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1 Introduction

If A is an m× n, real-valued matrix recall that the discrepancy of A is

disc(A) := min
x∈{±1}n

||Ax||∞.

We have seen in previous lectures that matrix discrepancy generalizes normal combinatorial dis-
crepancy (if F is a set system with m sets, take A to be the 0-1 incidence matrix of F , and the
±1 vector x is the colouring of the underlying elements), which means that the study of disc(A) is
particularly interesting when the entries of A are bounded in the interval [−1, 1]. In this regime we
can get an upper bound of disc(A) = O(

√
n logm) by taking a uniformly random vector x ∈ {±1}n;

the seminal “Six Standard Deviations Suffice” theorem (proved in the last lecture) improves this
when m is small:

Theorem 1 (Six Standard Deviations Suffice [3]). Let A be any m×n matrix with entries bounded
by [−1, 1]. Then disc(A) = O(

√
n log(m/n)).

In this lecture we give a constructive proof (by way of a simple randomized algorithm) due to
Lovett and Mehka [1] of the previous theorem. We also do not require any advanced tools from
probability (in particular, the correlation inequality for slabs due to Sidak [2]) — indeed, all we
will need is the stability of Gaussians and concentration of measure for a type of Gaussian random
walk.

2 The Algorithm

Theorem 2. Let m,n be positive integers with m ≥ n and let A be any m× n matrix with entries
from [−1, 1]. There is a randomized algorithm running in time polynomial in m,n which, when
given A as input, outputs an x ∈ {±1}n such that ||Ax||∞ = O(

√
n logm/n) with high probability.

In specifying and analyzing the algorithm we take the same geometric viewpoint that is used in the
proof from the previous lecture. Let m,n be positive integers with m ≥ n, and let A be any m× n
matrix with entries from the interval [−1, 1]. Let C be a universal constant to be specified later,
and consider the convex polytope

K = {x ∈ Rn | ||Ax||∞ ≤ C
√
n log(8m/n)}.

If a1, a2, . . . , am are the rows of A we can re-write the previous definition as

K = {x ∈ Rn | ∀i ∈ [m], |〈ai, x〉| ≤ C
√
n log(8m/n)},
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which will be more useful. Intuitively, K is a convex polytope defined as the intersection of a set
of “slabs” of the form

|〈ai, x〉| ≤ C
√
n log(8m/n).

The algorithm will work as follows: we perform (an approximation of) a continuous random walk,
starting from the origin, in the convex polytope K ∩ [−1, 1]n. When the random walk intersects a
facet of K ∩ [−1, 1]n we restrict further steps of the walk to remain on that facet, until we end up
at a vertex of [−1, 1]n. Clearly the resulting vector satisfies the conclusion of Theorem 2, but why
should this algorithm work?

Intuitively, this works because the facets of K are much further away from the origin (measured
by Euclidean distance) than the facets of [−1, 1]n: to be precise, the facet of K corresponding to
ai is at a distance

C
√
n log(8m/n)

||ai||2
≥ C

√
log(8m/n)

from the origin since ||ai||2 ≤
√
n, while the facets of [−1, 1]n are each at distance 1 from the origin

(note that we have crucially used the fact that all entries of A are bounded by ±1 here). It follows
that in the continuous random walk above it should be much more likely to hit a facet of [−1, 1]n

than a facet of K.

Of course the actual algorithm can only perform an approximation of the continuous random walk
as a sequence of very small discretized steps. Here we are again helped by the fact that the facets
of [−1, 1]n are close to the origin: by choosing the step-length sufficiently small we will be able to
show that after some large (but polynomial) number of steps we will have hit a constant fraction
of the facets of [−1, 1]n.

For convenience, we will reduce Theorem 2 to the following theorem, which can be viewed as an
“algorithmic partial colouring lemma”.

Theorem 3. Let m ≥ n be positive integers and let δ = 1/
√
n. There is a randomized, polynomial-

time algorithm and a constant C such that, when given an m×n matrix A with entries from [−1, 1]
and a vector c ∈ [−1, 1]n, finds an x ∈ [−1, 1]n such that the following holds, with probability at
least 1/6− ε for any 1/6 > ε > 0.

1. For each i = 1, 2, . . . ,m we have |〈ai, x〉| ≤ C||ai||2
√

log(8m/n)

2. |xi − 1| ≤ δ for at least n/10 indices i.

