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1 Lower bounds on combinatorial discrepancy

We recall the definition of combinatorial discrepancy from the previous lecture. Let U be a set with
|U| = n. Without loss of generality, we can take U = {1,...,n}. Let S C 24 := {S;,...,S5,,} be a
family of subsets of U; |S| = m. The combinatorial discrepancy of S, disc S, is defined to be

disc(S) = i S
B ey BN

where X (S) := >>;cgx(j). X is a colouring of the elements of ¢/ with £1, and so disc(S) can be
thought of as a measure of the ‘balancedness’ (over §) of any such colouring.

1.1 Matrix discrepancy

We introduce the following ‘matrix notation’ for combinatorial discrepancy, which motivates the
study of matrix discrepancy.

Let A be the incidence matrix of S, i.e. A € {0,1}™*™ such that

1 if j € 5;, and
Aij = .
0 otherwise.

Then we can write disc(S) in terms of A, i.e.

disc(S) = {Inilnl} | Az oo
re—1,1;m

where ||v]|o for v € R™ is the co-norm of v, ||vx = max;efy,.. ny |vil-

We can generalise this notion by allowing A to be any matrix in R”™*" and hence we can define
for A € R™*™ the matriz discrepancy of A,

disc(A) = fnilnl} |Az]| o -
rxeq{—1,1}"

1.2 The eigenvalue lower bound

Recall that the singular values of a matrix A € R™*" are the square roots of the eigenvalues of
AT A. Let 01 > ... > 0, be the singular values of A. The smallest singular value of A, o,,, satisfies
the following wvariational characterisation:

2T AT Ax 1 Az|)3

2 _ . _
on T jern  oTg 2R |z|3

where ||z||2 is the Euclidean norm of x.



Proposition 1 (Eigenvalue lower bound). For any A € R™*", disc(A) > /- o, where o, is the
smallest singular value of A.

Proof. By the definition of disc(A4) and the co-norm, we have

disc(A) = %nilnl} |Az |00 = {milnl} {I{laX }(Ax). >
re{—1,1}" ze{—-1,1}" \/ ie{l,....m

where the inequality follows because the maximum is larger than the average. Observe that the
expression to be minimised on the right is exactly ﬁ”ACl?’b Noting also that for z € {—1,1}",

||z]|2 = v/n, we obtain
A A
T N L . S oy
Coze{—tpr VY m |zl T aeRn Y mo ||z|2 m

since the minimum over € {—1,1}" is no smaller than the minimum over z € R" D {—1,1}". O

Example 2. Consider the Hadamard matrix Hj, € {—1, 1}2kX2k, defined recursively as follows:

H_ Hj_
H(] ::( 1) Hk = ( H:,1 _I_]]C.kjl >

We have that H Hy = 2% - I, hence o,, = \/n (where n = 2¥), and so disc(Hy) > /n.
The probabilstic argument from the previous lecture gives an upper bound for disc(Hy) of O(v/nlogn).

An asymptotically tight upper bound follows from a matrix discrepancy version of Spencer’s The-
orem [1], also discussed in the previous lecture:

Lemma 3 (Spencer 85 [1]). For all A € {—1,1}"*", disc(A) = O(y/nlog(2m/n)).

2 Further discrepancy measures

2.1 Hereditary discrepancy

As a notion of complexity, the combinatorial discrepancy is somewhat fragile. To see this, we
consider the universe U := UM WU where U, U?) are disjoint. Let S = {551)7 ce S,(,%)} C
MUY and S@ = {§¥ . s € P such that |SV] = [SP)] for i = 1,...,m. Let &' =
{S’i(l) U SZ-(2) cie{l,...,m}}; & C24". Then regardless of the choice of S or §@), disc(S) = 0.
For this reason we introduce a more ‘robust’ notion of discrepancy. For V' C U, we write S|y for
the set {SNV :S € S}. Then the hereditary discrepancy of S is

herdisc(S) := disc(S .

erdisc(S) max isc(S|v)

We can also define an analogous notion for matrix discrepancy. For a matrix A € R™*" and
V C{1,...,n}, we write Ay for the matrix consisting of the columns of A indexed by V. Then

herdisc(A) := Vc%ax }disc(Av) .

Observe that the notions correspond when A is the incidence matrix of S.



2.2 Linear discrepancy

Next we will study a generalisation of combinatorial discrepancy. Suppose that each ¢ € U is
assigned a weight w(i) € [—1, 1]. The discrepancy of S with respect to w is

disc”(S) == X:ugl&;} 15163?\)((5) —w(x)| .

For A € R™*™ we can define the same notion, treating w as a vector in [—1, 1]™:
disc?(A) == ||A(z — w)||oo -

Note that in both cases the standard combinatorial discrepancy is given by w(i) = 0 for all i € U
(resp. w = 0). The linear discrepancy of S (resp. A) is the supremum of disc?(S) (resp. disc?(A))
over all weight functions w : U — [—1,1] (resp. w € [—1,1]"), and is written lindisc(S) (resp.
lindisc(A)).

