Lecture 4 - 5th October, 2015

Aleksandar Nikolov

Scribe: Nick Spooner

Fall 2015

1 Lower bounds on combinatorial discrepancy

We recall the definition of combinatorial discrepancy from the previous lecture. Let \mathcal{U} be a set with $|\mathcal{U}| = n$. Without loss of generality, we can take $\mathcal{U} = \{1, \ldots, n\}$. Let $\mathcal{S} \subset 2^{\mathcal{U}} := \{S_1, \ldots, S_m\}$ be a family of subsets of \mathcal{U} ; $|\mathcal{S}| = m$. The combinatorial discrepancy of \mathcal{S} , disc \mathcal{S} , is defined to be

$$\operatorname{disc}(\mathcal{S}) := \min_{\chi: \mathcal{U} \to \{-1, +1\}} \max_{S \in \mathcal{S}} |\chi(S)| \ ,$$

where $\chi(S) := \sum_{j \in S} \chi(j)$. χ is a colouring of the elements of \mathcal{U} with ± 1 , and so disc(\mathcal{S}) can be thought of as a measure of the 'balancedness' (over \mathcal{S}) of any such colouring.

1.1 Matrix discrepancy

We introduce the following 'matrix notation' for combinatorial discrepancy, which motivates the study of matrix discrepancy.

Let A be the incidence matrix of S, i.e. $A \in \{0, 1\}^{m \times n}$ such that

$$A_{ij} = \begin{cases} 1 & \text{if } j \in S_i, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Then we can write $\operatorname{disc}(\mathcal{S})$ in terms of A, i.e.

$$\operatorname{disc}(\mathcal{S}) = \min_{x \in \{-1,1\}^n} \|Ax\|_{\infty}$$

where $||v||_{\infty}$ for $v \in \mathbb{R}^n$ is the ∞ -norm of v, $||v||_{\infty} := \max_{i \in \{1,\dots,n\}} |v_i|$.

We can generalise this notion by allowing A to be any matrix in $\mathbb{R}^{m \times n}$, and hence we can define for $A \in \mathbb{R}^{m \times n}$ the matrix discrepancy of A,

$$\operatorname{disc}(A) := \min_{x \in \{-1,1\}^n} \|Ax\|_{\infty}$$

1.2 The eigenvalue lower bound

Recall that the singular values of a matrix $A \in \mathbb{R}^{m \times n}$ are the square roots of the eigenvalues of $A^T A$. Let $\sigma_1 \geq \ldots \geq \sigma_n$ be the singular values of A. The smallest singular value of A, σ_n , satisfies the following variational characterisation:

$$\sigma_n^2 = \min_{x \in \mathbb{R}^n} \frac{x^T A^T A x}{x^T x} = \min_{x \in \mathbb{R}^n} \frac{\|Ax\|_2^2}{\|x\|_2^2}$$

where $||x||_2$ is the Euclidean norm of x.

Proposition 1 (Eigenvalue lower bound). For any $A \in \mathbb{R}^{m \times n}$, $\operatorname{disc}(A) \geq \sqrt{\frac{n}{m}} \sigma_n$, where σ_n is the smallest singular value of A.

Proof. By the definition of disc(A) and the ∞ -norm, we have

$$\operatorname{disc}(A) = \min_{x \in \{-1,1\}^n} \|Ax\|_{\infty} = \min_{x \in \{-1,1\}^n} \sqrt{\max_{i \in \{1,\dots,m\}} (Ax)_i^2} \ge \min_{x \in \{-1,1\}^n} \sqrt{\frac{1}{m} \sum_{i=1}^m (Ax)_i^2}$$

where the inequality follows because the maximum is larger than the average. Observe that the expression to be minimised on the right is exactly $\frac{1}{\sqrt{m}} ||Ax||_2$. Noting also that for $x \in \{-1, 1\}^n$, $||x||_2 = \sqrt{n}$, we obtain

