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Lecture 8 — November 16, 2015

Aleksandar Nikolov Scribe: Assimakis Kattis

γ2 and herdisc: the Lower Bound

Last lecture: Recall that for A ∈ Rm×n, we defined the following norms:

γ2 norm:

γ2(A) = min {r(U) · c(V ) : UV = A}

Norms of Rows: For ai∗ the i-th row of A:

r(A) =
m

max
i=1
‖ai∗‖2

Norms of Columns: For a∗i the i-th column of A:

c(A) =
n

max
i=1
‖a∗i‖2

Theorem 1 (Larsen). For all A ∈ Rm×n:

herdisc (A) = γ2(A) ·O(
√

logm)

This lecture: We show the following result:

Theorem 2. For all A ∈ Rm×n:

herdisc (A) = γ2(A) · Ω
(

1

log rankA

)
We have previously shown that the determinant lower bound, given by:

detlb (A) =
min (m,n)

max
k=1

max
S⊆[m]
T⊆[n]
|S|=|T |=k

|detAS,T |1/k

where AS,T the subset of A indexed by S and T , satisfies:

herdisc (A) ≥ 1

2
detlb (A).

Thus, it suffices to show that:

1



Theorem 3 ([MNT14]). For all A ∈ Rm×n:

γ2(A) ≥ detlb (A)

detlb (A) = γ2(A) · Ω
(

1

log rankA

)
Dual Characterization of γ2: We have shown that the following vector program has γ2(A) as
its optimum:

minimize t

subject to 〈ui, vj〉 = Aij

〈ui, ui〉 ≤ t
〈vj , vj〉 ≤ t
ui, vj ∈ Rm+n

where (i, j) ∈ [m]× [n],

This exhibits strong duality, meaning that it is equal to its dual (maximization) problem, which is
shown below:

maximize ‖B‖tr
subject to Bij = piqjAij

m∑
i=1

p2i =
n∑

j=1

q2j = 1

pi, qj ≥ 0

where (i, j) ∈ [m]× [n],

where ‖B‖tr is the trace or nuclear norm, which is equal to the sum of its singular values:

‖B‖tr =

min (m,n)∑
i=1

σi.

Claim. γ2(A) ≥ detlb (A)

Proof. Pick optimal S, T with S ⊆ [m], T ⊆ [n] and |S| = |T | = k for which |detAS,T |1/k =
detlb (A). Suffices to show that:

γ2(A) ≥ |detAS,T |1/k

For the dual maximization problem for γ2, define the following:

pi =

{
1/
√
k i ∈ S

0 otherwise
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qj =

{
1/
√
k j ∈ T

0 otherwise

Since the above are orthogonal, we can reorder the corresponding matrix B = piqjAij :

B′ =

[
1
kAS,T 0

0 0

]
from which we get that:

‖B‖tr = ‖B′‖tr =
1

k
‖AS,T ‖tr

By the AM-GM inequality and since γ2(A) is the maximum possible value for ‖B‖tr, this implies:

γ2(A) ≥ 1

k
‖AS,T ‖tr ≥ |detAS,T |1/k

Bucketing Lemma: For all σ ∈ Rr
+, ∃R ∈ [r] for which:

∑
i∈R

σi ≥
1

2 log 2r

r∑
i=1

σi

∀i, j ∈ R, σi ≤ 2σj

Proof. Without loss of generality, assume that
∑r

i=1 σi = 1. Then define the following sets, where
1 ≤ k ≤ dlog 2re:

Rk = {i : (1/2)k−1 ≥ σi ≥ (1/2)k}

R∞ = {i : σi ≤ (1/2r)}

The main motivation behind this construction is that we can ignore R∞, and the rest will follow
by averaging. Note also that all Rk satisfy the second property.

Since |R∞| < r, we have that:

∑
i∈R∞

σi < |R∞| ·
1

2r
<

1

2

log 2r∑
k=1

∑
i∈Rk

σi = 1−
∑
i∈R∞

σi > 1/2
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This means that as we have log 2r terms, we get:

log 2r ·min
k

∑
i∈Rk

σi > 1/2

Thus, ∃Rl for which:

∑
i∈Rl

σi ≥
1

2 log 2r

We can immediately see that for such a set R, we have:

Corollary 4. For R satisfying the conditions of the Bucketing Lemma:

1

|R|
∑
i∈R

σi ≤ 2

(∏
i∈R

σi

)1/|R|

Proof.

