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1 Lower bounds on combinatorial discrepancy

We recall the definition of combinatorial discrepancy from the previous lecture. Let U be a set with
|U| = n. Without loss of generality, we can take U = {1, . . . , n}. Let S ⊂ 2U := {S1, . . . , Sm} be a
family of subsets of U ; |S| = m. The combinatorial discrepancy of S, discS, is defined to be

disc(S) := min
χ:U→{−1,+1}

max
S∈S
|χ(S)| ,

where χ(S) :=
∑

j∈S χ(j). χ is a colouring of the elements of U with ±1, and so disc(S) can be
thought of as a measure of the ‘balancedness’ (over S) of any such colouring.

1.1 Matrix discrepancy

We introduce the following ‘matrix notation’ for combinatorial discrepancy, which motivates the
study of matrix discrepancy.

Let A be the incidence matrix of S, i.e. A ∈ {0, 1}m×n such that

Aij =

{
1 if j ∈ Si, and

0 otherwise.

Then we can write disc(S) in terms of A, i.e.

disc(S) = min
x∈{−1,1}n

‖Ax‖∞

where ‖v‖∞ for v ∈ Rn is the ∞-norm of v, ‖v‖∞ := maxi∈{1,...,n} |vi|.

We can generalise this notion by allowing A to be any matrix in Rm×n, and hence we can define
for A ∈ Rm×n the matrix discrepancy of A,

disc(A) := min
x∈{−1,1}n

‖Ax‖∞ .

1.2 The eigenvalue lower bound

Recall that the singular values of a matrix A ∈ Rm×n are the square roots of the eigenvalues of
ATA. Let σ1 ≥ . . . ≥ σn be the singular values of A. The smallest singular value of A, σn, satisfies
the following variational characterisation:

σ2n = min
x∈Rn

xTATAx

xTx
= min

x∈Rn

‖Ax‖22
‖x‖22

,

where ‖x‖2 is the Euclidean norm of x.
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Proposition 1 (Eigenvalue lower bound). For any A ∈ Rm×n, disc(A) ≥
√

n
m σn, where σn is the

smallest singular value of A.

Proof. By the definition of disc(A) and the ∞-norm, we have

disc(A) = min
x∈{−1,1}n

‖Ax‖∞ = min
x∈{−1,1}n

√
max

i∈{1,...,m}
(Ax)2i ≥ min

x∈{−1,1}n

√√√√ 1

m

m∑
i=1

(Ax)2i ,

where the inequality follows because the maximum is larger than the average. Observe that the
expression to be minimised on the right is exactly 1√

m
‖Ax‖2. Noting also that for x ∈ {−1, 1}n,

‖x‖2 =
√
n, we obtain

min
x∈{−1,1}n

√√√√ 1

m

m∑
i=1

(Ax)2i = min
x∈{−1,1}n

√
n

m
· ‖Ax‖2
‖x‖2

≥ min
x∈Rn

√
n

m
· ‖Ax‖2
‖x‖2

=

√
n

m
σn,

since the minimum over x ∈ {−1, 1}n is no smaller than the minimum over x ∈ Rn ⊃ {−1, 1}n.

Example 2. Consider the Hadamard matrix Hk ∈ {−1, 1}2k×2k , defined recursively as follows:

H0 :=
(

1
)

Hk :=

(
Hk−1 Hk−1
Hk−1 −Hk−1

)
We have that HT

k Hk = 2k · I, hence σn =
√
n (where n = 2k), and so disc(Hk) ≥

√
n.

The probabilstic argument from the previous lecture gives an upper bound for disc(Hk) ofO(
√
n log n).

An asymptotically tight upper bound follows from a matrix discrepancy version of Spencer’s The-
orem [1], also discussed in the previous lecture:

Lemma 3 (Spencer 85 [1]). For all A ∈ {−1, 1}m×n, disc(A) = O(
√
n log(2m/n)).

2 Further discrepancy measures

2.1 Hereditary discrepancy

As a notion of complexity, the combinatorial discrepancy is somewhat fragile. To see this, we

consider the universe U := U (1) ] U (2), where U (1), U (2) are disjoint. Let S(1) = {S(1)
1 , . . . , S

(1)
m } ⊆

2U
(1)

and S(2) = {S(2)
1 , . . . , S

(2)
m } ⊆ 2U

(2)
such that |S(1)

i | = |S(2)
i | for i = 1, . . . ,m. Let S ′ =

{S(1)
i ∪ S

(2)
i : i ∈ {1, . . . ,m}}; S ′ ⊆ 2U

′
. Then regardless of the choice of S(1) or S(2), disc(S) = 0.

For this reason we introduce a more ‘robust’ notion of discrepancy. For V ⊆ U , we write S|V for
the set {S ∩ V : S ∈ S}. Then the hereditary discrepancy of S is

herdisc(S) := max
V⊆U

disc(S|V ) .

We can also define an analogous notion for matrix discrepancy. For a matrix A ∈ Rm×n and
V ⊆ {1, . . . , n}, we write AV for the matrix consisting of the columns of A indexed by V . Then

herdisc(A) := max
V⊆{1,...,n}

disc(AV ) .

Observe that the notions correspond when A is the incidence matrix of S.
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2.2 Linear discrepancy

Next we will study a generalisation of combinatorial discrepancy. Suppose that each i ∈ U is
assigned a weight w(i) ∈ [−1, 1]. The discrepancy of S with respect to w is

discw(S) := min
χ :U→{−1,1}

max
S∈S
|χ(S)− w(x)| .

For A ∈ Rm×n we can define the same notion, treating w as a vector in [−1, 1]n:

discw(A) := ‖A(x− w)‖∞ .

