CSC2414: Discrepancy Theory in Computer Science
 Fall 2015
 Lecture 7 - November 2, 2015
 Aleksandar Nikolov
 Scribe: Assimakis Kattis

1 Computing Discrepancy

Last lecture: We showed that given $A \in[-1,1]^{m \times n}$, we can compute $x \in\{ \pm 1\}^{m}$ such that $\|A x\|_{\infty}=$ $O(\sqrt{n \log (2 m / n)})$. This leads to further questions:

- Assume $\operatorname{disc}(A)$ is small (e.g. $\operatorname{disc}(A)=0)$, can we compute x that does better than Spencer's bound (that is, o($\sqrt{n \log (2 m / n)})$ in polylog (m, n) time?
- More generally, can we efficiently approximate combinatorial discrepancy?

Unfortunately, the answer to both these questions is that we cannot (unless $P=N P$).
Theorem ([CNN11]). For $A \in\{0,1\}^{O(n) \times n}$, it is $N P$-hard to distinguish between the cases:

1. $\operatorname{disc}(A)=0$
2. $\operatorname{disc}(A)=\Omega(\sqrt{n})$ (Spencer's bound)

Note: The same holds for set systems, where A is the incidence matrix.
Here we prove the above for $A \in\{-4,-3, \ldots, 4\}^{O(n) \times n}$.
Theorem ([Gur03]). [2-2 Set Splitting]
For $S=\left\{S_{1}, \ldots, S_{m}\right\}$ with $m=O(n)$, if $\forall i\left|S_{i}\right|=4$ and $S_{i} \subseteq[n]$, where each $j \subseteq[n]$ appears in at most 4 sets, it is $N P$-hard to distinguish between the cases:

1. $\operatorname{disc}(S)=0$
2. $\forall x \in\{ \pm 1\}^{n},\left|\left\{i:\left|\sum_{j \in S_{i}} x_{j}\right| \neq 0\right\}\right| \geq \alpha m$, where $\alpha \approx 1 / 22$ a small constant

Suffices to reduce from this to our problem.
Reduction: Set $B \in\{0,1\}^{m \times n}$ the incidence matrix of S. This has dimension $m \times n$, with 41 s in each row/column, by construction of S. Set $H \in\{ \pm 1\}^{m \times m}$, the Hadamard matrix, which has the property that $H^{T} H=m I$. We denote the i th row of H as h_{i} and the j th column of B as b_{j}.

Define $A=H B$, where $A_{i j}=h_{i} \cdot b_{j}$. Note that since there are at most 4 non-zero entries in b_{j} and $h_{i} \in\{ \pm 1\}^{m}$, we have that $A_{i j} \in\{-4, \ldots, 4\}$.

We now prove that this reduction is sufficient for our purposes.

Claim. $\operatorname{disc}(S)=0 \Rightarrow \operatorname{disc}(A)=0$.
Proof. For $\operatorname{disc}(S)=0$, by definition $\exists x \in\{ \pm 1\}^{n}$ s.t. $B x=0$. This implies that $A x=H B x=$ $H 0=0$ and so $\operatorname{disc}(A)=0$.

Claim. $\forall x \in\{ \pm 1\}^{n},\left|\left\{i:\left|\sum_{j \in S_{i}} x_{j}\right| \neq 0\right\}\right| \geq \alpha m \Rightarrow \operatorname{disc}(A)=\Omega(\sqrt{n})$
Proof. By assumption we know that the number of sets S_{i} for which $\left|\sum_{j \in S_{i}} x_{j}\right| \neq 0$ is bounded below by αm. Since the total number of such sets is an integer and thus at least 1 , we have that:

$$
\|B x\|_{2}^{2}=\sum_{i=1}^{m}\left(\sum_{j \in S_{i}} x_{j}\right)^{2} \geq \alpha m
$$

