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Discrepancy Theory

@ How well can a discrete object approximation a continuous object?

@ How well can a small object approximation a big object?
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How to Compute an Integral?
function?

A fundamental problem in sciences: How to approximate the integral of a

/O 1 F(x)dx =?

f(=)

1
o 5 = DA
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The Issues

Didn't we learn this in calculus?

1 1
/ xe*dx = [xe ]} — / e¥dx = [(x — 1)e]b.
0 0
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The Issues

Didn't we learn this in calculus?
1 1
/ xe*dx = [xe’]} — / e*dx = [(x — 1)e].
0 0

@ Integration is hard!
@ Many interesting functions do not have a closed form integral at all.

@ The function f may be very complicated!
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The Issues Continue

Or we may not even know what f really is!
f(x) may be:

@ The speed of a particle at time x

@ The price of a stock at time x

@ The amount of energy released when we burn x grams of some
chemical substance
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The Issues Continue

Or we may not even know what f really is!
f(x) may be:

@ The speed of a particle at time x

@ The price of a stock at time x

@ The amount of energy released when we burn x grams of some
chemical substance

Sometimes all we can do is treat f as a black box:
@ we can query f(x) at a specific x

@ each query may require a new experiment: expensive!
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The Issues Continue

Or we may not even know what f really is!
f(x) may be:

@ The speed of a particle at time x

@ The price of a stock at time x

@ The amount of energy released when we burn x grams of some
chemical substance

Sometimes all we can do is treat f as a black box:
@ we can query f(x) at a specific x

@ each query may require a new experiment: expensive!

Can we compute fol f(x)dx with a black box f, under minimal
assumptions, with few queries?
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The Monte Carlo Idea

(inspired by Ulam'’s uncle's gambling habbit):

During the Manhattan Project, von Neumann and Ulam had an idea
@ Pick n random points in [0, 1]

@ Estimate integral by average
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The Monte Carlo ldea

During the Manhattan Project, von Neumann and Ulam had an idea
(inspired by Ulam's uncle's gambling habbit):

@ Pick n random points in [0, 1]

@ Estimate integral by average
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The Monte Carlo Idea
During the Manhattan Project, von Neumann and Ulam had an idea
(inspired by Ulam's uncle's gambling habbit):

@ Pick n random points in [0, 1]

@ Estimate integral by average
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Monte Carlo: Convergence

If we pick n random points xi, ..., x, € [0,1] then

1 1 n
/ f(x)dx — - > f(x)
0 i=1

where E(f) is a measure of the energy of f.

E(f) = (/ | (x |dx>1/2

~
~
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Can we do better?

We have a sequence X = (x1, X2, x3, .. .) that we want to use to estimate
integrals, using an average.

Sasho Nikolov (U of T) Discrepancy 9 /23



Can we do better?

We have a sequence X = (x1, X2, X3, .

..) that we want to use to estimate
integrals, using an average.
When we want a more accurate estimate, we evaluate f at a few more
points from the sequence.

Sasho Nikolov (U of T) Discrepancy

9/23



Can we do better?
We have a sequence X = (x1, x2, X3, ...) that we want to use to estimate
integrals, using an average.

When we want a more accurate estimate, we evaluate f at a few more
points from the sequence.

We want the error
1 1 n
Err(f,x,n) := / f(x)dx — - Z f(xi)
0 i=1

to be as small as possible.

e We know that if X is random, Err(f,X, n) < 1/+/n? for f with
constant energy.
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Can we do better?
We have a sequence X = (x1, x2, X3, ...) that we want to use to estimate
integrals, using an average.

When we want a more accurate estimate, we evaluate f at a few more
points from the sequence.

We want the error

Err(f,x,n) :=

1 1 n
/ f(x)dx — = > F(x)
0 i=1

to be as small as possible.

e We know that if X is random, Err(f,X, n) < 1/+/n? for f with
constant energy.

e Can we achieve Err(f,X,n) < 1/n for all “nice” f?
Sasho Nikolov (U of T)
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Intervals Are Enough

If a sequence X has small error for all intervals, then it has small error for
all smooth functions.

1
d(x,n) = a,l?;?(;fl] la—b| — ;’{I ra < x < b}l
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Intervals Are Enough

If a sequence X has small error for all intervals, then it has small error for
all smooth functions.

1
d(x,n) = a,g;?(;fl] la—b| — ;’{I ra < x < b}l

Koksma-Hlawka inequality:
Err(f,x,n) < V(f)é(X, n),

where V/(f) is a measure of the smoothness of f (total variation).
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Intervals Are Enough

If a sequence X has small error for all intervals, then it has small error for
all smooth functions.

