Lecture 9 - November 23, 2015
Aleksandar Nikolov

1 Properties of γ_{2}

Recall that $\gamma_{2}(A)$ is defined for $A \in \mathbb{R}^{m \times n}$ as follows:

$$
\gamma_{2}(A)=\min \left\{r(U) \cdot c(V): U V=A, U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{k \times n}, k \in \mathbb{N}\right\}
$$

where $r(U)$ is the maximum row norm of U, and $c(V)$ is the maximum column norm of V. We showed in the previous lecture that there exists a constant C such that

$$
\begin{equation*}
\frac{\gamma_{2}(A)}{C \log \operatorname{rk} A} \leq \operatorname{herdisc}(A) \leq C \sqrt{\log m} \cdot \gamma_{2}(A) \tag{1}
\end{equation*}
$$

We give some other useful properties of γ_{2}.

1. Monotonicity. $\gamma_{2}\left(A_{S, T}\right) \leq \gamma_{2}(A)$, where $A_{S, T}$ is the submatrix of A whose rows are indexed by $S \subseteq[m]$ and whose columns are indexed by $T \subseteq[n]$.
2. Transpose. $\gamma_{2}(A)=\gamma_{2}\left(A^{T}\right)$, where A^{T} is the matrix transpose of A.
3. Diagonal block matrices. $\gamma_{2}\left(\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)\right)=\max \left(\gamma_{2}(A), \gamma_{2}(B)\right)$.
4. Triangle inequality. $\gamma_{2}(A+B) \leq \gamma_{2}(A)+\gamma_{2}(B)$.
5. Union. $\gamma_{2}\left(\left(\begin{array}{ll}A & B\end{array}\right)\right) \leq \sqrt{\gamma_{2}(A)^{2}+\gamma_{2}(B)^{2}}$.

Most of these properties follow straightforwardly from the definitions. We give a detailed proof of Property 4.

Proof of triangle inequality. Let U_{A}, V_{A} be such that $U_{A} V_{A}=A$, and $r\left(U_{A}\right)=c\left(V_{A}\right)=\sqrt{\gamma_{2}(A)}$. This can always be achieved simply by scaling the matrices appropriately. We take U_{B}, V_{B} similarly. Let $U:=\left(\begin{array}{ll}U_{A} & U_{B}\end{array}\right)$, and $V:=\binom{V_{A}}{V_{B}}$. Then clearly $U V=A+B$. Moreover

$$
\begin{aligned}
r(U)^{2} & =\max _{i=1}\left\|U_{i *}\right\|_{2}^{2}=\max _{i=1}^{m}\left(\left\|\left(U_{A}\right)_{i *}\right\|_{2}^{2}+\left\|\left(U_{B}\right)_{i *}\right\|_{2}^{2}\right) \\
& \leq \max _{i=1}^{m}\left\|\left(U_{A}\right)_{i *}\right\|_{2}^{2}+\max _{i=1}^{m}\left\|\left(U_{B}\right)_{i *}\right\|_{2}^{2}=r\left(U_{A}\right)^{2}+r\left(U_{B}\right)^{2}=\gamma_{2}(A)+\gamma_{2}(B) .
\end{aligned}
$$

The same inequality holds for $c(V)^{2}$, so

$$
\gamma_{2}(A+B) \leq \sqrt{r(A)^{2} \cdot c(V)^{2}} \leq \gamma_{2}(A)+\gamma_{2}(B)
$$

Remark 1. Using the bounds in (1), we can obtain approximate versions of the above properties for herdisc.

1.1 Kronecker products

For matrices $A \in \mathbb{R}^{p \times q}, B \in \mathbb{R}^{r \times s}$, the Kronecker (tensor) product $A \otimes B \in \mathbb{R}^{p r \times q s}$ is given by the block matrix

$$
A \otimes B=\left(\begin{array}{ccc}
A_{11} \cdot B & A_{12} \cdot B & \cdots \\
A_{21} \cdot B & A_{22} \cdot B & \\
\vdots & & \ddots
\end{array}\right)
$$

