CSC2414: Discrepancy Theory in Computer Science Fall 2015 Lecture 8 — November 16, 2015

Aleksandar Nikolov Scribe: Assimakis Kattis

γ_2 and herdisc: the Lower Bound

Last lecture: Recall that for $A \in \mathbb{R}^{m \times n}$, we defined the following norms: γ_2 norm:

$$\gamma_2(A) = \min\left\{r(U) \cdot c(V) : UV = A\right\}$$

<u>Norms of Rows</u>: For a_{i*} the *i*-th row of A:

$$r(A) = \max_{i=1}^{m} \|a_{i*}\|_2$$

<u>Norms of Columns</u>: For a_{*i} the *i*-th column of A:

$$c(A) = \max_{i=1}^{n} \|a_{*i}\|_2$$

Theorem 1 (Larsen). For all $A \in \mathbb{R}^{m \times n}$:

herdisc
$$(A) = \gamma_2(A) \cdot O(\sqrt{\log m})$$

This lecture: We show the following result:

Theorem 2. For all $A \in \mathbb{R}^{m \times n}$:

herdisc
$$(A) = \gamma_2(A) \cdot \Omega\left(\frac{1}{\log \operatorname{rank} A}\right)$$

We have previously shown that the determinant lower bound, given by:

$$\operatorname{detlb}(A) = \max_{k=1}^{\min(m,n)} \max_{\substack{S \subseteq [m] \\ T \subseteq [n] \\ |S| = |T| = k}} |\operatorname{det} A_{S,T}|^{1/k}$$

where $A_{S,T}$ the subset of A indexed by S and T, satisfies:

herdisc
$$(A) \ge \frac{1}{2} \operatorname{detlb}(A).$$

Thus, it suffices to show that:

Theorem 3 ([MNT14]). For all $A \in \mathbb{R}^{m \times n}$:

$$\gamma_2(A) \ge \operatorname{detlb}(A)$$

$$\operatorname{detlb}\left(A\right) = \gamma_{2}(A) \cdot \Omega\left(\frac{1}{\operatorname{log}\operatorname{rank} A}\right)$$

Dual Characterization of γ_2 : We have shown that the following vector program has $\gamma_2(A)$ as its optimum:

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & \langle u_i, v_j \rangle = A_{ij} \\ & \langle u_i, u_i \rangle \leq t \\ & \langle v_j, v_j \rangle \leq t \\ & u_i, v_j \in \mathbb{R}^{m+n} \\ \text{where} & (i, j) \in [m] \times [n], \end{array}$$

This exhibits strong duality, meaning that it is equal to its dual (maximization) problem, which is shown below:

maximize
$$||B||_{tr}$$

subject to $B_{ij} = p_i q_j A_{ij}$
 $\sum_{i=1}^{m} p_i^2 = \sum_{j=1}^{n} q_j^2 = 1$
 $p_i, q_j \ge 0$
where $(i, j) \in [m] \times [n],$

where $||B||_{tr}$ is the trace or nuclear norm, which is equal to the sum of its singular values:

$$\|B\|_{tr} = \sum_{i=1}^{\min(m,n)} \sigma_i.$$

Claim. $\gamma_2(A) \ge \operatorname{detlb}(A)$

Proof. Pick optimal S, T with $S \subseteq [m], T \subseteq [n]$ and |S| = |T| = k for which $|\det A_{S,T}|^{1/k} = \det (A)$. Suffices to show that:

$$\gamma_2(A) \ge |\det A_{S,T}|^{1/k}$$

For the dual maximization problem for γ_2 , define the following:

$$p_i = \left\{ \begin{array}{ll} 1/\sqrt{k} & i \in S \\ 0 & \text{otherwise} \end{array} \right.$$

$$q_j = \begin{cases} 1/\sqrt{k} & j \in T\\ 0 & \text{otherwise} \end{cases}$$

Since the above are orthogonal, we can reorder the corresponding matrix $B = p_i q_j A_{ij}$:

$$B' = \begin{bmatrix} \frac{1}{k}A_{S,T} & 0\\ 0 & 0 \end{bmatrix}$$

from which we get that:

$$||B||_{tr} = ||B'||_{tr} = \frac{1}{k} ||A_{S,T}||_{tr}$$

By the AM-GM inequality and since $\gamma_2(A)$ is the maximum possible value for $||B||_{tr}$, this implies:

$$\gamma_2(A) \ge \frac{1}{k} \|A_{S,T}\|_{tr} \ge |\det A_{S,T}|^{1/k}$$

Bucketing Lemma: For all $\sigma \in \mathbb{R}^r_+$, $\exists R \in [r]$ for which:

$$\sum_{i \in R} \sigma_i \ge \frac{1}{2 \log 2r} \sum_{i=1}^r \sigma_i$$
$$\forall i, j \in R, \sigma_i \le 2\sigma_j$$

Proof. Without loss of generality, assume that $\sum_{i=1}^{r} \sigma_i = 1$. Then define the following sets, where $1 \le k \le \lceil \log 2r \rceil$:

$$R_k = \{i : (1/2)^{k-1} \ge \sigma_i \ge (1/2)^k\}$$
$$R_\infty = \{i : \sigma_i \le (1/2r)\}$$

The main motivation behind this construction is that we can ignore R_{∞} , and the rest will follow by averaging. Note also that all R_k satisfy the second property.

Since $|R_{\infty}| < r$, we have that:

$$\sum_{i \in R_{\infty}} \sigma_i < |R_{\infty}| \cdot \frac{1}{2r} < \frac{1}{2}$$
$$\sum_{k=1}^{\log 2r} \sum_{i \in R_k} \sigma_i = 1 - \sum_{i \in R_{\infty}} \sigma_i > 1/2$$

This means that as we have $\log 2r$ terms, we get:

$$\log 2r \cdot \min_k \sum_{i \in R_k} \sigma_i > 1/2$$

Thus, $\exists R_l$ for which:

$$\sum_{i \in R_l} \sigma_i \ge \frac{1}{2\log 2r}$$

We can immediately see that for such a set R, we have:

Corollary 4. For R satisfying the conditions of the Bucketing Lemma:

$$\frac{1}{|R|} \sum_{i \in R} \sigma_i \le 2 \left(\prod_{i \in R} \sigma_i \right)^{1/|R|}$$

Proof.

$$\frac{1}{|R|} \sum_{i \in R} \sigma_i = \max_{i \in R} \sigma_i \le 2 \min_{i \in R} \sigma_i \le 2 \left(\prod_{i \in R} \sigma_i \right)^{1/|R|}$$

Claim 5.

$$detlb(A) = \gamma_2(A) \cdot \Omega\left(\frac{1}{\log \operatorname{rank} A}\right)$$

Proof. Take a feasible solution (B, p, q) to the dual maximization problem for $\gamma_2(A)$. This implies that $\gamma_2(A) = ||B||_{tr}$.

Now, let the singular value decomposition (SVD) of B be $B = U\Sigma V^T$. Here, $r = \operatorname{rank} B, U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$, $U^T U = I$ and Σ a diagonal matrix with the singular values of B on the diagonal.

Pick $R \in [n]$ with |R| = k to be a subset of singular values that satisfies the conditions of the Bucketing lemma. If we define $C := U_R^T B$, where U_R the subset of U indexed by R, then the singular values of C are $\{\sigma_i\}_{i \in R}$. This means that:

$$\left|\det CC^{T}\right|^{\frac{1}{2k}} = \left|\prod_{i\in R}\sigma_{i}\right|^{\frac{1}{k}} \ge \frac{1}{2k}\sum_{i\in R}\sigma_{i} \ge \frac{1}{4k\log 2r}\sum_{i=1}^{r}\sigma_{i} = \frac{1}{4k\log 2r}\|B\|_{tr}$$
(1)

Cauchy-Binet Formula: For $X, Y \in \mathbb{R}^{m \times n}$:

$$\det XY^T = \sum_{\substack{S \subseteq [n] \\ |S| = m}} \det X_S \det Y_S$$

If we define $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ as the diagonal matrices with p_i and q_j as the diagonal entries respectively, then we have B = PAQ. Similarly, $C = U_R^T B = U_R^T PAQ$.

