Introduction to Discrepancy Theory

Aleksandar (Sasho) Nikolov

University of Toronto

Outline

(1) Monte Carlo

(2) Discrepancy and Quasi MC

(3) Combinatorial Discrepancy

Discrepancy Theory

- How well can a discrete object approximation a continuous object?
- How well can a small object approximation a big object?

How to Compute an Integral?

A fundamental problem in sciences: How to approximate the integral of a function?

$$
\int_{0}^{1} f(x) d x=?
$$

The Issues

Didn't we learn this in calculus?

$$
\int_{0}^{1} x e^{x} d x=\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x=\left[(x-1) e^{x}\right]_{0}^{1}
$$

The Issues

Didn't we learn this in calculus?

$$
\int_{0}^{1} x e^{x} d x=\left[x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x=\left[(x-1) e^{x}\right]_{0}^{1}
$$

- Integration is hard!
- Many interesting functions do not have a closed form integral at all.
- The function f may be very complicated!

The Issues Continue

Or we may not even know what f really is!
$f(x)$ may be:

- The speed of a particle at time x
- The price of a stock at time x
- The amount of energy released when we burn x grams of some chemical substance

The Issues Continue

Or we may not even know what f really is!
$f(x)$ may be:

- The speed of a particle at time x
- The price of a stock at time x
- The amount of energy released when we burn x grams of some chemical substance

Sometimes all we can do is treat f as a black box:

- we can query $f(x)$ at a specific x
- each query may require a new experiment: expensive!

The Issues Continue

Or we may not even know what f really is!
$f(x)$ may be:

- The speed of a particle at time x
- The price of a stock at time x
- The amount of energy released when we burn x grams of some chemical substance

Sometimes all we can do is treat f as a black box:

- we can query $f(x)$ at a specific x
- each query may require a new experiment: expensive!

Can we compute $\int_{0}^{1} f(x) d x$ with a black box f, under minimal assumptions, with few queries?

The Monte Carlo Idea

During the Manhattan Project, von Neumann and Ulam had an idea (inspired by Ulam's uncle's gambling habbit):
(1) Pick n random points in $[0,1]$
(2) Estimate integral by average

The Monte Carlo Idea

During the Manhattan Project, von Neumann and Ulam had an idea (inspired by Ulam's uncle's gambling habbit):
(1) Pick n random points in $[0,1]$
(2) Estimate integral by average

The Monte Carlo Idea

During the Manhattan Project, von Neumann and Ulam had an idea (inspired by Ulam's uncle's gambling habbit):
(1) Pick n random points in $[0,1]$
(2) Estimate integral by average

Monte Carlo: Convergence

If we pick n random points $x_{1}, \ldots, x_{n} \in[0,1]$ then

$$
\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right| \approx \frac{\mathcal{E}(f)}{\sqrt{n}}
$$

where $\mathcal{E}(f)$ is a measure of the energy of f.

$$
\mathcal{E}(f)=\left(\int_{0}^{1}|f(x)|^{2} d x\right)^{1 / 2}
$$

Can we do better?

We have a sequence $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ that we want to use to estimate integrals, using an average.

Can we do better?

We have a sequence $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ that we want to use to estimate integrals, using an average.

When we want a more accurate estimate, we evaluate f at a few more points from the sequence.

Can we do better?

We have a sequence $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ that we want to use to estimate integrals, using an average.

When we want a more accurate estimate, we evaluate f at a few more points from the sequence.

We want the error

$$
\operatorname{Err}(f, \vec{x}, n):=\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right|
$$

to be as small as possible.

- We know that if \vec{x} is random, $\operatorname{Err}(f, \vec{x}, n) \ll 1 / \sqrt{n}$? for f with constant energy.

Can we do better?

We have a sequence $\vec{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ that we want to use to estimate integrals, using an average.

When we want a more accurate estimate, we evaluate f at a few more points from the sequence.

We want the error

$$
\operatorname{Err}(f, \vec{x}, n):=\left|\int_{0}^{1} f(x) d x-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right|
$$

to be as small as possible.