Lemma 2 (Property 6). $\gamma_{2}(A \otimes B)=\gamma_{2}(A) \gamma_{2}(B)$.
Remark 3. This property does not hold for the combinatorial discrepancy $\operatorname{disc}(A)$.
Proof. We make use of a basic property of the tensor product: $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$. Applying this property to the singular value decompositions of A and B, we see that if A has singular values $\sigma_{1}, \ldots, \sigma_{p}$ and B has singular values $\tau_{1}, \ldots, \tau_{r}$ then $A \otimes B$ has singular values $\sigma_{1} \tau_{1}, \ldots, \sigma_{1} \tau_{r}, \ldots, \sigma_{p} \tau_{1}, \ldots, \sigma_{p} \tau_{r}$.
First we prove that $\gamma_{2}(A \otimes B) \leq \gamma_{2}(A) \gamma_{2}(B)$. We take U_{A}, V_{A} such that $A=U_{A} V_{A}$ and $r\left(U_{A}\right) c\left(V_{A}\right)=\gamma_{2}(A)$; similarly we have U_{B}, V_{B}. Let $U:=U_{A} \otimes U_{B}$ and $V:=V_{A} \otimes V_{B}$. Then $U V=A \otimes B$, by the basic property of tensor products. Moreover we have that $r(U)=r\left(U_{A}\right) r\left(U_{B}\right)$, since the rows of U have the form $u_{A} \otimes u_{B}$ where u_{A} is a row of A and u_{B} is a row of B, and for any two vectors $u_{1}, u_{2},\left\|u_{1} \otimes u_{2}\right\|_{2}=\left\|u_{1}\right\|_{2} \cdot\left\|u_{2}\right\|_{2}$. The same property holds of the columns of V and hence of $c(V)$, and so

$$
\gamma_{2}(A \otimes B) \leq r(U) c(V)=\left(r\left(U_{A}\right) c\left(V_{A}\right)\right) \cdot\left(r\left(U_{B}\right) c\left(V_{B}\right)\right)=\gamma_{2}(A) \gamma_{2}(B) .
$$

It remains to show that $\gamma_{2}(A \otimes B) \geq \gamma_{2}(A) \gamma_{2}(B)$. For this we make use of the dual of the semidefinite program for computing γ_{2}. By strong duality, it holds that (cf. last lecture)

$$
\gamma_{2}(A)=\max \left\{\|P A Q\|_{\text {tr }}: P, Q \text { nonnegative diagonal matrices s.t. } \operatorname{tr}\left(P^{2}\right)=\operatorname{tr}\left(Q^{2}\right)=1\right\} .
$$

Let P_{A}, Q_{A} be such that $\left\|P_{A} A Q_{A}\right\|_{\text {tr }}=\gamma_{2}(A)$, and P_{B}, Q_{B} likewise. Let $P:=P_{A} \otimes P_{B}$ and $Q=Q_{A} \otimes Q_{B}$. Note that $\operatorname{tr}\left(\left(P_{A} \otimes P_{B}\right)^{2}\right)=\operatorname{tr}\left(P_{A}^{2} \otimes P_{B}^{2}\right)=\operatorname{tr}\left(P_{A}^{2}\right) \operatorname{tr}\left(P_{B}^{2}\right)=1$ by easy properties of the Kronecker product, and the same holds for Q, hence P, Q is a feasible solution. Finally from the properties of the singular values of Kronecker products, we get

$$
\begin{aligned}
\|P(A \otimes B) Q\|_{\mathrm{tr}} & =\left\|\left(P_{A} A Q_{A}\right) \otimes\left(P_{B} B Q_{B}\right)\right\|_{\mathrm{tr}}=\sum_{i} \sum_{j} \sigma_{i} \tau_{j}=\left(\sum_{i} \sigma_{i}\right)\left(\sum_{j} \tau_{j}\right) \\
& =\left\|P_{A} A Q_{A}\right\|_{\mathrm{tr}} \cdot\left\|P_{B} B Q_{B}\right\|_{\mathrm{tr}}=\gamma_{2}(A) \cdot \gamma_{2}(B) .
\end{aligned}
$$

2 Discrepancy of corners

Recall from Lecture 1 that for $y \in \mathbb{R}^{d}$ we define the corner

$$
\mathcal{C}(y):=\left\{x \in \mathbb{R}^{d}: 0 \leq x_{i} \leq y_{i}, i=1, \ldots, d\right\} .
$$

For $d \in \mathbb{N}$ the set $\mathcal{C}_{d}:=\left\{\mathcal{C}(y): y \in[0,1]^{d}\right\}$. Let P be a finite subset of $[0,1]^{d}$; then $\left.\mathcal{C}_{d}\right|_{P}$ is the set of subsets of P of the form $C(y) \cap P$ for some $y \in[0,1]^{d}$. We define the combinatorial discrepancy
of $\mathcal{C}_{d}, \operatorname{disc}\left(n, \mathcal{C}_{d}\right):=\sup _{P} \operatorname{disc}\left(\left.\mathcal{C}_{d}\right|_{P}\right)$, where the supremum is taken over subsets $P \subseteq[0,1]^{d}$ of size n. Recall also that the continuous discrepancy $D\left(n, \mathcal{C}_{d}\right) \leq O(1) \cdot \operatorname{disc}\left(n, \mathcal{C}_{d}\right)$.