1
d(x,n) = a,l?;?(;fl] la—b| — ;’{I ra < x < b}l

Koksma-Hlawka inequality:
Err(f,x,n) < V(f)é(X, n),

where V/(f) is a measure of the smoothness of f (total variation).

van der Corput (1934): Can 46(x, n) = O(1/n) for some sequence x?
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From Intervals to Rectangles

Roth showed that studying 0(X, n) is equivalent to placing n points
uniformly in a unit square. (Think of one dimension as the index.)

n =20
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From Intervals to Rectangles

Roth showed that studying 0(X, n) is equivalent to placing n points
uniformly in a unit square. (Think of one dimension as the index.)
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Discrepancy of Rectangles

For a set P of n points in [0,1]? and a rectangle R = [a, b] x [c, d]

d(P,R) =

PNR
area(R) — %‘

|PNR]
n

= |(b—a)(d—c)-
d(P) = max D(P,R)
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Discrepancy of Rectangles

For a set P of n points in [0,1]? and a rectangle R = [a, b] x [c, d]

d(P,R) =

PNR
area(R) — %‘

|PNR]

n

= |(b—a)(d—c)-
d(P) = max D(P,R)

We can construct a sequence X with §(X, n) = O(f(n)).

)

For any n, we can construct a set P of n points s.t. d(P) = O(f(n)).
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Grid

Can we construct P s.t. d(P) = O(1/n)?
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Grid
Can we construct P s.t. d(P) = O(1/n)?

Grid: d(P) ~ %: area(R) ~ 0 and |[PNR| = +/n
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Irrational Lattice

P={(i/n{i-V2}):i=0,....,n—1}: d(P) =0

{x} = fracional part of x = x — | x|
=x—|x
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van der Corput set

P={(i/n,rev(i)):i=0,...,n—1}: D(P)=9(

rev(bkbk_l “e blbo) = 0.b1b2 PN bk
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Roth's Lower Bound, and Questions

logny - .
D(P) = O(~%7") is possible
=- we can estimate integrals with error O k’%
But what about d(P) = O(1/n)?
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Roth's Lower Bound, and Questions

D(P) = O(Io%) is possible

=- we can estimate integrals with error O
But what about d(P) = O(1/n)?
Theorem (Roth, 1954; Schmidt 1972)

For any n-point set P, D(P) = Q('%™). }

log n
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Roth's Lower Bound, and Questions

D(P) = O(Io%) is possible

=- we can estimate integrals with error O <I°%

But what about d(P) = O(1/n)?

Theorem (Roth, 1954; Schmidt 1972)

For any n-point set P, D(P) = Q('%™). J

What about boxes in dimension 37 In dimension k?

(k=1)/2+nx k-1
(log n) < d(P) < (log n)

~

n ~ n

for nx — 0 as kK — oo.

Sasho Nikolov (U of T) Discrepancy 17 / 23



Outline

© Combinatorial Discrepancy

= = = E nae
Sasho Nikolov (U of T) Discrepancy



Tusnady's Problem

Given: Set @ of n points in the unit square
Goal: Color each point p € Q red or blue so that each rectangle R is as
balanced as possible.
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Given: Set @ of n points in the unit square
Goal: Color each point p € Q red or blue so that each rectangle R is as
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Tusnady's Problem

Given: Set @ of n points in the unit square
Goal: Color each point p € Q red or blue so that each rectangle R is as
balanced as possible.

disc(Q) := min max
X

I

> x(p)

pERNP

where x: P — {—1,1} is a coloring.
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From Combinatorial to Geometric Discrepancy
For any n there exists an n-point set P s.t.

1 .
d(P) < - mgxdlsc(Q),

where @ ranges over n-point sets in the unit square.
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From Combinatorial to Geometric Discrepancy
For any n there exists an n-point set P s.t.

1 .
d(P) < - mgxdlsc(Q),
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Bounds for Tusnady

Theorem (Nikolov, Matousek, Talwar, 2014)

log(n)4~1 < m(gxdisc(Q) < log(n)9+1/2

The proof uses (the analysis of) an algorithm to estimate discrepancy.
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Computational Questions

e How can we efficiently (i.e. fast) find balanced colorings?

e Can we compute disc(Q)?

This kind of balanced colorings problem has many other applications:

@ computational geometry
@ data structures

@ approximation algorithms
°

private data analysis.
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