By comparing maximum to average discrepancy, we get that:

$$
\begin{gathered}
\|H B x\|_{\infty}^{2} \geq \frac{1}{m}\|H B x\|_{2}^{2}=\frac{1}{m} x^{T} B^{T} H^{T} H B x=x^{T} B^{T} B x=\|B x\|_{2}^{2} \geq \alpha m \\
\therefore \operatorname{disc}(A)=\operatorname{disc}(H B) \geq \sqrt{\alpha m}=\Omega(\sqrt{n})
\end{gathered}
$$

2 Hereditary Discrepancy

We can define the (stronger) notion of hereditary discrepancy as follows:

$$
\operatorname{herdisc}(A)=\max _{S \subseteq[n]} \operatorname{disc}\left(A_{S}\right)
$$

where $A \in \mathbb{R}^{m \times n}$ and A_{S} the matrix which consists of the columns of A which are indexed by S.
For hereditary discrepancy, there are a number of things that we can say about its approximations.
Theorem ([AGH13]). $\forall \epsilon>0$, it is $N P$-hard to obtain a $(2-\epsilon)$ approximation to herdisc (A) better than a factor of 2 .

Theorem ([NT15]). There exists a polytime computable function f such that $\forall A \in \mathbb{R}^{m \times n}$:

$$
\frac{f(A)}{C \log (m)^{3 / 2}} \leq \operatorname{herdisc}(A) \leq f(A)
$$

We begin by looking at upper bounds for hereditary discrepancy:
Norms of Rows: For $a_{i *}$ the i-th row of A, we can define:

$$
r(A)=\max _{i=1}\left\|a_{i *}\right\|_{2}
$$

For $x \in\{ \pm 1\}^{n}$ chosen uniformly at random $\Rightarrow_{w . h . p}\|A x\|_{\infty}=O(\sqrt{\log 2 m}) \cdot r(A)$

$$
\begin{equation*}
\therefore \operatorname{disc}(A)=r(A) \cdot O(\sqrt{\log 2 m}) \tag{1}
\end{equation*}
$$

We notice that $(A x)_{i}=\left\langle a_{i *}, x\right\rangle$ and since the projection of Euclidian distance never increases, this implies that $r\left(A_{S}\right) \leq r(A)$. Thus:

$$
\operatorname{herdisc}(A)=\max _{S} \operatorname{disc}\left(A_{S}\right)=\max _{S} r\left(A_{S}\right) \cdot O(\sqrt{\log 2 m})=r(A) \cdot O(\sqrt{\log 2 m})
$$

Norms of Columns: For $a_{* i}$ the i-th column of A, we can similarly define:

$$
c(A)=\max _{i=1}^{n}\left\|a_{* i}\right\|_{2}
$$

Some relevant results and conjectures pertaining to this definition are shown below.
Beck-Fiala Theorem: For $A \in\{0,1\}^{m \times n}$, we have disc $(A) \leq 2 \max _{j} \#\left\{1\right.$'s in $\left.a_{* j}\right\}=2 \cdot c(A)^{2}$
Beck-Fiala Conjecture: For $A \in\{0,1\}^{m \times n}$, $\operatorname{disc}(A)=O(1) \cdot c(A)$
Komlós Conjecture: $\forall A \in \mathbb{R}^{m \times n}, \operatorname{disc}(A)=O(1) \cdot c(A)$
Banaszczyk: $\forall A \in \mathbb{R}^{m \times n}, \operatorname{disc}(A)=O(\sqrt{\log 2 m}) \cdot c(A)$
Finally, since $c\left(A_{S}\right) \leq c(A)$, the above result implies:

$$
\operatorname{herdisc}(A) \leq c(A) \cdot O(\sqrt{\log 2 m})
$$

Combining with (1), the above also yields:

$$
\operatorname{disc}(A) \leq \min \{c(A), r(A)\} \cdot \operatorname{polylog}(m)
$$