Proof of Theorem 2 from Theorem 3. Note that we can amplify the success probability in the usual
way by independent repetition — we do not include it in our analysis, but it adds at a polynomial
factor to the run time. Start with c = 0, run the algorithm from Theorem 3 and obtain an
x ∈ [−1, 1]n. Let x′ be the vector obtained by choosing all indices from x for which (2) fails,
and apply the algorithm recursively on x′ and on the matrix A′ obtained by deleting the columns
corresponding to the indices satisfying (2). At each recursive step we fix a constant fraction of the
coordinates of x, and so we end up with a vector x∗ for which all indices satisfy (2) after S = 10 log n
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recursive steps. The discrepancy of the resulting vector is

|〈ai, x∗〉| < C
√
n
√

log(8m/n) + C
√
n/10

√
log(8m/(n/10)) + · · ·+ C

√
n/10S

√
log(8m/(n/10S))

<
√
n
∞∑
s=0

C
√

log 8m · 10s/n

10s/2
< C ′

√
n log(m/n)

for some constant C ′.

Now we round the vector x∗ to get a vector ~x ∈ {±1}n. For each coordinate of x∗ round the value
to the nearest ±1. For any row ai, the discrepancy of the resulting vector is

|〈ai, ~x〉| ≤ |〈ai, x∗〉|+ |〈ai, ~x− x∗〉| ≤ C ′
√
n log(m/n) + |〈ai, ~x− x∗〉|.

By (2), each coordinate is distance at most δ = 1/
√
n from ±1. Applying Cauchy-Schwarz we get

|〈ai, ~x− x∗〉| ≤ ||ai||2||~x− x∗||2 ≤
√
n ·

(
n∑
i=1

δ2

)1/2

=
√
n

and so the discrepancy of the resulting vector is O(
√
n log(m/n)).

Let N (µ, σ2) denote the mean µ Gaussian distribution with variance σ2. The algorithm is formally
described in Algorithm 1. As stated, the algorithm includes several scalar parameters δ, γ, T, C that
we fix during the analysis: for now, think of δ, γ as being small reals with, say, 1/

√
n ≥ δ � γ > 0

and T being some large integer on the order of 1/γ2. The set Dt contains the facets of K for which

Algorithm 1: Main Algorithm

Input : An m× n matrix A, with entries from [−1, 1]. A vector c ∈ [−1, 1]n.
Output: A vector x ∈ [−1, 1]n satisfying the properties in Theorem 3.
Set x0 = c;
Normalize each row vector ai in A so that ||ai||2 = 1;
for t = 1, 2, . . . , T do

Set Dt = {i ∈ [m] | |〈ai, xt−1 − c〉| ≥ C
√

log(8m/n)− δ};
Set Vt = {j ∈ [n] | |xt−1j | > 1− δ};
Let Wt = {y ∈ Rn | ∀i ∈ Dt, 〈ai, y〉 = 0 and ∀j ∈ Vt, yj = 0};
Let w1, w2, . . . , wk be an orthonormal basis of the subspace Wt;
Let g1, g2, . . . , gk ∼ N (0, 1) be sampled i.i.d.;

Set ∆xt =
∑k

i=1 giwi;
Set xt = xt−1 + γ∆xt;

end
return xT

the vector xt−1 is “almost tight”, and the set Vt contains the set of facets of [−1, 1]n for which xt−1

is “almost tight”. Note that the facets in Dt are C
√

log(8m/n) instead of C
√
n log(8m/n) — this

is because we have normalized the row vectors ai. The subspaceWt contains all vectors orthogonal
to the Dt facets and the Vt facets. In each iteration of the algorithm, we take the vector xt−1 and
perturb it by Gaussian random noise in the subspace Wt. By moving in the subspace Wt, we never
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increase the discrepancy with respect to the facets in Dt and we never modify any coordinates that
are sufficiently close to ±1.

The parameters γ, δ should be viewed as tolerance parameters that we must introduce since we
are approximating a continuous random walk. The parameter δ defines a small region around the
facets of K ∩ [−1, 1]n which we use to define when a vector xt is tight with respect to the facet. By
choosing δ to be small enough we are guaranteed that the coordinates are close enough to the ±1
constraints so that we do not introduce too much extra discrepancy when rounding the fractional
coordinates. The parameter γ controls the step-size of our discretized walk — we choose a vector
∆xt of variance-1 Gaussian random noise, projected to the subspace Wt, and make a γ-length step
in that direction.

For simplicity, in the rest of this section we fix an m × n matrix A with entries in [−1, 1]. Much
of the hard work in the analysis is proving the lower bound on the number of fixed coordinates —
i.e. the size of |Vt| — of the output xT for some appropriately chosen C, δ, γ, T . This essentially
follows from our Main Lemma (cf. Lemma 5), which states that if we do not let the random walk
continue for too long, then the expected number of facets of K for which xT is tight will be small.
By using ||xT − c||2 as a potential function (which intuitively is a measure of the number of tight
facets) we will be able to show the upper bound given by Lemma 5 gives a lower bound on E |VT |.
Applying Markov’s inequality finishes the proof.

