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1 Computing Discrepancy

Last lecture: We showed that given A 2 [�1, 1]m⇥n, we can compute x 2 {±1}m such that kAxk1 =
O(

p
n log (2m/n)). This leads to further questions:

• Assume disc(A) is small (e.g. disc(A) = 0), can we compute x that does better than Spencer’s
bound (that is, o(

p
n log (2m/n)) in polylog(m,n) time?

• More generally, can we e�ciently approximate combinatorial discrepancy?

Unfortunately, the answer to both these questions is that we cannot (unless P = NP ).

Theorem ([CNN11]). For A 2 {0, 1}O(n)⇥n
, it is NP�hard to distinguish between the cases:

1. disc(A) = 0

2. disc(A) = ⌦(
p
n) (Spencer’s bound)

Note: The same holds for set systems, where A is the incidence matrix.

Here we prove the above for A 2 {�4,�3, ..., 4}O(n)⇥n.

Theorem ([Gur03]). [2-2 Set Splitting]

For S = {S1, ..., Sm} with m = O(n), if 8i |Si| = 4 and Si ✓ [n], where each j ✓ [n] appears in at

most 4 sets, it is NP�hard to distinguish between the cases:

1. disc (S) = 0

2. 8x 2 {±1}n, |{i : |
P

j2Si
xj | 6= 0}| � ↵m, where ↵ ⇡ 1/22 a small constant

Su�ces to reduce from this to our problem.

Reduction: Set B 2 {0, 1}m⇥n the incidence matrix of S. This has dimension m⇥ n, with 4 1s in
each row/column, by construction of S. Set H 2 {±1}m⇥m, the Hadamard matrix, which has the
property that HTH = mI. We denote the ith row of H as hi and the jth column of B as bj .

Define A = HB, where Aij = hi · bj . Note that since there are at most 4 non-zero entries in bj and
hi 2 {±1}m, we have that Aij 2 {�4, ..., 4}.

We now prove that this reduction is su�cient for our purposes.
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Claim. disc (S) = 0 ) disc (A) = 0.

Proof. For disc (S) = 0, by definition 9x 2 {±1}n s.t. Bx = 0. This implies that Ax = HBx =
H0 = 0 and so disc (A) = 0.

Claim. 8x 2 {±1}n, |{i : |
P

j2Si
xj | 6= 0}| � ↵m ) disc(A) = ⌦(

p
n)

Proof. By assumption we know that the number of sets Si for which |
P

j2Si
xj | 6= 0 is bounded

below by ↵m. Since the total number of such sets is an integer and thus at least 1, we have that:

kBxk22 =
mX

i=1

0

@
X

j2Si

xj

1

A
2

� ↵m

By comparing maximum to average discrepancy, we get that:

kHBxk21 � 1

m
kHBxk22 =

1

m
xTBTHTHBx = xTBTBx = kBxk22 � ↵m

) disc(A) = disc(HB) �
p
↵m = ⌦(

p
n)

2 Hereditary Discrepancy

We can define the (stronger) notion of hereditary discrepancy as follows:

herdisc (A) = max
S✓[n]

disc(AS)

where A 2 Rm⇥n and AS the matrix which consists of the columns of A which are indexed by S.

For hereditary discrepancy, there are a number of things that we can say about its approximations.

Theorem ([AGH13]). 8✏ > 0, it is NP�hard to obtain a (2 � ✏) approximation to herdisc (A)
better than a factor of 2.

Theorem ([NT15]). There exists a polytime computable function f such that 8A 2 Rm⇥n
:

f(A)

C log (m)3/2
 herdisc (A)  f(A)

We begin by looking at upper bounds for hereditary discrepancy:

Norms of Rows: For ai⇤ the i-th row of A, we can define:

r(A) =
m

max
i=1

kai⇤k2
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For x 2 {±1}n chosen uniformly at random )w.h.p kAxk1 = O(
p
log 2m) · r(A)

) disc(A) = r(A) ·O(
p

log 2m) (1)

We notice that (Ax)i = hai⇤, xi and since the projection of Euclidian distance never increases, this
implies that r(AS)  r(A). Thus:

herdisc (A) = max
S

disc (AS) = max
S

r(AS) ·O(
p

log 2m) = r(A) ·O(
p
log 2m)

Norms of Columns: For a⇤i the i-th column of A, we can similarly define:

c(A) =
n

max
i=1

ka⇤ik2

Some relevant results and conjectures pertaining to this definition are shown below.