Note that in both cases the standard combinatorial discrepancy is given by w(i) = 0 for all i ∈ U
(resp. w = ~0). The linear discrepancy of S (resp. A) is the supremum of discw(S) (resp. discw(A))
over all weight functions w : U → [−1, 1] (resp. w ∈ [−1, 1]n), and is written lindisc(S) (resp.
lindisc(A)).

Remark 4. Linear discrepancy is related to the problem of rounding solutions to relaxations of
combinatorial optimization problems. In particular we can think of a solution to the relaxation as
a vector of weights w ∈ [0, 1]n, and a solution to the original problem as a vector x ∈ {0, 1}n. Then
discw

′
(A), for an appropriate matrix A and w′ = 2w − ~1, measures the approximation error when

rounding w.

2.3 Relationships between discrepancy measures

It is clear that for any matrix A, disc(A) ≤ herdisc(A) and disc(A) ≤ lindisc(A). The following
theorem shows that the linear discrepancy cannot be much larger than the hereditary discrepancy.

Theorem 5. For A ∈ Rm×n, lindisc(A) ≤ 2 herdisc(A).

Proof. We assume that all entries of w have a finite binary representation (note that any v ∈ Rn is
arbitrarily close to such a vector). The proof is by induction on the length of this representation: in
particular, let k be the smallest integer such that w = v

2k
for some v ∈ Zn (i.e., k is the maximum

number of bits after the radix point in the binary representation of any entry in w). If k = 0, then
w ∈ {−1, 0, 1}n, and in this case discw(A) ≤ herdisc(A), since setting xi = wi when wi ∈ {−1, 1}
gives (A(x− w))i = 0 for wi 6= 0, and so discw(A) = disc(AV ) where V = {i : wi = 0}.

For the induction step, we note that 2w ∈ [−2, 2]n, and so there must exist some y ∈ {−1, 1}n such
that z = 2w − y ∈ [−1, 1]n. Then there exists v ∈ Zn such that z = v

2k−1 , and so by the induction
hypothesis there exists some x0 ∈ {−1, 1}n such that ‖A(x0 − z)‖∞ ≤ 2 herdisc(A). Then

herdisc(A) ≥ 1

2
‖A(x0 − z)‖∞ =

1

2
‖A(x0 + y − 2w)‖∞ = ‖A(x1 − w)‖∞ ,

where x1 := 1
2(x0 +y) ∈ {−1, 0, 1}. Let V := {i : (x1)i = 0}; then by definition of herdisc(A), there

is some x2 ∈ {−1, 1}V such that ‖AV · x2‖∞ ≤ herdisc(A). We then take x to be as x1 with its
zero entries replaced with the corresponding entries in x2, from which we obtain:

‖A(x− w)‖∞ ≤ ‖AV · x2‖∞ + ‖A(x1 − w)‖∞ ≤ 2 herdisc(A) .

Hence, by induction, lindisc(A) ≤ 2 herdisc(A).
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3 Determinant lower bound

Let A ∈ Rm×n, and let P be the set {x ∈ Rn : ‖Ax‖∞ ≤ 1}, i.e. the set of x ∈ Rn such that for
each row ~ai of A, −1 ≤ 〈~ai, x〉 ≤ 1. We see that P is a convex polytope. For m = n, A invertible,
we can also write P as

P = {A−1y : ‖y‖∞ ≤ 1} = A−1 · [−1, 1]n ,

and hence the volume of P is given by |det(A−1)| · 2n = | det(A)|−1 · 2n.

Theorem 6 (Lovasz, Spencer and Vesztergombi [2]). For any square A ∈ Rn×n, lindisc(A) ≥
|det(A)|1/n.

Proof. Let P = {x ∈ Rn : ‖Ax‖∞ ≤ 1}. Then ‖A(x − w)‖∞ ≤ D if and only if x − w ∈ DP , i.e.
−w ∈ DP − x. Hence lindisc(A) ≤ D if and only if for all w ∈ [−1, 1]n there exists x ∈ {−1, 1}n
such that w ∈ DP − x, which is the case if and only if [−1, 1]n ⊆

⋃
x∈{−1,1}n(DP − x). The latter

implies, by the union bound, that vol([−1, 1]n) ≤
∑

x∈{−1,1}n vol(DP − x). The volume of DP − x
is simply the volume of DP , which is Dn vol(P ); the volume of [−1, 1]n is 2n. Hence

2n ≤ 2nDn vol(P ) = 2nDn · (|det(A)|−1 · 2n) ,

so D ≥ 1
2 | det(A)|1/n, from which the theorem follows.

Corollary 7 (Determinant lower bound [2]). For any A ∈ Rm×n,

herdisc(A) ≥ 1

2

min(m,n)
max
k=1

max
I⊆{1,...,m}
|I|=k

max
J⊆{1,...,n}
|I|=k

|det(AI,J)|1/k =: detlb(A) .

Proof. Let I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = k. Then AI,J is a submatrix of A, so
herdisc(A) ≥ herdisc(AI,J). By Theorem 5, herdisc(AI,J) ≥ 1

2 lindisc(AI,J). Then since AI,J is a

k × k matrix, by Theorem 6, lindisc(AI,J) ≥ | det(AI,J)|1/k. Combining the inequalities we obtain
herdisc(A) ≥ 1

2 |det(AI,J)|1/k, and the corollary follows by taking the maximum over k, I, J .

A result due to Matoušek shows that the above bound is almost tight.

Theorem 8 (Matoušek [3]). For all A ∈ Rm×n, herdisc(A) ≤ O
(

log(mn)
√

log n
)
· detlb(A).
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