$$\min_{x \in \{-1,1\}^n} \sqrt{\frac{1}{m} \sum_{i=1}^m (Ax)_i^2} = \min_{x \in \{-1,1\}^n} \sqrt{\frac{n}{m}} \cdot \frac{\|Ax\|_2}{\|x\|_2} \ge \min_{x \in \mathbb{R}^n} \sqrt{\frac{n}{m}} \cdot \frac{\|Ax\|_2}{\|x\|_2} = \sqrt{\frac{n}{m}} \sigma_n,$$

since the minimum over $x \in \{-1, 1\}^n$ is no smaller than the minimum over $x \in \mathbb{R}^n \supset \{-1, 1\}^n$. \Box Example 2. Consider the Hadamard matrix $H_k \in \{-1, 1\}^{2^k \times 2^k}$, defined recursively as follows:

$$H_0 := \begin{pmatrix} 1 \end{pmatrix} \qquad H_k := \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{pmatrix}$$

We have that $H_k^T H_k = 2^k \cdot I$, hence $\sigma_n = \sqrt{n}$ (where $n = 2^k$), and so disc $(H_k) \ge \sqrt{n}$.

The probabilistic argument from the previous lecture gives an upper bound for $\operatorname{disc}(H_k)$ of $O(\sqrt{n \log n})$. An asymptotically tight upper bound follows from a matrix discrepancy version of Spencer's Theorem [1], also discussed in the previous lecture:

Lemma 3 (Spencer 85 [1]). For all $A \in \{-1, 1\}^{m \times n}$, $disc(A) = O(\sqrt{n \log(2m/n)})$.

2 Further discrepancy measures

2.1 Hereditary discrepancy

As a notion of complexity, the combinatorial discrepancy is somewhat fragile. To see this, we consider the universe $\mathcal{U} := \mathcal{U}^{(1)} \uplus \mathcal{U}^{(2)}$, where $\mathcal{U}^{(1)}, \mathcal{U}^{(2)}$ are disjoint. Let $\mathcal{S}^{(1)} = \{S_1^{(1)}, \ldots, S_m^{(1)}\} \subseteq 2^{\mathcal{U}^{(1)}}$ and $\mathcal{S}^{(2)} = \{S_1^{(2)}, \ldots, S_m^{(2)}\} \subseteq 2^{\mathcal{U}^{(2)}}$ such that $|S_i^{(1)}| = |S_i^{(2)}|$ for $i = 1, \ldots, m$. Let $\mathcal{S}' = \{S_i^{(1)} \cup S_i^{(2)} : i \in \{1, \ldots, m\}\}; \mathcal{S}' \subseteq 2^{\mathcal{U}'}$. Then regardless of the choice of $\mathcal{S}^{(1)}$ or $\mathcal{S}^{(2)}$, disc $(\mathcal{S}) = 0$.

For this reason we introduce a more 'robust' notion of discrepancy. For $V \subseteq \mathcal{U}$, we write $\mathcal{S}|_V$ for the set $\{S \cap V : S \in \mathcal{S}\}$. Then the hereditary discrepancy of \mathcal{S} is

herdisc(
$$\mathcal{S}$$
) := $\max_{V \subset \mathcal{U}} \operatorname{disc}(\mathcal{S}|_V)$.

We can also define an analogous notion for matrix discrepancy. For a matrix $A \in \mathbb{R}^{m \times n}$ and $V \subseteq \{1, \ldots, n\}$, we write A_V for the matrix consisting of the columns of A indexed by V. Then

$$\operatorname{herdisc}(A) := \max_{V \subseteq \{1, \dots, n\}} \operatorname{disc}(A_V) \ .$$

Observe that the notions correspond when A is the incidence matrix of \mathcal{S} .