3 Factorization

Theorem ([Ban98]). Let $K \subseteq \mathbb{R}^{m}$ be convex and closed, with:

$$
\mathbb{P}(g \in K) \geq 1 / 2 \text { where } g \sim N(0, I)
$$

Then for $A \in \mathbb{R}^{m \times n}, \exists x \in\{ \pm 1\}^{n}$ s.t. $A x \in 5 \cdot c(A) \cdot K$
Theorem ([Lar14]). For $A \in \mathbb{R}^{m \times n}$ with $A=U V$, where U, V arbitrary, we have that:

$$
\operatorname{disc}(A) \leq r(U) \cdot c(V) \cdot O(\sqrt{\log 2 m})
$$

Proof. Define K as follows:

$$
K=\left\{y:\|U y\|_{\infty} \leq 2 \cdot r(U) \cdot \sqrt{\log (2 m)}\right\}
$$

We will denote u_{i} as the i th row of U.
Theorem (Gaussian Concentration Inequality). $h \sim N\left(0, \sigma^{2}\right) \Rightarrow \mathbb{P}(|h|>t \sigma) \leq e^{-t^{2} / 2}$
For $g \sim N(0, I)$, we can bound $\mathbb{P}(g \in K)$ as follows:

$$
\begin{gathered}
\mathbb{P}(g \in K)=\mathbb{P}\left(\left|\left\langle u_{i}, g\right\rangle\right| \leq 2 \cdot r(U) \cdot \sqrt{\log (2 m)}, \forall i \in[m]\right) \\
\geq 1-\sum_{i=1}^{m} \mathbb{P}\left(\left|\left\langle u_{i}, g\right\rangle\right| \geq 2 \cdot r(U) \cdot \sqrt{\log (2 m)}\right) \\
\geq 1-\sum_{i=1}^{m} \frac{1}{2 m} \geq 1 / 2
\end{gathered}
$$

The last inequality follows by the property that for $g \sim N(0, I)$, we have $\left\langle u_{i}, g\right\rangle \sim N\left(0,\left\|u_{i}\right\|_{2}^{2}\right)$. By setting $t=2 \sqrt{\log (2 m)}$ and noticing that by definition $\forall i,\left\|u_{i}\right\|_{2}^{2} \leq r(U)^{2}$, applying the Gaussian concentration inequality above yields the lower bound.

Now, the above result means we can apply the result of $[\operatorname{Ban} 98]$ to K with matrix V :

$$
\begin{gathered}
\exists x \in\{ \pm 1\}^{n} \text { s.t. } V x \in 5 \cdot c(V) \cdot K \\
\Leftrightarrow\|U V x\|_{\infty}=\operatorname{disc}(A) \leq 10 \cdot c(V) \cdot r(U) \cdot \sqrt{\log 2 m}
\end{gathered}
$$

Definition (γ_{2} norm). We can define the γ_{2} norm of a matrix $A \in \mathbb{R}^{n \times m}$ as:

$$
\gamma_{2}(A)=\min \{r(U) \cdot c(V): U V=A\}
$$

The above result then becomes:

$$
\operatorname{disc}(A)=\gamma_{2}(A) \cdot O(\sqrt{\log (2 m)})
$$

We additionally note that since $A_{S}=U V_{S}$, then $c\left(V_{S}\right) \leq c(V) \Rightarrow \gamma_{2}\left(A_{S}\right) \leq \gamma_{2}(A)$.
Efficient computation of γ_{2}
Definition. A vector program is an optimization problem with vector variables $\left\{v_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{n}$, whose objective function and constraints are linear in $\left\langle v_{i}, v_{j}\right\rangle$ where $i, j \in[n]$.

It is known that every vector program can be approximated efficiently by a semidefinite program (SDP). Thus, if we can show that $\gamma_{2}(A)$ can be written as a vector program, this suffices in showing that it is efficiently computable.