Gaussian noise enjoys a number of useful properties (e.g. exponential tail bounds), but key to the
analysis is the next property that states that a linear combination of samples of Gaussian noise is
again Gaussian.

Stability of Gaussians. Let g1, g2, . . . , gk be i.i.d. samples fromN (0, 1), and let g = (g1, g2, . . . , gk).
Then 〈a, g〉 ∼ N (0, ||a||22) for any a ∈ Rk.

To prove our Main Lemma we will also use following Azuma-type martingale concentration inequal-
ity.

Lemma 4. Let σ ∈ R satisfy 0 < σ < 1. Suppose y1, y2, . . . , y` are random variables where
y1 ∼ N (0, σ2), and for all i > 1, the conditional distribution of yi − yi−1 given the values of
y1, y2, . . . , yi−1 is N (0, σ2i ) for some random variable 0 < σi < 1 depending on y1, y2, . . . , yi−1.
Then

Pr[|y`| > t
√
`] ≤ 2e−t

2/2

for any t > 0.

Proof. By the definition of the sequence y1, y2, . . . , y`, for any λ > 0

Pr[|y`| > t
√
`] = 2 Pr[eλy` > eλt

√
`]

by the symmetry of Gaussians and the monotonicity of ex. Markov’s inequality yields

2 Pr[eλy` > eλt
√
`] ≤ 2E eλy`

eλt
√
`
.

We prove by induction on ` that E eλy` ≤ eλ2`/2. Assuming this, and choosing λ = t/
√
`, the lemma
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follows from a standard calculation:

Pr[|y`| > t
√
`] = 2 Pr[eλy` > eλt

√
`] ≤ 2E eλy`

eλt
√
`
≤ 2eλ

2`/2

eλt
√
`

=
2et

2/2

et2
= 2e−t

2/2.

On to the induction. If ` = 1 then y1 ∼ N (0, σ2) by assumption, so

E eλy1 = eλ
2σ2/2 ≤ eλ2/2

since σ < 1. So, suppose that the result holds for all y1, . . . , y`−1, and we prove it for y`. Then

E eλy` = Ey1,y2,...,y`−1
[E[eλy` |y1, . . . , y`−1]]

= Ey1,y2,...,y`−1
[eλy`−1 E[eλ(y`−y`−1)|y1, . . . , y`−1]]

≤ Ey1,...,y`−1
[eλy`1eλ

2/2]

≤ eλ2(`−1)/2 · eλ2/2 = eλ
2`/2,

where the penultimate inequality follows from the assumption that yi − yi−1 is conditionally a
0-mean Gaussian with variance σ2i < 1, and the final inequality is the inductive hypothesis.

The main lemma now follows from the martingale concentration bound and the Stability of Gaus-
sians. It says that if the random walk is not “too long” then, on average, the number of tight
discrepancy constraints will be small.

Lemma 5. If T = O(1/γ2) then there exists a constant C such that

E |DT+1| = E |{i ∈ [m] | |〈ai, xT − c〉| ≥ C
√
n log(8m/n)}| ≤ n/4.

Proof. Let C be a constant that will be fixed later. By linearity of expectation we can write

E |DT+1| =
m∑
i=1

Pr[|〈ai, xT − c〉| ≥ C
√
n log(8m/n)].

We expand the inner product as

〈ai, xT − c〉 =
T∑
t=1

γ〈ai,∆xt〉

where ∆xt =
∑k

j=1 gjwj for i.i.d. Gaussian samples g1, g2, . . . , gk ∼ N (0, 1). The Stability of
Gaussians implies that

〈ai,∆xt〉 =
k∑
j=1

gj〈ai, wj〉 ∼ N (0, σ2)

where σ2 =
∑k

j=1〈ai, wj〉2 ≤ ||ai||22 ≤ 1 since the ai vectors are normalized in the algorithm
and the basis w1, . . . , wk is an orthonormal basis of a subspace. For each t = 1, 2, . . . , T let
yt =

∑t
j=1〈ai,∆xj〉. It follows that the sequence of variables y1, y2, . . . , yT satisfy the conditions of

Lemma 4, thus

Pr[|yT | > t
√
T ] = Pr[γ|yT | > tγ

√
T ] = Pr[|γyT | > tγ

√
T ] = Pr[|〈ai, xT − c〉| > tγ

√
T ] ≤ 2e−t

2/2.
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Since T = O(1/γ2), choosing t = C
√

log 8m/n and C any constant such that C ≥ 1/γ
√
T yields

Pr[|〈ai, xT − c〉| > C
√

log 8m/n] ≤ 2e− log 8m/n =
n

4m
.

By summing this inequality over all i ∈ [m] we get E |DT+1| ≤ n/4.