Beck-Fiala Theorem: For A 2 {0, 1}m⇥n, we have disc (A)  2maxj #{1’s in a⇤j} = 2 · c(A)2

Beck-Fiala Conjecture: For A 2 {0, 1}m⇥n, disc (A) = O(1) · c(A)

Komlós Conjecture: 8A 2 Rm⇥n, disc (A) = O(1) · c(A)

Banaszczyk: 8A 2 Rm⇥n, disc (A) = O(
p
log 2m) · c(A)

Finally, since c(AS)  c(A), the above result implies:

herdisc (A)  c(A) ·O(
p
log 2m)

Combining with (1), the above also yields:

disc (A)  min {c(A), r(A)} · polylog(m)

3 Factorization

Theorem ([Ban98]). Let K ✓ Rm
be convex and closed, with:

P(g 2 K) � 1/2 where g ⇠ N(0, I)

Then for A 2 Rm⇥n
, 9x 2 {±1}n s.t. Ax 2 5 · c(A) ·K

Theorem ([Lar14]). For A 2 Rm⇥n
with A = UV , where U, V arbitrary, we have that:

disc (A)  r(U) · c(V ) ·O(
p
log 2m)

Proof. Define K as follows:
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K = {y : kUyk1  2 · r(U) ·
p

log (2m)}

We will denote ui as the ith row of U .

Theorem (Gaussian Concentration Inequality). h ⇠ N(0,�2) ) P(|h| > t�)  e�t2/2

For g ⇠ N(0, I), we can bound P(g 2 K) as follows:

P(g 2 K) = P
⇣
|hui, gi|  2 · r(U) ·

p
log (2m), 8i 2 [m]

⌘

� 1�
mX

i=1

P
⇣
|hui, gi| � 2 · r(U) ·

p
log (2m)

⌘

� 1�
mX

i=1

1

2m
� 1/2

The last inequality follows by the property that for g ⇠ N(0, I), we have hui, gi ⇠ N(0, kuik22). By
setting t = 2

p
log (2m) and noticing that by definition 8i, kuik22  r(U)2, applying the Gaussian

concentration inequality above yields the lower bound.

Now, the above result means we can apply the result of [Ban98] to K with matrix V :

9x 2 {±1}n s.t. V x 2 5 · c(V ) ·K

, kUV xk1 = disc(A)  10 · c(V ) · r(U) ·
p
log 2m

Definition (�2 norm). We can define the �2 norm of a matrix A 2 Rn⇥m
as:

�2(A) = min {r(U) · c(V ) : UV = A}

The above result then becomes:

disc (A) = �2(A) ·O
⇣p

log (2m)
⌘

We additionally note that since AS = UVS , then c(VS)  c(V ) ) �2(AS)  �2(A).

E�cient computation of �2

Definition. A vector program is an optimization problem with vector variables {vi}ni=1 2 Rn
, whose

objective function and constraints are linear in hvi, vji where i, j 2 [n].
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It is known that every vector program can be approximated e�ciently by a semidefinite program
(SDP). Thus, if we can show that �2(A) can be written as a vector program, this su�ces in showing
that it is e�ciently computable.

Claim. For A 2 Rm⇥n
, �2(A) can be written as the following vector program:

minimize t

subject to hui, vji = Aij

hui, uii  t

hvj , vji  t

ui, vj 2 Rm+n

where (i, j) 2 [m]⇥ [n],

Proof. Denote t⇤ the optimal solution, with u⇤i , v
⇤
j corresponding vectors.

We first show �2(A)  t⇤.

If we define U as having u⇤i as its ith row and V as having v⇤j as its jth column, then (UV )ij =
hu⇤i , v⇤j i = Aij . Thus, we get that UV = A.

Since 8i, hu⇤i , u⇤i i  t⇤, this implies that 8i, ku⇤i k22  t⇤, or that r(U)2  t⇤. Similarly, c(V )2  t⇤.

As U and V satisfy A = UV , we have that:

) �2(A)  r(U) · c(V )  t⇤

We now show that t⇤  �2(A).

Pick U , V , the optimal matrices for which r(U) · c(V ) = �2(A).

Setting ↵ =
q

c(V )
r(U) , we have that A = (↵U)( 1↵V ).

Now define ui the ith row of ↵U and vj the jth row of (1/↵)V .

r(↵U) =

s
c(V )

r(U)
r(U) =

p
c(V ) · r(U)

c((1/↵)V ) =

s
r(U)

c(V )
c(V ) =

p
c(V ) · r(U)

The two equalities above imply that:

hui, uii = kuik22  r(↵U)2 =
c(V )

r(U)
r(U)2 = c(V ) · r(U) = �2(A)

A similar argument shows this for hvj , vji. However, since t⇤ is the minimum t for which hui, uii  t,
this implies that t⇤  �2(A). Thus, t⇤ = �2(A).
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