Open problem. We know that (approximately) $\log ^{(d-1) / 2} n \leq D\left(n, \mathcal{C}_{d}\right) \leq \log ^{d-1} n$. Can we get a tighter bound?

The following theorem suggests that better bounds for $D\left(n, \mathcal{C}_{d}\right)$ are unlikely to come from better bounds for $\operatorname{disc}\left(n, \mathcal{C}_{d}\right)$.

Theorem 4. For $d \in \mathbb{N}$, it holds that

$$
\Omega\left(\log ^{d-1} n\right) \leq \operatorname{disc}\left(n, \mathcal{C}_{d}\right) \leq O\left(\log ^{d+1 / 2} n\right)
$$

Proof sketch. Let $Q:=[n]^{d} \subseteq[0, n]^{d}$ be the set of d-vectors whose coordinates are positive integers at most n. (Note: we can scale this set into $[0,1]^{d}$ so that it fits the definitions above.) Let $\mathcal{S}:=\left.\mathcal{C}_{d}\right|_{Q}$. Then $\mathcal{S}:=\left\{\left[y_{1}\right] \times \ldots \times\left[y_{d}\right]: y_{1}, \ldots, y_{d} \in[n]\right\}$, and the incidence matrix A of \mathcal{S} is $T_{n}^{\otimes d}$, the d-wise Kronecker product of the $n \times n$ lower triangular matrix with 1 s below (and on) the diagonal.

Proposition 5. $\gamma_{2}\left(T_{n}\right)=\Theta(\log n)$.
Given the proposition, it is not too difficult to show that the upper and lower bounds hold.
Lower bound. By Lemma 2, $\gamma_{2}(A)=\Theta\left(\log ^{d} n\right)$. Then inequality (1) gives that herdisc $(A) \geq$ $\Omega\left(\gamma_{2}(A) / \log \operatorname{rk} A\right)=\Omega\left(\log ^{d-1} n\right)$. By the definition of hereditary discrepancy, there exists a subset $P \subseteq Q,|P|=n$, such that the discrepancy $\operatorname{disc}\left(\left.\mathcal{S}\right|_{P}\right)=\Omega\left(\log ^{d-1} n\right)$. Since $\mathcal{S}=\left.\mathcal{C}_{d}\right|_{Q}$, and $P \subseteq Q$, clearly $\left.\mathcal{S}\right|_{P}=\left.\mathcal{C}_{d}\right|_{P}$, so $\operatorname{disc}\left(n, \mathcal{C}_{d}\right) \geq \operatorname{disc}\left(\left.\mathcal{S}\right|_{P}\right)=\Omega\left(\log ^{d-1} n\right)$.

Upper bound. We may assume $P \subseteq[n]^{d}$, since for any $P \subseteq[0, n]^{d}$ we can transform it into $P^{\prime} \subseteq[n]^{d}$ such that $\left|P^{\prime}\right|=|P|$ and $\operatorname{disc}\left(\left.\mathcal{C}_{d}\right|_{P}\right) \leq \operatorname{disc}\left(\left.\mathcal{C}_{d}\right|_{P^{\prime}}\right)$. Then $\operatorname{disc}\left(n, \mathcal{C}_{d}\right) \leq \operatorname{herdisc}(\mathcal{S})$. The γ_{2} upper bound gives herdisc $(\mathcal{S})=O\left(\sqrt{\log n^{d}}\right) \gamma_{2}(A)=O\left(\log ^{d+1 / 2} n\right)$, which concludes the proof.

Proof of Proposition 5. We show the upper and lower bounds separately.

1. $\gamma_{2}\left(T_{n}\right)=O(\log n)$. Notice that we can decompose T_{n} as follows:

Or, written as a sum of block matrices,

$$
T_{n}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
T_{n / 2} & 0 \\
0 & T_{n / 2}
\end{array}\right)
$$