Define $D := U_R^T P A$ so that C = DQ. By applying Cauchy-Binet to $C \in \mathbb{R}^{k \times n}$ we get:

$$\det (CC^T) = \sum_{\substack{S \subseteq [n] \\ |S|=k}} \det C_S \det C_S = \sum_{\substack{S \subseteq [n] \\ |S|=k}} (\det C_S)^2 = \sum_{\substack{S \subseteq [n] \\ |S|=k}} (\det D_S Q_S)^2$$
$$= \sum_{\substack{S \subseteq [n] \\ |S|=k}} (\det D_S)^2 \left(\prod_{\substack{j \in S}} q_j^2\right) \le \left(\max_{\substack{S \subseteq [n] \\ |S|=k}} (\det D_S)^2\right) \left(\sum_{\substack{S \subseteq [n] \\ |S|=k}} \prod_{\substack{j \in S}} q_j^2\right)$$

which follows by Hölder.

By picking distinct j from each of the k sums, we will get each j k! times. Therefore, this implies:

$$\sum_{\substack{S \subseteq [n] \\ |S|=k}} \prod_{j \in S} q_j^2 \le \frac{1}{k!} \left(\sum_{j=1}^n q_j^2 \right)^k = \frac{1}{k!}$$

Thus, $\exists S \subseteq [n]$ such that:

$$(\det D_S)^{1/k} \ge (k!)^{1/2k} \cdot (\det CC^T)^{1/2k}$$

or equivalently:

$$\max_{\substack{S \subseteq [n] \\ |S|=k}} |\det D_S|^{1/k} \ge (k!)^{1/2k} \cdot (\det CC^T)^{1/2k}$$

which by Stirling means:

$$(k!)^{1/2k} \cdot (\det CC^T)^{1/2k} \ge \sqrt{\frac{k}{e}} (\det CC^T)^{1/2k} = \Omega(\sqrt{k}) (\det CC^T)^{1/2k}$$

Thus, by applying equation (1) here this implies:

$$(\det D_S)^{1/k} \ge \frac{\|B\|_{tr}}{4e\sqrt{k}\log 2r} \tag{2}$$

Consider the orthonormal matrix $W \in \mathbb{R}^{m \times m}$ for which the first k columns are equal to the columns of U_R . Such a matrix always exists since we can complete the orthonormal basis for \mathbb{R}^m starting with the column vectors of U_R . The m-k new vectors we get can be used to define the rest of the columns of W. Define $E_S := PA_S \in \mathbb{R}^{m \times k}$, meaning that $D_S = U_R^T E_S$. It can be shown that:

$$\det(E_S^T E_S) = \det((E_S^T W)(W^T E_S)) = \det((E_S^T W)(E_S^T W)^T)$$

$$= \sum_{\substack{T \subseteq [n] \\ |T| = k}} \det((E_S^T W)_T)^2 = \sum_{\substack{T \subseteq [n] \\ |T| = k}} \det(E_S^T W_T)^2 \ge \det(E_S^T U_R)^2 = \det(U_R^T E_S)^2$$
$$\therefore \det(E_S^T E_S) \ge \det(D_S)^2$$

Now, we can apply the exact same analysis as in (2), but this time to $D_S^T = (A_S)^T P$ instead of C. This means that $\exists T \in [m]$ for which:

$$\max_{\substack{T \subseteq [m] \\ |T| = k}} (\det A_{S,T})^{1/k} \ge (k!)^{1/2k} \cdot \det (A_S^T P^2 A_S)^{1/2k} = (k!)^{1/2k} \cdot \det (E_S^T E_S)^{1/2k}$$

Putting all of this together and applying Stirling just like before, we get that:

$$\max_{\substack{S \subseteq [n] \\ T \subseteq [m] \\ |S| = |T| = k}} |\det A_{S,T}|^{1/k} \ge \frac{||B||_{tr}}{4e \log (2r)}$$

By maximizing over all k, this yields the desired result.

References

[MNT14] J. Matousek, A. Nikolov, and K. Talwar. Factorization Norms and Hereditary Discrepancy. ArXiv e-prints, August 2014.