1 Lower bounds on combinatorial discrepancy

We recall the definition of combinatorial discrepancy from the previous lecture. Let \mathcal{U} be a set with $|\mathcal{U}|=n$. Without loss of generality, we can take $\mathcal{U}=\{1, \ldots, n\}$. Let $\mathcal{S} \subset 2^{\mathcal{U}}:=\left\{S_{1}, \ldots, S_{m}\right\}$ be a family of subsets of $\mathcal{U} ;|\mathcal{S}|=m$. The combinatorial discrepancy of \mathcal{S}, disc \mathcal{S}, is defined to be

$$
\operatorname{disc}(\mathcal{S}):=\min _{\chi: \mathcal{U} \rightarrow\{-1,+1\}} \max _{S \in \mathcal{S}}|\chi(S)|
$$

where $\chi(S):=\sum_{j \in S} \chi(j) . \chi$ is a colouring of the elements of \mathcal{U} with ± 1, and so $\operatorname{disc}(\mathcal{S})$ can be thought of as a measure of the 'balancedness' (over \mathcal{S}) of any such colouring.

1.1 Matrix discrepancy

We introduce the following 'matrix notation' for combinatorial discrepancy, which motivates the study of matrix discrepancy.
Let A be the incidence matrix of \mathcal{S}, i.e. $A \in\{0,1\}^{m \times n}$ such that

$$
A_{i j}= \begin{cases}1 & \text { if } j \in S_{i}, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Then we can write $\operatorname{disc}(\mathcal{S})$ in terms of A, i.e.

$$
\operatorname{disc}(\mathcal{S})=\min _{x \in\{-1,1\}^{n}}\|A x\|_{\infty}
$$

where $\|v\|_{\infty}$ for $v \in \mathbb{R}^{n}$ is the ∞-norm of $v,\|v\|_{\infty}:=\max _{i \in\{1, \ldots, n\}}\left|v_{i}\right|$.
We can generalise this notion by allowing A to be any matrix in $\mathbb{R}^{m \times n}$, and hence we can define for $A \in \mathbb{R}^{m \times n}$ the matrix discrepancy of A,

$$
\operatorname{disc}(A):=\min _{x \in\{-1,1\}^{n}}\|A x\|_{\infty} .
$$

1.2 The eigenvalue lower bound

Recall that the singular values of a matrix $A \in \mathbb{R}^{m \times n}$ are the square roots of the eigenvalues of $A^{T} A$. Let $\sigma_{1} \geq \ldots \geq \sigma_{n}$ be the singular values of A. The smallest singular value of A, σ_{n}, satisfies the following variational characterisation:

$$
\sigma_{n}^{2}=\min _{x \in \mathbb{R}^{n}} \frac{x^{T} A^{T} A x}{x^{T} x}=\min _{x \in \mathbb{R}^{n}} \frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}},
$$

where $\|x\|_{2}$ is the Euclidean norm of x.

Proposition 1 (Eigenvalue lower bound). For any $A \in \mathbb{R}^{m \times n}$, $\operatorname{disc}(A) \geq \sqrt{\frac{n}{m}} \sigma_{n}$, where σ_{n} is the smallest singular value of A.

Proof. By the definition of $\operatorname{disc}(A)$ and the ∞-norm, we have

$$
\operatorname{disc}(A)=\min _{x \in\{-1,1\}^{n}}\|A x\|_{\infty}=\min _{x \in\{-1,1\}^{n}} \sqrt{\max _{i \in\{1, \ldots, m\}}(A x)_{i}^{2}} \geq \min _{x \in\{-1,1\}^{n}} \sqrt{\frac{1}{m} \sum_{i=1}^{m}(A x)_{i}^{2}}
$$

where the inequality follows because the maximum is larger than the average. Observe that the expression to be minimised on the right is exactly $\frac{1}{\sqrt{m}}\|A x\|_{2}$. Noting also that for $x \in\{-1,1\}^{n}$, $\|x\|_{2}=\sqrt{n}$, we obtain

$$
\min _{x \in\{-1,1\}^{n}} \sqrt{\frac{1}{m} \sum_{i=1}^{m}(A x)_{i}^{2}}=\min _{x \in\{-1,1\}^{n}} \sqrt{\frac{n}{m}} \cdot \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \min _{x \in \mathbb{R}^{n}} \sqrt{\frac{n}{m}} \cdot \frac{\|A x\|_{2}}{\|x\|_{2}}=\sqrt{\frac{n}{m}} \sigma_{n}
$$

since the minimum over $x \in\{-1,1\}^{n}$ is no smaller than the minimum over $x \in \mathbb{R}^{n} \supset\{-1,1\}^{n}$.
Example 2. Consider the Hadamard matrix $H_{k} \in\{-1,1\}^{2^{k} \times 2^{k}}$, defined recursively as follows:

$$
H_{0}:=(1) \quad H_{k}:=\left(\begin{array}{cc}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{array}\right)
$$

