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1 Higher Dimensional Discrepancy

Let us begin by recalling some notions from the previous lecture. We analyzed the two-dimensional
star discrepancy, denoted D(n, C2), where C2 = {Cy | y ∈ [0, 1)2} is the collection of all two-
dimensional corners

Cy = {x ∈ [0, 1)2 | 0 ≤ x1 ≤ y1, 0 ≤ x2 ≤ y2}.
In particular, we saw that (up to constants) we have

D(n, C2) ∼= D(n,R2) ∼= log n (1)

where R2 is the collection of all rectangles in [0, 1)2. There are several ways to prove the above
relations: we focused on an upper bound method employing van der Corput sequences, and an
easier lower bound of Ω(

√
log n) originally due to Roth [4]. An immediate application of (1) is

effective integral estimation for well-behaved1 f : [0, 1] → R via the Koksma-Hlawka inequality :
namely, for any positive integer N there exists a sequence u1, u2, . . . , uN ∈ [0, 1) such that for any
well-behaved f and any 1 ≤ n ≤ N we have∣∣∣∣∣

∫ 1

0
f(x)dx− 1

n

n∑
i=1

f(ui)

∣∣∣∣∣ ≤ 1

n
D(n, C2)V (f), (2)

where V (f) is a measure of smoothness of f — in two dimensions, V (f) turns out to be the
arclength ∫ 1

0
|f ′(x)|dx

of f in [0, 1]. The Koksma-Hlawka inequality is notable as the error in the estimation of
∫
f

is decoupled into a “variation” term, depending only on f , and a “discrepancy” term which is
completely independent of f .

In this lecture, we continued along this path and outlined the analogues of the above results in d-
dimensional star discrepancy for arbitrary fixed d > 0. Our ambient space is now the d-cube [0, 1)d;
let P ⊆ [0, 1)d be a finite collection of points in [0, 1)d, and let A ⊆ [0, 1)d be Lebesgue-measurable.
We define the discrepancy of P with respect to A to be

D(P,A) = |P | vol(A)− |P ∩A|

which can be interpreted as the deviation of the overlap between P and A from a uniformly random
P and A. Given a collection A of Lebesgue-measurable sets we define the discrepancy of P to be

D(P,A) = sup
A∈A
|D(P,A)|,

1To be concrete, we can assume that “well-behaved” means any differentiable f with a Riemann-integrable first
derivative.
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and we define
D(n,A) = inf

P :|P |=n
D(P,A).

Define the d-dimensional corners Cd := {Cy | y ∈ [0, 1)d} to be the collection of all sets

Cy = {x ∈ [0, 1)d | ∀1 ≤ i ≤ d : 0 ≤ xi ≤ yi}

for y ∈ [0, 1)d. It turns out that the two-dimensional Koksma-Hlawka inequality (2) generalizes to
the higher dimensional case.

Theorem 1. For any positive integer N there is a sequence of points u1, u2, . . . , uN ∈ [0, 1)d such
that for each well-behaved f : [0, 1)d → R and for each positive integer n ≤ N we have∣∣∣∣∣

∫
[0,1)d

f(x)dx− 1

n

n∑
i=1

f(ui)

∣∣∣∣∣ ≤ 1

n
D(n, Cd+1)V (f),

where V (f) is the total variation in the sense of Hardy and Krause.

Whereas this “smoothness measure” V (f) is quite simple when f takes a single argument, in
general it is a much more complicated function and we will not define it here. However, this is good
motivation for studying higher dimensional star discrepancy; so, what upper and lower bounds are
known for D(n, Cd)?

For upper bounds, it turns out that the construction from last lecture using the van der Corput
sequence can be generalized. For completeness we give the construction here. In the van der Corput
sequence we consider the bit reversal function g2 : N → [0, 1) as follows. For any natural a let

a
(2)
0 · · · a

(2)
k−1 be its corresponding binary expression (note that k depends on a, which we suppress

for the sake of brevity). Then

g2(a) =
k−1∑
i=0

a
(2)
i

2i+1

is obtained by “reversing” the binary expression of a and placing the reversed expression after
the radix point. The van der Corput sequence of length n is g2(0), g2(1), . . . g2(n − 1), and the
corresponding low-discrepancy set P for C2 is

P = {(i/n, g2(i)) | 0 ≤ i ≤ n− 1}.