- We know that if \vec{x} is random, $\operatorname{Err}(f, \vec{x}, n) \ll 1 / \sqrt{n}$? for f with constant energy.
- Can we achieve $\operatorname{Err}(f, \vec{x}, n) \ll 1 / n$ for all "nice" f ?

Outline

(1) Monte Carlo

(2) Discrepancy and Quasi MC

(3) Combinatorial Discrepancy

Intervals Are Enough

If a sequence \vec{x} has small error for all intervals, then it has small error for all smooth functions.

$$
\delta(\vec{x}, n)=\max _{a, b \in[0,1]}| | a-b\left|-\frac{1}{n}\right|\left\{i: a \leq x_{i} \leq b\right\}| | .
$$

Intervals Are Enough

If a sequence \vec{x} has small error for all intervals, then it has small error for all smooth functions.

$$
\delta(\vec{x}, n)=\max _{a, b \in[0,1]}| | a-b\left|-\frac{1}{n}\right|\left\{i: a \leq x_{i} \leq b\right\}| | .
$$

Koksma-Hlawka inequality:

$$
\operatorname{Err}(f, \vec{x}, n) \leq V(f) \delta(\vec{x}, n)
$$

where $V(f)$ is a measure of the smoothness of f (total variation).

Intervals Are Enough

If a sequence \vec{x} has small error for all intervals, then it has small error for all smooth functions.

$$
\delta(\vec{x}, n)=\max _{a, b \in[0,1]}| | a-b\left|-\frac{1}{n}\right|\left\{i: a \leq x_{i} \leq b\right\}| | .
$$

Koksma-Hlawka inequality:

$$
\operatorname{Err}(f, \vec{x}, n) \leq V(f) \delta(\vec{x}, n)
$$

where $V(f)$ is a measure of the smoothness of f (total variation).
van der Corput (1934): Can $\delta(\vec{x}, n)=O(1 / n)$ for some sequence \vec{x} ?

From Intervals to Rectangles

Roth showed that studying $\delta(\vec{x}, n)$ is equivalent to placing n points uniformly in a unit square. (Think of one dimension as the index.)

From Intervals to Rectangles

Roth showed that studying $\delta(\vec{x}, n)$ is equivalent to placing n points uniformly in a unit square. (Think of one dimension as the index.)

Discrepancy of Rectangles

For a set P of n points in $[0,1]^{2}$ and a rectangle $R=[a, b] \times[c, d]$

$$
\begin{aligned}
d(P, R) & =\left|\operatorname{area}(R)-\frac{|P \cap R|}{n}\right| \\
& =\left|(b-a)(d-c)-\frac{|P \cap R|}{n}\right| \\
d(P) & =\max _{R} D(P, R)
\end{aligned}
$$

Discrepancy of Rectangles

For a set P of n points in $[0,1]^{2}$ and a rectangle $R=[a, b] \times[c, d]$

$$
\begin{aligned}
d(P, R) & =\left|\operatorname{area}(R)-\frac{|P \cap R|}{n}\right| \\
& =\left|(b-a)(d-c)-\frac{|P \cap R|}{n}\right| \\
d(P) & =\max _{R} D(P, R)
\end{aligned}
$$

We can construct a sequence \vec{x} with $\delta(\vec{x}, n)=O(f(n))$.

$$
\Uparrow
$$

For any n, we can construct a set P of n points s.t. $d(P)=O(f(n))$.

Grid
 Can we construct P s.t. $d(P)=O(1 / n)$?

Grid

Can we construct P s.t. $d(P)=O(1 / n)$? Grid: $d(P) \approx \frac{1}{\sqrt{n}}: \operatorname{area}(R) \approx 0$ and $|P \cap R|=\sqrt{n}$

Irrational Lattice
$P=\{(i / n,\{i \cdot \sqrt{2}\}): i=0, \ldots, n-1\}: d(P)=\Theta\left(\frac{\log n}{n}\right)$
$\{x\}=$ fracional part of $x=x-\lfloor x\rfloor$

van der Corput set
$P=\{(i / n, \operatorname{rev}(i)): i=0, \ldots, n-1\}: D(P)=\Theta\left(\frac{\log n}{n}\right)$
$\operatorname{rev}\left(b_{k} b_{k-1} \ldots b_{1} b_{0}\right)=0 . b_{1} b_{2} \ldots b_{k}$

Roth's Lower Bound, and Questions

$D(P)=O\left(\frac{\log n}{n}\right)$ is possible
\Rightarrow we can estimate integrals with error $O\left(\frac{\log n}{n}\right)$
But what about $d(P)=O(1 / n)$?