Note that $\gamma_{2}\left(\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)=$ 1. From Property 3 of $\gamma_{2}, \gamma_{2}\left(\left(\begin{array}{cc}T_{n / 2} & 0 \\ 0 & T_{n / 2}\end{array}\right)\right)=\gamma_{2}\left(T_{n / 2}\right)$. Thus $\gamma_{2}\left(T_{n}\right) \leq 1+\gamma_{2}\left(T_{n / 2}\right)$ by the triangle inequality, and solving the recurrence gives the upper bound.
2. $\gamma_{2}\left(T_{n}\right)=\Omega(\log n)$. Here we once again make use of the dual. By the normality conditions on P and Q, for any matrix $A \in \mathbb{R}^{k \times k}$ we have that $P=Q=\frac{1}{\sqrt{k}} I_{k}$ is a feasible solution, and so $\gamma_{2}(A) \geq\|P A Q\|_{\text {tr }}=\frac{1}{k}\|A\|_{\text {tr }}$. Let $B:=\left(\begin{array}{cc}T_{n} & T_{n}^{T} \\ T_{n}^{T} & T_{n}\end{array}\right)$. It is not difficult to see that this is a circulant matrix, i.e. each column is the previous column rotated by one row. The eigenvalues of such a matrix are the DFT coefficients of its first column, and so the i-th singular value of B is approximately n / i, so $\|B\|_{\text {tr }}=\Theta(n \log n)$. Then finally

$$
\gamma_{2}\left(T_{n}\right) \geq \frac{1}{4} \gamma_{2}(B) \geq \frac{1}{8 n}\|B\|_{\mathrm{tr}}=\Omega(\log n)
$$

which proves the claim.

3 Data structure lower bounds

3.1 Range counting

Let $d \in \mathbb{N}$, point set $P \subseteq \mathbb{R}^{d}$, and weight function $w: P \rightarrow \mathbb{Z}$. We are interested in designing a data structure which supports two operations:

Update. Given a pair $(p, x) \in P \times \mathbb{Z}$, set $w(p):=w(p)+x$.
Query. Given $z \in \mathbb{R}^{d}$, return $\sum_{\left.p \in \mathcal{C}(z)\right|_{P}} w(p)$.

3.2 The oblivious group model

We define a restricted model of a data structure. In this model, the data structure retains s values $y:=\left(y_{1}, \ldots, y_{s}\right)$ where each $y_{i} \in \mathbb{R}$ is a linear combination of the $w(p)$ for $p \in P$. Let U, V be such that $U V=A$, where A is the incidence matrix of $\left.\mathcal{C}_{d}\right|_{P} . V$ encodes the linear combinations of group elements which are used to compute $y: y=V w$. U encodes the linear combinations of y_{i} which are used to answer queries; the condition $U V=A$ is necessary for correctness. Then our operations are constrained to be of the following form:

Update. Given a pair $(p, x), y:=y+x V_{* p}$, where $V_{* p}$ is the p-th column of V.
Query. Given z, return $\left\langle U_{i *}, y\right\rangle$, where the i-th row of A is the indicator vector of the set $\mathcal{C}(z) \cap P$.

The time complexity of updates, $t_{u}:=\max _{p} \mathrm{nnz}\left(V_{* p}\right)$, where for a vector $u, \mathrm{nnz}(u)$ is defined as the number of non-zero entries in u. Similarly the time complexity of queries $t_{q}:=\max _{z} \mathrm{nnz}\left(U_{z *}\right)$.

The one-dimensional case is well-understood.
Theorem 6 (Fredman ' 82 [1]). For $d=1, t_{u}+t_{q}=\Omega(\log n)$.
For higher dimensions, we require an additional parameter Δ, a bound on the absolute values of entries in U, V.
Theorem 7 (Larsen '11[2]). For $d \in \mathbb{N}, t_{u} t_{q} \geq d^{2} \Omega\left(\log ^{2} n\right) / \Delta^{4}$.

Proof sketch. It is not hard to see that $r(U) \leq \Delta \sqrt{t_{q}}$, and $c(V) \leq \Delta \sqrt{t_{u}}$. Then $\gamma_{2}(A) \leq \Delta^{2} \sqrt{t_{u} t_{q}}$, so $\sqrt{t_{u} t_{q}} \geq \frac{\Omega\left(\log n^{d}\right)}{\Delta^{2}}$.

For many natural data structures, $\Delta=1$. Indeed for any $d \in \mathbb{N}$ there exists a data structure with $\Delta=1$ which matches the lower bound. In the case $d=1$, the Fredman bound shows that the dependence on Δ is not required, but for $d>1$ it remains open whether larger values of Δ allow for more efficient data structures.

References

[1] Michael L. Fredman. 1982. The Complexity of Maintaining an Array and Computing Its Partial Sums. J. ACM 29, 1 (January 1982), 250-260.
[2] Larsen, K.G. 2011. On Range Searching in the Group Model and Combinatorial Discrepancy. IEEE 52nd Annual Symposium on the Foundations of Computer Science (FOCS), pp.542-549.