We have that $H_{k}^{T} H_{k}=2^{k} \cdot I$, hence $\sigma_{n}=\sqrt{n}$ (where $n=2^{k}$), and so $\operatorname{disc}\left(H_{k}\right) \geq \sqrt{n}$.
The probabilstic argument from the previous lecture gives an upper bound for $\operatorname{disc}\left(H_{k}\right)$ of $O(\sqrt{n \log n})$. An asymptotically tight upper bound follows from a matrix discrepancy version of Spencer's Theorem [1], also discussed in the previous lecture:
Lemma 3 (Spencer $85[1])$. For all $A \in\{-1,1\}^{m \times n}, \operatorname{disc}(A)=O(\sqrt{n \log (2 m / n)})$.

2 Further discrepancy measures

2.1 Hereditary discrepancy

As a notion of complexity, the combinatorial discrepancy is somewhat fragile. To see this, we consider the universe $\mathcal{U}:=\mathcal{U}^{(1)} \uplus \mathcal{U}^{(2)}$, where $\mathcal{U}^{(1)}, \mathcal{U}^{(2)}$ are disjoint. Let $\mathcal{S}^{(1)}=\left\{S_{1}^{(1)}, \ldots, S_{m}^{(1)}\right\} \subseteq$ $2^{\mathcal{U}^{(1)}}$ and $\mathcal{S}^{(2)}=\left\{S_{1}^{(2)}, \ldots, S_{m}^{(2)}\right\} \subseteq 2^{\mathcal{U}^{(2)}}$ such that $\left|S_{i}^{(1)}\right|=\left|S_{i}^{(2)}\right|$ for $i=1, \ldots, m$. Let $\mathcal{S}^{\prime}=$ $\left\{S_{i}^{(1)} \cup S_{i}^{(2)}: i \in\{1, \ldots, m\}\right\} ; \mathcal{S}^{\prime} \subseteq 2^{\mathcal{U}^{\prime}}$. Then regardless of the choice of $\mathcal{S}^{(1)}$ or $\mathcal{S}^{(2)}, \operatorname{disc}(\mathcal{S})=0$.

For this reason we introduce a more 'robust' notion of discrepancy. For $V \subseteq \mathcal{U}$, we write $\left.\mathcal{S}\right|_{V}$ for the set $\{S \cap V: S \in \mathcal{S}\}$. Then the hereditary discrepancy of \mathcal{S} is

$$
\operatorname{herdisc}(\mathcal{S}):=\max _{V \subseteq \mathcal{U}} \operatorname{disc}\left(\left.\mathcal{S}\right|_{V}\right)
$$

We can also define an analogous notion for matrix discrepancy. For a matrix $A \in \mathbb{R}^{m \times n}$ and $V \subseteq\{1, \ldots, n\}$, we write A_{V} for the matrix consisting of the columns of A indexed by V. Then

$$
\operatorname{herdisc}(A):=\max _{V \subseteq\{1, \ldots, n\}} \operatorname{disc}\left(A_{V}\right)
$$

Observe that the notions correspond when A is the incidence matrix of \mathcal{S}.