1

|R|
∑
i∈R

σi = max
i∈R

σi ≤ 2 min
i∈R

σi ≤ 2

(∏
i∈R

σi

)1/|R|

Claim 5.

detlb (A) = γ2(A) · Ω
(

1

log rankA

)

Proof. Take a feasible solution (B, p, q) to the dual maximization problem for γ2(A). This implies
that γ2(A) = ‖B‖tr.

Now, let the singular value decomposition (SVD) of B be B = UΣV T . Here, r = rankB, U ∈ Rm×r,
V ∈ Rn×r, UTU = I and Σ a diagonal matrix with the singular values of B on the diagonal.

Pick R ∈ [n] with |R| = k to be a subset of singular values that satisfies the conditions of the
Bucketing lemma. If we define C := UT

RB, where UR the subset of U indexed by R, then the
singular values of C are {σi}i∈R. This means that:

∣∣detCCT
∣∣ 1
2k =

∣∣∣∣∣∏
i∈R

σi

∣∣∣∣∣
1
k

≥ 1

2k

∑
i∈R

σi ≥
1

4k log 2r

r∑
i=1

σi =
1

4k log 2r
‖B‖tr (1)

Cauchy-Binet Formula: For X,Y ∈ Rm×n:

detXY T =
∑
S⊆[n]
|S|=m

detXS detYS
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If we define P ∈ Rm×m and Q ∈ Rn×n as the diagonal matrices with pi and qj as the diagonal
entries respectively, then we have B = PAQ. Similarly, C = UT

RB = UT
RPAQ.

Define D := UT
RPA so that C = DQ. By applying Cauchy-Binet to C ∈ Rk×n we get:

det (CCT ) =
∑
S⊆[n]
|S|=k

detCS detCS =
∑
S⊆[n]
|S|=k

(detCS)2 =
∑
S⊆[n]
|S|=k

(detDSQS)2

=
∑
S⊆[n]
|S|=k

(detDS)2

∏
j∈S

q2j

 ≤
max

S⊆[n]
|S|=k

(detDS)2


∑

S⊆[n]
|S|=k

∏
j∈S

q2j


which follows by Hölder.

By picking distinct j from each of the k sums, we will get each j k! times. Therefore, this implies:

∑
S⊆[n]
|S|=k

∏
j∈S

q2j ≤
1

k!

 n∑
j=1

q2j

k

=
1

k!

Thus, ∃S ⊆ [n] such that:

(detDS)1/k ≥ (k!)1/2k · (detCCT )1/2k

or equivalently:

max
S⊆[n]
|S|=k

|detDS |1/k ≥ (k!)1/2k · (detCCT )1/2k

which by Stirling means:

(k!)1/2k · (detCCT )1/2k ≥
√
k

e
(detCCT )1/2k = Ω(

√
k)(detCCT )1/2k

Thus, by applying equation (1) here this implies:

(detDS)1/k ≥ ‖B‖tr
4e
√
k log 2r

(2)

Consider the orthonormal matrix W ∈ Rm×m for which the first k columns are equal to the columns
of UR. Such a matrix always exists since we can complete the orthonormal basis for Rm starting
with the column vectors of UR. The m− k new vectors we get can be used to define the rest of the
columns of W .
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Define ES := PAS ∈ Rm×k, meaning that DS = UT
RES . It can be shown that:

det(ET
SES) = det((ET

SW )(W TES)) = det((ET
SW )(ET

SW )T )

=
∑
T⊆[n]
|T |=k

det((ET
SW )T )2 =

∑
T⊆[n]
|T |=k

det(ET
SWT )2 ≥ det(ET

SUR)2 = det(UT
RES)2

∴ det(ET
SES) ≥ det(DS)2

Now, we can apply the exact same analysis as in (2), but this time to DT
S = (AS)TP instead of C.

This means that ∃T ∈ [m] for which:

max
T⊆[m]
|T |=k

(detAS,T )1/k ≥ (k!)1/2k · det (AT
SP

2AS)
1/2k

= (k!)1/2k · det (ET
SES)

1/2k

Putting all of this together and applying Stirling just like before, we get that:

max
S⊆[n]
T⊆[m]
|S|=|T |=k

|detAS,T |1/k ≥
‖B‖tr

4e log (2r)

By maximizing over all k, this yields the desired result.
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