With this lemma we can prove Theorem 3.

Proof of Theorem 3. Let x = xT be the output of Algorithm 1. We prove xt ∈ K ∩ [−1, 1]n for all t
with high probability, from which the first property of Theorem 3 follows. Let Et denote the event
that xt is the first point in the algorithm for which xt 6∈ K ∩ [−1, 1]n fails, so we have

Pr[x1, x2, . . . , xT ∈ K ∩ [−1, 1]n] = 1−
T∑
t=1

Pr[Et].

To estimate Pr[Et], in iteration t of the algorithm we must violate either a constraint in K or a
constraint in [−1, 1]n. In either case, by the definition of the algorithm the step length γ||∆xt||2
must have been greater than δ. We prove that this happens with very low probability if γ � δ.

If the event Et occurs then we have |〈w, γ∆xt〉| > δ for some w ∈ {a1, . . . , am, e1, . . . , en}, where
e1, e2, . . . , en is the standard basis (corresponding to the possible variable constraints in Vt). By
the Stability of Gaussians we know that 〈w,∆xt〉 ∼ N (0, ||w||22) and we know ||w||2 = 1 since all
constraints are normalized. A standard Gaussian tail bound implies that

Pr[|〈w,∆xt〉| ≥ δ/γ] ≤ 2e−(δ/γ)
2/2,

and so

Pr[∃t : xt 6∈ K ∩ [−1, 1]n] =
T∑
t=1

Pr[Et] ≤
T∑
t=1

∑
w

Pr[|〈w,∆xt〉| ≥ δ/γ] ≤ 2nmTe−(δ/γ)
2/2.

Choosing γ ≤ δ/
√
D log(mn/γ) for any large constant D and using the fact that T = O(1/γ2)

yields an upper bound on the above probability of 1/(mn)D−2. Thus for all t, xt ∈ K ∩ [−1, 1]n

with probability at least 1− 1/(mn)D−2.

We now prove the second property in Theorem 3 by estimating E |VT | and using Markov’s inequality.
By the definition of the algorithm, E ||xT−c||22 ≤ n and xT−c =

∑T
t=1 γ∆xt. For any t = 1, 2, . . . , T ,

if w1, w2, . . . , wk is the orthonormal basis of Wt we have

E ||∆xt||22 = E〈
k∑
j=1

gjwj ,

k∑
j=1

gjwj〉 =

k∑
j=1

E g2j = k = dimWt ≥ n− E |Dt| − E |Vt|,

where E g2j = 1 for any j since the Gaussian samples have variance 1. Since the Gaussian samples
used by the algorithm are independent and mean 0, and since each of the bases of the subspaces
W1,W2, . . . ,WT are orthonormal, we have

n ≥ E ||xT − c||22 = E〈
T∑
t=1

γ∆xt,

T∑
t=1

γ∆xt〉

= γ2
T∑
t=1

〈∆xt,∆xt〉 = γ2
T∑
t=1

E ||xt||22.

6



For each t = 1, 2, . . . , T we have |Dt| ≤ |Dt+1| and |Vt| ≤ |Vt+1|, since whenever the random walk
is tight to a facet in Dt or Vt it remains tight to that facet for all further steps. Using this fact we
continue the calculation:

n ≥ γ2
T∑
t=1

E ||xt||22 ≥ γ2
T∑
t=1

n− E |Dt| − E |Vt| ≥ γ2(T )(n− E |DT | − E |VT |).

Choose T = 2/γ2 and using the fact that |DT | ≤ |DT+1| rearrange to get

E |VT | ≥
1

2
(n− 2E |DT |) ≥ n/4.

Applying Markov’s inequality to the random variable n− |VT | we get

Pr[n− |VT | > 9n/10] = Pr[n/10 > |VT |] ≤
n− E |VT |

9n/10
≤ 3n/4

9n/10
=

5

6

and thus |VT | ≥ n/10 with probability at least 1/6.

We now verify the algorithm runs in polynomial time. This is easy to see — each iteration runs in
polynomial time, and the number of iterations is T = 2/γ2 where γ is chosen so that

γ ≤ δ/
√
D log(mn/γ) = 1/

√
Dn log(mn/γ),

so choosing γ to be, say, o(1/n) will satisfy this property while leaving the running time polynomial.

Now, on a single run of the algorithm, Property (1) of Theorem 3 holds with probability at least
1−1/mnD−2 (where we can choose D to be any large constant, which for a large γ could increase the
run-time of the algorithm by a polynomial factor), and Property (2) holds with probability at least
1/6. It follows that both properties hold with some non-zero probability whenever 1/6−1/mnD−2 >
0, and so both properties hold with probability at least 1/6 − ε for any ε > 0 by choosing D
sufficiently large relative to m,n.
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