Remark 4. Linear discrepancy is related to the problem of rounding solutions to relaxations of
combinatorial optimization problems. In particular we can think of a solution to the relaxation as
a vector of weights w € [0, 1]", and a solution to the original problem as a vector = € {0,1}". Then
discw/(A), for an appropriate matrix A and w’ = 2w — 1, measures the approximation error when
rounding w.

2.3 Relationships between discrepancy measures

It is clear that for any matrix A, disc(A) < herdisc(A) and disc(A) < lindisc(A). The following
theorem shows that the linear discrepancy cannot be much larger than the hereditary discrepancy.

Theorem 5. For A € R"™*" lindisc(A) < 2herdisc(A).

Proof. We assume that all entries of w have a finite binary representation (note that any v € R" is
arbitrarily close to such a vector). The proof is by induction on the length of this representation: in
particular, let k£ be the smallest integer such that w = 5z for some v € Z" (i.e., k is the maximum
number of bits after the radix point in the binary representation of any entry in w). If k = 0, then
w € {—1,0,1}", and in this case disc(A4) < herdisc(A), since setting x; = w; when w; € {—1,1}
gives (A(x — w)); = 0 for w; # 0, and so disc”(A) = disc(Ay) where V = {i : w; = 0}.

For the induction step, we note that 2w € [—2,2]", and so there must exist some y € {—1,1}" such
that z = 2w — y € [-1,1]". Then there exists v € Z" such that z = 5%, and so by the induction
hypothesis there exists some xo € {—1,1}" such that ||A(z¢ — 2)||cc < 2herdisc(A). Then

: 1 1
herdisc(4) 2 5 [[A(zo = 2)llo = 5[ A(z0 +y = 2wl = [[A(z1 — w)]l0

where z1 1= £(zo+y) € {—1,0,1}. Let V := {i: (21); = 0}; then by definition of herdisc(A), there
is some zo € {—1,1}V such that ||Ay - 73]l < herdisc(A). We then take x to be as x1 with its
zero entries replaced with the corresponding entries in x9, from which we obtain:

|A(z — w)|loo < ||Av - 22]|0o + [[A(21 — w)|loo < 2herdisc(A) .

Hence, by induction, lindisc(A) < 2 herdisc(A). O



3 Determinant lower bound

Let A € R™*" and let P be the set {z € R" : ||Az||s < 1}, i.e. the set of x € R™ such that for
each row @; of A, —1 < (d@;,z) < 1. We see that P is a convex polytope. For m = n, A invertible,
we can also write P as

P={A""y |lyfec <1} = A7 - [-1L1]"
and hence the volume of P is given by |det(A~1)|- 2" = | det(A)|~! - 2".
Theorem 6 (Lovasz, Spencer and Vesztergombi [2]). For any square A € R™ ™, lindisc(A) >
| det(A)|1/™.

Proof. Let P = {x € R" : ||Az|c < 1}. Then [|[A(x — w)|lec < D if and only if z —w € DP, i.e.
—w € DP — z. Hence lindisc(A) < D if and only if for all w € [—1,1]" there exists z € {—1,1}"
such that w € DP — z, which is the case if and only if [-1,1]" € U,e(_1,13»(DP — ). The latter
implies, by the union bound, that vol([—1, 1]") < er{—l,l}" vol(DP — z). The volume of DP — z
is simply the volume of DP, which is D" vol(P); the volume of [—1,1]™ is 2". Hence

2" < 2" D" vol(P) = 2"D™ - (| det(A)|~* - 2") |
so D > 1| det(A)|"/", from which the theorem follows. O

Corollary 7 (Determinant lower bound [2]). For any A € R™*™,

. 1 min(m,n) 1/k
h A) > = Ap)|VF =: detlb(A) .
erdisc(A) > 5 ax Ig?ll?.}fm} Jgr{ri?.)in} | det(Ar,y)] detlb(A)

Proof. Let I C {1,...,m}, J C {1,...,n}, |I| = |J| = k. Then A;; is a submatrix of A, so
herdisc(A) > herdisc(Ar,s). By Theorem 5, herdisc(Ay,s) > £ lindisc(As 7). Then since Ay s is a
k x k matrix, by Theorem 6, lindisc(Az, ;) > | det(Az,7)|"/*. Combining the inequalities we obtain
herdisc(A) > 1| det(A;s)|*/*, and the corollary follows by taking the maximum over k, I, J. O

A result due to Matousek shows that the above bound is almost tight.

Theorem 8 (Matousek [3]). For all A € R™*", herdisc(A4) < O(log(mn)y/logn) - detlb(A).
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