Roth's Lower Bound, and Questions

$D(P)=O\left(\frac{\log n}{n}\right)$ is possible
\Rightarrow we can estimate integrals with error $O\left(\frac{\log n}{n}\right)$
But what about $d(P)=O(1 / n)$?
Theorem (Roth, 1954; Schmidt 1972)
For any n-point set $P, D(P)=\Omega\left(\frac{\log n}{n}\right)$.

Roth's Lower Bound, and Questions

$D(P)=O\left(\frac{\log n}{n}\right)$ is possible
\Rightarrow we can estimate integrals with error $O\left(\frac{\log n}{n}\right)$
But what about $d(P)=O(1 / n)$?
Theorem (Roth, 1954; Schmidt 1972)
For any n-point set $P, D(P)=\Omega\left(\frac{\log n}{n}\right)$.

What about boxes in dimension 3? In dimension k ?

$$
\frac{(\log n)^{(k-1) / 2+\eta_{k}}}{n} \lesssim d(P) \lesssim \frac{(\log n)^{k-1}}{n}
$$

for $\eta_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Outline

(1) Monte Carlo

(2) Discrepancy and Quasi MC

(3) Combinatorial Discrepancy

Tusnády's Problem

Given: Set Q of n points in the unit square Goal: Color each point $p \in Q$ red or blue so that each rectangle R is as balanced as possible.

Tusnády's Problem

Given: Set Q of n points in the unit square Goal: Color each point $p \in Q$ red or blue so that each rectangle R is as balanced as possible.

Tusnády's Problem

Given: Set Q of n points in the unit square Goal: Color each point $p \in Q$ red or blue so that each rectangle R is as balanced as possible.

$$
\operatorname{disc}(Q):=\min _{\chi} \max _{R}\left|\sum_{p \in R \cap P} \chi(p)\right|,
$$

where $\chi: P \rightarrow\{-1,1\}$ is a coloring.

From Combinatorial to Geometric Discrepancy

For any n there exists an n-point set P s.t.

$$
d(P) \lesssim \frac{1}{n} \max _{Q} \operatorname{disc}(Q)
$$

where Q ranges over n-point sets in the unit square.

From Combinatorial to Geometric Discrepancy

 For any n there exists an n-point set P s.t.$$
d(P) \lesssim \frac{1}{n} \max _{Q} \operatorname{disc}(Q)
$$

where Q ranges over n-point sets in the unit square.

From Combinatorial to Geometric Discrepancy

 For any n there exists an n-point set P s.t.$$
d(P) \lesssim \frac{1}{n} \max _{Q} \operatorname{disc}(Q)
$$

where Q ranges over n-point sets in the unit square.

From Combinatorial to Geometric Discrepancy

 For any n there exists an n-point set P s.t.$$
d(P) \lesssim \frac{1}{n} \max _{Q} \operatorname{disc}(Q)
$$

where Q ranges over n-point sets in the unit square.

From Combinatorial to Geometric Discrepancy

For any n there exists an n-point set P s.t.

$$
d(P) \lesssim \frac{1}{n} \max _{Q} \operatorname{disc}(Q)
$$

where Q ranges over n-point sets in the unit square.

Bounds for Tusnády

Theorem (Nikolov, Matoušek, Talwar, 2014)

$$
\log (n)^{d-1} \lesssim \max _{Q} \operatorname{disc}(Q) \lesssim \log (n)^{d+1 / 2}
$$

The proof uses (the analysis of) an algorithm to estimate discrepancy.

Computational Questions

- How can we efficiently (i.e. fast) find balanced colorings?
- Can we compute $\operatorname{disc}(Q)$?

This kind of balanced colorings problem has many other applications:

- computational geometry
- data structures
- approximation algorithms
- private data analysis.

Jirí Matoušek

Geometric Discrepancy

An Illustrated Guide
Springer