2.2 Linear discrepancy

Next we will study a generalisation of combinatorial discrepancy. Suppose that each $i \in \mathcal{U}$ is assigned a weight $w(i) \in [-1, 1]$. The discrepancy of S with respect to w is

$$\operatorname{disc}^{w}(\mathcal{S}) := \min_{\chi: \mathcal{U} \to \{-1,1\}} \max_{S \in \mathcal{S}} |\chi(S) - w(x)|$$

For $A \in \mathbb{R}^{m \times n}$ we can define the same notion, treating w as a vector in $[-1, 1]^n$:

$$\operatorname{disc}^{w}(A) := \|A(x-w)\|_{\infty}$$

Note that in both cases the standard combinatorial discrepancy is given by w(i) = 0 for all $i \in \mathcal{U}$ (resp. $w = \vec{0}$). The *linear discrepancy* of \mathcal{S} (resp. A) is the supremum of disc^w(\mathcal{S}) (resp. disc^w(A)) over all weight functions $w : \mathcal{U} \to [-1, 1]$ (resp. $w \in [-1, 1]^n$), and is written lindisc(\mathcal{S}) (resp. lindisc(A)).

Remark 4. Linear discrepancy is related to the problem of rounding solutions to relaxations of combinatorial optimization problems. In particular we can think of a solution to the relaxation as a vector of weights $w \in [0,1]^n$, and a solution to the original problem as a vector $x \in \{0,1\}^n$. Then $\operatorname{disc}^{w'}(A)$, for an appropriate matrix A and $w' = 2w - \vec{1}$, measures the approximation error when rounding w.

2.3 Relationships between discrepancy measures

It is clear that for any matrix A, $\operatorname{disc}(A) \leq \operatorname{herdisc}(A)$ and $\operatorname{disc}(A) \leq \operatorname{lindisc}(A)$. The following theorem shows that the linear discrepancy cannot be much larger than the hereditary discrepancy.

Theorem 5. For $A \in \mathbb{R}^{m \times n}$, $\operatorname{lindisc}(A) \leq 2 \operatorname{herdisc}(A)$.

Proof. We assume that all entries of w have a finite binary representation (note that any $v \in \mathbb{R}^n$ is arbitrarily close to such a vector). The proof is by induction on the length of this representation: in particular, let k be the smallest integer such that $w = \frac{v}{2^k}$ for some $v \in \mathbb{Z}^n$ (i.e., k is the maximum number of bits after the radix point in the binary representation of any entry in w). If k = 0, then $w \in \{-1, 0, 1\}^n$, and in this case $\operatorname{disc}^w(A) \leq \operatorname{herdisc}(A)$, since setting $x_i = w_i$ when $w_i \in \{-1, 1\}$ gives $(A(x - w))_i = 0$ for $w_i \neq 0$, and so $\operatorname{disc}^w(A) = \operatorname{disc}(A_V)$ where $V = \{i : w_i = 0\}$.

For the induction step, we note that $2w \in [-2,2]^n$, and so there must exist some $y \in \{-1,1\}^n$ such that $z = 2w - y \in [-1,1]^n$. Then there exists $v \in \mathbb{Z}^n$ such that $z = \frac{v}{2^{k-1}}$, and so by the induction hypothesis there exists some $x_0 \in \{-1,1\}^n$ such that $||A(x_0-z)||_{\infty} \leq 2$ herdisc(A). Then

herdisc
$$(A) \ge \frac{1}{2} ||A(x_0 - z)||_{\infty} = \frac{1}{2} ||A(x_0 + y - 2w)||_{\infty} = ||A(x_1 - w)||_{\infty}$$

where $x_1 := \frac{1}{2}(x_0 + y) \in \{-1, 0, 1\}$. Let $V := \{i : (x_1)_i = 0\}$; then by definition of herdisc(A), there is some $x_2 \in \{-1, 1\}^V$ such that $||A_V \cdot x_2||_{\infty} \leq \text{herdisc}(A)$. We then take x to be as x_1 with its zero entries replaced with the corresponding entries in x_2 , from which we obtain:

$$||A(x-w)||_{\infty} \le ||A_V \cdot x_2||_{\infty} + ||A(x_1-w)||_{\infty} \le 2 \operatorname{herdisc}(A) .$$

Hence, by induction, $\operatorname{lindisc}(A) \leq 2 \operatorname{herdisc}(A)$.