2.2 Linear discrepancy

Next we will study a generalisation of combinatorial discrepancy. Suppose that each $i \in \mathcal{U}$ is assigned a weight $w(i) \in[-1,1]$. The discrepancy of \mathcal{S} with respect to w is

$$
\operatorname{disc}^{w}(\mathcal{S}):=\min _{\chi: \mathcal{U} \rightarrow\{-1,1\}} \max _{S \in \mathcal{S}}|\chi(S)-w(x)| .
$$

For $A \in \mathbb{R}^{m \times n}$ we can define the same notion, treating w as a vector in $[-1,1]^{n}$:

$$
\operatorname{disc}^{w}(A):=\|A(x-w)\|_{\infty}
$$

Note that in both cases the standard combinatorial discrepancy is given by $w(i)=0$ for all $i \in \mathcal{U}$ (resp. $w=\overrightarrow{0}$). The linear discrepancy of \mathcal{S} (resp. A) is the supremum of $\operatorname{disc}^{w}(\mathcal{S})\left(\right.$ resp. $\left.\operatorname{disc}^{w}(A)\right)$ over all weight functions $w: \mathcal{U} \rightarrow[-1,1]$ (resp. $\left.w \in[-1,1]^{n}\right)$, and is written $\operatorname{lindisc}(\mathcal{S})$ (resp. lindisc(A)).
Remark 4. Linear discrepancy is related to the problem of rounding solutions to relaxations of combinatorial optimization problems. In particular we can think of a solution to the relaxation as a vector of weights $w \in[0,1]^{n}$, and a solution to the original problem as a vector $x \in\{0,1\}^{n}$. Then $\operatorname{disc}^{w^{\prime}}(A)$, for an appropriate matrix A and $w^{\prime}=2 w-\overrightarrow{1}$, measures the approximation error when rounding w.

2.3 Relationships between discrepancy measures

It is clear that for any matrix $A, \operatorname{disc}(A) \leq \operatorname{herdisc}(A)$ and $\operatorname{disc}(A) \leq \operatorname{lindisc}(A)$. The following theorem shows that the linear discrepancy cannot be much larger than the hereditary discrepancy.

Theorem 5. For $A \in \mathbb{R}^{m \times n}$, $\operatorname{lindisc}(A) \leq 2 \operatorname{herdisc}(A)$.
Proof. We assume that all entries of w have a finite binary representation (note that any $v \in \mathbb{R}^{n}$ is arbitrarily close to such a vector). The proof is by induction on the length of this representation: in particular, let k be the smallest integer such that $w=\frac{v}{2^{k}}$ for some $v \in \mathbb{Z}^{n}$ (i.e., k is the maximum number of bits after the radix point in the binary representation of any entry in w). If $k=0$, then $w \in\{-1,0,1\}^{n}$, and in this case $\operatorname{disc}^{w}(A) \leq \operatorname{herdisc}(A)$, since setting $x_{i}=w_{i}$ when $w_{i} \in\{-1,1\}$ gives $(A(x-w))_{i}=0$ for $w_{i} \neq 0$, and so $\operatorname{disc}^{w}(A)=\operatorname{disc}\left(A_{V}\right)$ where $V=\left\{i: w_{i}=0\right\}$.
For the induction step, we note that $2 w \in[-2,2]^{n}$, and so there must exist some $y \in\{-1,1\}^{n}$ such that $z=2 w-y \in[-1,1]^{n}$. Then there exists $v \in \mathbb{Z}^{n}$ such that $z=\frac{v}{2^{k-1}}$, and so by the induction hypothesis there exists some $x_{0} \in\{-1,1\}^{n}$ such that $\left\|A\left(x_{0}-z\right)\right\|_{\infty} \leq 2$ herdisc (A). Then

$$
\operatorname{herdisc}(A) \geq \frac{1}{2}\left\|A\left(x_{0}-z\right)\right\|_{\infty}=\frac{1}{2}\left\|A\left(x_{0}+y-2 w\right)\right\|_{\infty}=\left\|A\left(x_{1}-w\right)\right\|_{\infty},
$$

where $x_{1}:=\frac{1}{2}\left(x_{0}+y\right) \in\{-1,0,1\}$. Let $V:=\left\{i:\left(x_{1}\right)_{i}=0\right\}$; then by definition of herdisc (A), there is some $x_{2} \in\{-1,1\}^{V}$ such that $\left\|A_{V} \cdot x_{2}\right\|_{\infty} \leq \operatorname{herdisc}(A)$. We then take x to be as x_{1} with its zero entries replaced with the corresponding entries in x_{2}, from which we obtain:

$$
\|A(x-w)\|_{\infty} \leq\left\|A_{V} \cdot x_{2}\right\|_{\infty}+\left\|A\left(x_{1}-w\right)\right\|_{\infty} \leq 2 \operatorname{herdisc}(A) .
$$

Hence, by induction, $\operatorname{lindisc}(A) \leq 2 \operatorname{herdisc}(A)$.

