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Discrepancy Theory

How well can a discrete object approximation a continuous object?

How well can a small object approximation a big object?
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How to Compute an Integral?

A fundamental problem in sciences: How to approximate the integral of a
function?

∫ 1

0
f (x)dx =?

0 1

f(x)

∫ 1

0
f(x)dx
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The Issues

Didn’t we learn this in calculus?

∫ 1

0
xexdx = [xex ]10 −

∫ 1

0
exdx = [(x − 1)ex ]10 .

Integration is hard!

Many interesting functions do not have a closed form integral at all.

The function f may be very complicated!
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The Issues Continue

Or we may not even know what f really is!
f (x) may be:

The speed of a particle at time x

The price of a stock at time x

The amount of energy released when we burn x grams of some
chemical substance

Sometimes all we can do is treat f as a black box:

we can query f (x) at a specific x

each query may require a new experiment: expensive!

Can we compute
∫ 1
0 f (x)dx with a black box f , under minimal

assumptions, with few queries?
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The Monte Carlo Idea

During the Manhattan Project, von Neumann and Ulam had an idea
(inspired by Ulam’s uncle’s gambling habbit):

1 Pick n random points in [0, 1]

2 Estimate integral by average

0 1
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The Monte Carlo Idea

During the Manhattan Project, von Neumann and Ulam had an idea
(inspired by Ulam’s uncle’s gambling habbit):

1 Pick n random points in [0, 1]

2 Estimate integral by average

0 1x1x2 x3 · · · x12

f(x1)f(x2)f(x3) f(x12)
· · ·

∫ 1

0
f(x)dx ≈ 1

12

∑12

i=1
f(xi)
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Monte Carlo: Convergence

If we pick n random points x1, . . . , xn ∈ [0, 1] then

∣∣∣∣∣

∫ 1

0
f (x)dx − 1

n

n∑

i=1

f (xi )

∣∣∣∣∣ ≈
E(f )√

n
,

where E(f ) is a measure of the energy of f .

E(f ) =

(∫ 1

0
|f (x)|2dx

)1/2
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Can we do better?

We have a sequence ~x = (x1, x2, x3, . . .) that we want to use to estimate
integrals, using an average.

When we want a more accurate estimate, we evaluate f at a few more
points from the sequence.

We want the error

Err(f , ~x , n) :=

∣∣∣∣∣

∫ 1

0
f (x)dx − 1

n

n∑

i=1

f (xi )

∣∣∣∣∣

to be as small as possible.

We know that if ~x is random, Err(f , ~x , n)� 1/
√
n? for f with

constant energy.

Can we achieve Err(f , ~x , n)� 1/n for all “nice” f ?
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Intervals Are Enough

If a sequence ~x has small error for all intervals, then it has small error for
all smooth functions.

δ(~x , n) = max
a,b∈[0,1]

∣∣∣|a− b| − 1

n
|{i : a ≤ xi ≤ b}|

∣∣∣.

Koksma-Hlawka inequality:

Err(f , ~x , n) ≤ V (f )δ(~x , n),

where V (f ) is a measure of the smoothness of f (total variation).

van der Corput (1934): Can δ(~x , n) = O(1/n) for some sequence ~x?
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From Intervals to Rectangles
Roth showed that studying δ(~x , n) is equivalent to placing n points
uniformly in a unit square. (Think of one dimension as the index.)

n = 20
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From Intervals to Rectangles
Roth showed that studying δ(~x , n) is equivalent to placing n points
uniformly in a unit square. (Think of one dimension as the index.)

R

|·area(R) - 1
n#{points in R}|

n = 20

1
5

1
2

= | 110 − 4
20 | = 1

10
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Discrepancy of Rectangles

For a set P of n points in [0, 1]2 and a rectangle R = [a, b]× [c , d ]

d(P,R) =
∣∣∣area(R)− |P ∩ R|

n

∣∣∣

=
∣∣∣(b − a)(d − c)− |P ∩ R|

n

∣∣∣
d(P) = max

R
D(P,R)

We can construct a sequence ~x with δ(~x , n) = O(f (n)).

m

For any n, we can construct a set P of n points s.t. d(P) = O(f (n)).
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Grid
Can we construct P s.t. d(P) = O(1/n)?

Grid: d(P) ≈ 1√
n

: area(R) ≈ 0 and |P ∩ R| =
√
n
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Irrational Lattice
P =

{
(i/n, {i ·

√
2}) : i = 0, . . . , n − 1

}
: d(P) = Θ( log nn )

{x} = fracional part of x = x − bxc
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van der Corput set
P = {(i/n, rev(i)) : i = 0, . . . , n − 1}: D(P) = Θ( log nn )
rev(bkbk−1 . . . b1b0) = 0.b1b2 . . . bk
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Roth’s Lower Bound, and Questions

D(P) = O( log nn ) is possible

⇒ we can estimate integrals with error O
(
log n
n

)

But what about d(P) = O(1/n)?

Theorem (Roth, 1954; Schmidt 1972)

For any n-point set P, D(P) = Ω( log nn ).

What about boxes in dimension 3? In dimension k?

(log n)(k−1)/2+ηk

n
. d(P) .

(log n)k−1

n

for ηk → 0 as k →∞.
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Tusnády’s Problem

Given: Set Q of n points in the unit square
Goal: Color each point p ∈ Q red or blue so that each rectangle R is as
balanced as possible.
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Tusnády’s Problem

Given: Set Q of n points in the unit square
Goal: Color each point p ∈ Q red or blue so that each rectangle R is as
balanced as possible.

disc(Q) := min
χ

max
R

∣∣∣
∑

p∈R∩P
χ(p)

∣∣∣,

where χ : P → {−1, 1} is a coloring.
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From Combinatorial to Geometric Discrepancy
For any n there exists an n-point set P s.t.

d(P) .
1

n
max
Q

disc(Q),

where Q ranges over n-point sets in the unit square.
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Bounds for Tusnády

Theorem (Nikolov, Matoušek, Talwar, 2014)

log(n)d−1 . max
Q

disc(Q) . log(n)d+1/2

The proof uses (the analysis of) an algorithm to estimate discrepancy.
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Computational Questions

How can we efficiently (i.e. fast) find balanced colorings?

Can we compute disc(Q)?

This kind of balanced colorings problem has many other applications:

computational geometry

data structures

approximation algorithms

private data analysis.
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