n / 2} & H_{n / 2} \\
H_{n / 2} & -H_{n / 2}
\end{array}\right) .
$$

0-1 matrix $W \leftarrow$ replace the -1 entries in H_{n} with 0 .

Lemma

Let W be a $k \times k$ matrix as defined above. Let $x \in \mathbb{R}^{k}$ be a vector such that $\sum_{i>1} x_{i}^{2}=\Omega(k)$. Then $\|W x\|_{2}^{2}=\Omega\left(k^{2}\right)$.

A slight strengthening of the lower bound for ± 1 assignments [Cha91].

The Reduction

Let W be $m \times m$, and let $B=W C$, where C is the incidence matrix of a MAX-2-2-SET-Splitting instance. Then:

The Reduction

Let W be $m \times m$, and let $B=W C$, where C is the incidence matrix of a Max-2-2-Set-Splitting instance. Then:

- Each entry of B is in $\{0, \ldots, b\}$.

The Reduction

Let W be $m \times m$, and let $B=W C$, where C is the incidence matrix of a Max-2-2-SET-Splitting instance. Then:

- Each entry of B is in $\{0, \ldots, b\}$.
- If $D_{2}^{2}(C)=0, \exists y: B y=W(C y)=W 0=0$.

The Reduction

Let W be $m \times m$, and let $B=W C$, where C is the incidence matrix of a Max-2-2-Set-Splitting instance. Then:

- Each entry of B is in $\{0, \ldots, b\}$.
- If $D_{2}^{2}(C)=0, \exists y: B y=W(C y)=W 0=0$.
- If $D_{2}^{2}(C)=\Omega(n), \forall y:\|B y\|_{2}^{2}=\|W(C y)\|_{2}^{2}=\Omega\left(n^{2}\right)$.

From Multisets to Sets

Reduction is to multisets because an element in a Max-2-2-Set-Splitting instance can appear in more than one set.

From Multisets to Sets

Reduction is to multisets because an element in a Max-2-2-Set-Splitting instance can appear in more than one set.

Workaround:

From Multisets to Sets

Reduction is to multisets because an element in a Max-2-2-Set-Splitting instance can appear in more than one set.

Workaround:

- partition the sets so that in each partition each element appears once;

From Multisets to Sets

Reduction is to multisets because an element in a Max-2-2-Set-Splitting instance can appear in more than one set.

Workaround:

- partition the sets so that in each partition each element appears once;
- apply the reduction to each partition.

Partitioning

- Construct a graph G, where the vertices are the sets of the set splitting instance;

Partitioning

- Construct a graph G, where the vertices are the sets of the set splitting instance;
- two vertices are connected if they share an element.

Partitioning

- Construct a graph G, where the vertices are the sets of the set splitting instance;
- two vertices are connected if they share an element.
- G is constant degree, i.e. has constant chromatic number. There is a constant number of color classes, each containing non-overlapping sets.

Reduction for Set Systems

The reduction is:

Reduction for Set Systems

The reduction is:

- apply the multiset reduction to each color class;

Reduction for Set Systems

The reduction is:

- apply the multiset reduction to each color class;
- $A \leftarrow$ union of resulting systems.

Reduction for Set Systems

The reduction is:

- apply the multiset reduction to each color class;
- $A \leftarrow$ union of resulting systems.
- Since in each partition each element appears once, A is $0-1$.

Reduction for Set Systems

The reduction is:

- apply the multiset reduction to each color class;
- $A \leftarrow$ union of resulting systems.
- Since in each partition each element appears once, A is 0-1.
- When $D_{2}^{2}(C)=0, D_{2}^{2}(A)=0$.

Reduction for Set Systems

The reduction is:

- apply the multiset reduction to each color class;
- $A \leftarrow$ union of resulting systems.
- Since in each partition each element appears once, A is 0-1.
- When $D_{2}^{2}(C)=0, D_{2}^{2}(A)=0$.
- When $D_{2}^{2}(C)=\Omega(n)$, then for any assignment y, there exists a partition with incidence matrix C^{\prime} such that

$$
\begin{aligned}
& \left\|C^{\prime} y\right\|_{2}^{2} \geq \Omega(1)\|C y\|_{2}^{2}=\Omega(n) \text { (by averaging). Then } \\
& \|A y\|_{2}^{2} \geq\left\|W C^{\prime} y\right\|_{2}^{2}=\Omega\left(n^{2}\right) .
\end{aligned}
$$

General Recipe

Lower Bounds \rightarrow Hardness:

General Recipe

Lower Bounds \rightarrow Hardness:
We can replace W with another set system that witnesses a lower bound on the discrepancy of some class of set systems.

General Recipe

Lower Bounds \rightarrow Hardness:
We can replace W with another set system that witnesses a lower bound on the discrepancy of some class of set systems.

Under technical conditions, the construction results in 0 vs worst case lower bound hardness.

General Recipe

Lower Bounds \rightarrow Hardness:
We can replace W with another set system that witnesses a lower bound on the discrepancy of some class of set systems.

Under technical conditions, the construction results in 0 vs worst case lower bound hardness.

Using this idea we prove a tight hardness result for set systems with bounded shatter function.

Open Problems

Our hardness results are for set systems with $M=O(N)$. Can we show hardness results for other regimes of M ?

Other notions of discrepancy exist (e.g. hereditary discrepancy, linear discrepancy). What is the computational complexity of those notions of discrepancy?

Thank you!

Nikhil Bansal.
Constructive algorithms for discrepancy minimization.
In Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, FOCS '10, pages 3-10,
Washington, DC, USA, 2010. IEEE Computer Society.
國 Bernard Chazelle.
The Discrepancy Method.
Cambridge University Press, 1991.

- Venkatesan Guruswami.

Inapproximability results for set splitting and satisfiability problems with no mixed clauses.
Algorithmica, 38(3):451-469, 2003.
氥 Joel Spencer.
Six standard deviations suffice.
Trans. Amer. Math. Soc., 289:679-706, 1985.