3 Determinant lower bound

Let $A \in \mathbb{R}^{m \times n}$, and let P be the set $\left\{x \in \mathbb{R}^{n}:\|A x\|_{\infty} \leq 1\right\}$, i.e. the set of $x \in \mathbb{R}^{n}$ such that for each row \vec{a}_{i} of $A,-1 \leq\left\langle\vec{a}_{i}, x\right\rangle \leq 1$. We see that P is a convex polytope. For $m=n, A$ invertible, we can also write P as

$$
P=\left\{A^{-1} y:\|y\|_{\infty} \leq 1\right\}=A^{-1} \cdot[-1,1]^{n},
$$

and hence the volume of P is given by $\left|\operatorname{det}\left(A^{-1}\right)\right| \cdot 2^{n}=|\operatorname{det}(A)|^{-1} \cdot 2^{n}$.
Theorem 6 (Lovasz, Spencer and Vesztergombi [2]). For any square $A \in \mathbb{R}^{n \times n}$, $\operatorname{lindisc}(A) \geq$ $|\operatorname{det}(A)|^{1 / n}$.

Proof. Let $P=\left\{x \in \mathbb{R}^{n}:\|A x\|_{\infty} \leq 1\right\}$. Then $\|A(x-w)\|_{\infty} \leq D$ if and only if $x-w \in D P$, i.e. $-w \in D P-x$. Hence lindisc $(A) \leq D$ if and only if for all $w \in[-1,1]^{n}$ there exists $x \in\{-1,1\}^{n}$ such that $w \in D P-x$, which is the case if and only if $[-1,1]^{n} \subseteq \bigcup_{x \in\{-1,1\}^{n}}(D P-x)$. The latter implies, by the union bound, that $\operatorname{vol}\left([-1,1]^{n}\right) \leq \sum_{x \in\{-1,1\}^{n}} \operatorname{vol}(D P-x)$. The volume of $D P-x$ is simply the volume of $D P$, which is $D^{n} \operatorname{vol}(P)$; the volume of $[-1,1]^{n}$ is 2^{n}. Hence

$$
2^{n} \leq 2^{n} D^{n} \operatorname{vol}(P)=2^{n} D^{n} \cdot\left(|\operatorname{det}(A)|^{-1} \cdot 2^{n}\right)
$$

so $D \geq \frac{1}{2}|\operatorname{det}(A)|^{1 / n}$, from which the theorem follows.
Corollary 7 (Determinant lower bound [2]). For any $A \in \mathbb{R}^{m \times n}$,

Proof. Let $I \subseteq\{1, \ldots, m\}, J \subseteq\{1, \ldots, n\},|I|=|J|=k$. Then $A_{I, J}$ is a submatrix of A, so $\operatorname{herdisc}(A) \geq \operatorname{herdisc}\left(A_{I, J}\right)$. By Theorem 5, herdisc $\left(A_{I, J}\right) \geq \frac{1}{2} \operatorname{lindisc}\left(A_{I, J}\right)$. Then since $A_{I, J}$ is a $k \times k$ matrix, by Theorem $6, \operatorname{lindisc}\left(A_{I, J}\right) \geq\left|\operatorname{det}\left(A_{I, J}\right)\right|^{1 / k}$. Combining the inequalities we obtain $\operatorname{herdisc}(A) \geq \frac{1}{2}\left|\operatorname{det}\left(A_{I, J}\right)\right|^{1 / k}$, and the corollary follows by taking the maximum over k, I, J.

A result due to Matoušek shows that the above bound is almost tight.
Theorem 8 (Matoušek [3]). For all $A \in \mathbb{R}^{m \times n}$, herdisc $(A) \leq O(\log (m n) \sqrt{\log n}) \cdot \operatorname{detlb}(A)$.

References

[1] Spencer, Joel. Six standard deviations suffice. Trans. Amer. Math. Soc. 289.2 (1985): 679-706.
[2] L Lovasz, J Spencer, and K Vesztergombi. 1986. Discrepancy of set-systems and matrices. Eur. J. Comb. 7, 2 (April 1986), 151-160.
[3] Matousek, J. (2011). The determinant bound for discrepancy is almost tight, 9. Combinatorics.