Claim. For $A \in \mathbb{R}^{m \times n}, \gamma_{2}(A)$ can be written as the following vector program:

$$
\begin{array}{ll}
\text { minimize } & t \\
\text { subject to } & \left\langle u_{i}, v_{j}\right\rangle=A_{i j} \\
& \left\langle u_{i}, u_{i}\right\rangle \leq t \\
& \left\langle v_{j}, v_{j}\right\rangle \leq t \\
& u_{i}, v_{j} \in \mathbb{R}^{m+n} \\
\text { where } & (i, j) \in[m] \times[n],
\end{array}
$$

Proof. Denote t^{*} the optimal solution, with u_{i}^{*}, v_{j}^{*} corresponding vectors.
We first show $\gamma_{2}(A) \leq t^{*}$.
If we define U as having u_{i}^{*} as its i th row and V as having v_{j}^{*} as its j th column, then $(U V)_{i j}=$ $\left\langle u_{i}^{*}, v_{j}^{*}\right\rangle=A_{i j}$. Thus, we get that $U V=A$.
Since $\forall i,\left\langle u_{i}^{*}, u_{i}^{*}\right\rangle \leq t^{*}$, this implies that $\forall i,\left\|u_{i}^{*}\right\|_{2}^{2} \leq t^{*}$, or that $r(U)^{2} \leq t^{*}$. Similarly, $c(V)^{2} \leq t^{*}$.
As U and V satisfy $A=U V$, we have that:

$$
\therefore \gamma_{2}(A) \leq r(U) \cdot c(V) \leq t^{*}
$$

We now show that $t^{*} \leq \gamma_{2}(A)$.
Pick U, V, the optimal matrices for which $r(U) \cdot c(V)=\gamma_{2}(A)$.
Setting $\alpha=\sqrt{\frac{c(V)}{r(U)}}$, we have that $A=(\alpha U)\left(\frac{1}{\alpha} V\right)$.
Now define u_{i} the i th row of αU and v_{j} the j th row of $(1 / \alpha) V$.

$$
\begin{gathered}
r(\alpha U)=\sqrt{\frac{c(V)}{r(U)}} r(U)=\sqrt{c(V) \cdot r(U)} \\
c((1 / \alpha) V)=\sqrt{\frac{r(U)}{c(V)}} c(V)=\sqrt{c(V) \cdot r(U)}
\end{gathered}
$$

The two equalities above imply that:

$$
\left\langle u_{i}, u_{i}\right\rangle=\left\|u_{i}\right\|_{2}^{2} \leq r(\alpha U)^{2}=\frac{c(V)}{r(U)} r(U)^{2}=c(V) \cdot r(U)=\gamma_{2}(A)
$$

A similar argument shows this for $\left\langle v_{j}, v_{j}\right\rangle$. However, since t^{*} is the minimum t for which $\left\langle u_{i}, u_{i}\right\rangle \leq t$, this implies that $t^{*} \leq \gamma_{2}(A)$. Thus, $t^{*}=\gamma_{2}(A)$.

References

[AGH13] Per Austrin, Venkatesan Guruswami, and Johan Håstad. Sat is np-hard. In Electronic Colloquium on Computational Complexity, TR13-159, 2013.
[Ban98] Wojciech Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Structures \& Algorithms, 12(4):351-360, 1998.
[CNN11] Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for minimizing discrepancy. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1607-1614. SIAM, 2011.
[Gur03] Venkatesan Guruswami. Inapproximability results for set splitting and satisfiability problems with no mixed clauses. Algorithmica, 38(3):451-469, 2003.
[Lar14] Kasper Green Larsen. On range searching in the group model and combinatorial discrepancy. SIAM Journal on Computing, 43(2):673-686, 2014.
[NT15] Aleksandar Nikolov and Kunal Talwar. Approximating hereditary discrepancy via small width ellipsoids. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 324-336. SIAM, 2015.