3 Determinant lower bound

Let $A \in \mathbb{R}^{m \times n}$, and let P be the set $\{x \in \mathbb{R}^n : ||Ax||_{\infty} \leq 1\}$, i.e. the set of $x \in \mathbb{R}^n$ such that for each row \vec{a}_i of $A, -1 \leq \langle \vec{a}_i, x \rangle \leq 1$. We see that P is a convex polytope. For m = n, A invertible, we can also write P as

$$P = \{A^{-1}y : \|y\|_{\infty} \le 1\} = A^{-1} \cdot [-1, 1]^n$$

and hence the volume of P is given by $|\det(A^{-1})| \cdot 2^n = |\det(A)|^{-1} \cdot 2^n$.

Theorem 6 (Lovasz, Spencer and Vesztergombi [2]). For any square $A \in \mathbb{R}^{n \times n}$, $\operatorname{lindisc}(A) \geq |\det(A)|^{1/n}$.

Proof. Let $P = \{x \in \mathbb{R}^n : ||Ax||_{\infty} \leq 1\}$. Then $||A(x-w)||_{\infty} \leq D$ if and only if $x - w \in DP$, i.e. $-w \in DP - x$. Hence $\operatorname{lindisc}(A) \leq D$ if and only if for all $w \in [-1,1]^n$ there exists $x \in \{-1,1\}^n$ such that $w \in DP - x$, which is the case if and only if $[-1,1]^n \subseteq \bigcup_{x \in \{-1,1\}^n} (DP - x)$. The latter implies, by the union bound, that $\operatorname{vol}([-1,1]^n) \leq \sum_{x \in \{-1,1\}^n} \operatorname{vol}(DP - x)$. The volume of DP - x is simply the volume of DP, which is $D^n \operatorname{vol}(P)$; the volume of $[-1,1]^n$ is 2^n . Hence

$$2^{n} \leq 2^{n} D^{n} \operatorname{vol}(P) = 2^{n} D^{n} \cdot (|\det(A)|^{-1} \cdot 2^{n}) ,$$

so $D \ge \frac{1}{2} |\det(A)|^{1/n}$, from which the theorem follows.

Corollary 7 (Determinant lower bound [2]). For any $A \in \mathbb{R}^{m \times n}$,

herdisc
$$(A) \ge \frac{1}{2} \max_{k=1}^{\min(m,n)} \max_{\substack{I \subseteq \{1,\dots,m\} \ |I|=k}} \max_{\substack{J \subseteq \{1,\dots,n\} \ |I|=k}} |\det(A_{I,J})|^{1/k} =: \det(A)$$

Proof. Let $I \subseteq \{1, \ldots, m\}$, $J \subseteq \{1, \ldots, n\}$, |I| = |J| = k. Then $A_{I,J}$ is a submatrix of A, so herdisc $(A) \ge$ herdisc $(A_{I,J})$. By Theorem 5, herdisc $(A_{I,J}) \ge \frac{1}{2}$ lindisc $(A_{I,J})$. Then since $A_{I,J}$ is a $k \times k$ matrix, by Theorem 6, lindisc $(A_{I,J}) \ge |\det(A_{I,J})|^{1/k}$. Combining the inequalities we obtain herdisc $(A) \ge \frac{1}{2} |\det(A_{I,J})|^{1/k}$, and the corollary follows by taking the maximum over k, I, J. \Box

A result due to Matoušek shows that the above bound is almost tight.

Theorem 8 (Matoušek [3]). For all $A \in \mathbb{R}^{m \times n}$, herdisc $(A) \leq O(\log(mn)\sqrt{\log n}) \cdot \operatorname{detlb}(A)$.

References

- [1] Spencer, Joel. Six standard deviations suffice. Trans. Amer. Math. Soc. 289.2 (1985): 679–706.
- [2] L Lovasz, J Spencer, and K Vesztergombi. 1986. Discrepancy of set-systems and matrices. Eur. J. Comb. 7, 2 (April 1986), 151–160.
- [3] Matousek, J. (2011). The determinant bound for discrepancy is almost tight, 9. Combinatorics.