We can naturally generalize this: if m ≥ 2 is an integer we can write a =
∑k−1

i=0 a
(m)
i mi in “base

m”, where 0 ≤ a(m)
i ≤ m− 1 for all i. Then define

gm(a) =

k−1∑
i=0

a
(m)
i

mi+1
.

Following Matousek [3] we define the Halton-Hammersley sequence of length n as follows: first fix
d− 1 distinct primes2 p1, p2, . . . , pd−1, and then the ith point in the sequence is defined by

(i/n, gp1(i), gp2(i), . . . , gpd−1(i)).

2In fact, any collection of pairwise coprime integers will do.

2



It can be shown (by a similar proof as in the two-dimensional case) that the Halton-Hammersley
sequence certifies the upper bound D(n, Cd) = O(logd−1 n).

However, for d > 2 we no longer have tight bounds on the star discrepancy — it is known that
Roth’s method generalizes to give D(n, Cd) = Ω(log(d−1)/2 n), but the best current lower bound is
of the form D(n, Cd) = Ω(log(d−1)/2+εd n) where εd > 0 tends to 0 as d → ∞ [2]. We record these
observations as a theorem.

Theorem 2. For all n ≥ 0, d ≥ 3, we have D(n, Cd) = O(logd−1 n) and D(n, Cd) ≥ Ω(log(d−1)/2+εd n)
for some εd > 0.

Open Problem: Close the gap between the upper and lower bounds on D(n, Cd) for d ≥ 3.

2 Combinatorial Discrepancy

We now consider combinatorial discrepancy, which is an interesting measure in and of itself (and
is also related to the usual continuous discrepancy, as we will see). Let U be a set and let S ⊆ 2U

a family of subsets of U ; together the pair (U ,S) is called a set system. Given a colouring χ : U →
{−1, 1} of the elements of U with ±1 we define

disc(χ,S) = max
S∈S
|χ(S)|

where χ(S) =
∑

j∈S χ(j). The discrepancy of S is

disc(S) = min
χ

disc(χ,S)

where the minimum is taken over all colourings χ : U → {−1, 1}.

First we link combinatorial discrepancy with continuous discrepancy. If V ⊆ U and S is a collection
of subsets of U then the restriction of S to V is the collection

S|V = {S ∩ V | S ∈ S}.

Lemma 3 (See Transference Lemma, Prop. 1.8 in [3]). Let A be a class of Lebesgue measurable
sets in [0, 1)d such that [0, 1)d ∈ A and suppose D(n,A) = o(n). Additionally, suppose that

max
P⊆[0,1)d

|P |=n

disc(A|P ) ≤ f(n)

holds for all n > 0, where f(n) is a function satisfying f(2n) ≤ (2− δ)f(n) for all n and some fixed
δ > 0. Then D(n,A) = O(f(n)).

Before proving the lemma, let us recall a useful auxiliary claim (proved in Lecture 1) which relates
combinatorial discrepancy and continuous discrepancy. If (U ,S) is a set system with U finite, and
U is a subset of U , we say that U is an ε-approximation of (U ,S) if∣∣∣∣ |U ∩ S||U |

− |S|
|U|

∣∣∣∣ ≤ ε
for all S ∈ S.
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Proposition 4 (Lemma 1.6.ii in [3]). Let (U ,S) be a set system with |U| = 2n and U ∈ S. If
disc(S) ≤ εn then there is a set U ⊆ U with |U | = n such that U is an ε-approximation of (U ,S).

The previous proposition will be applied in the proof of the Transference Lemma as follows: by
assumption D(n,A) = o(n), which means that we can choose a large (but finite) set of points P0

so that D(|P0|,A)/|P0| ≤ f(n)/n. By restricting A to P0 we can consider the finite set system
(P0,A|P0), which by assumption will have a colouring χ with discrepancy f(n). Then we can apply
the previous lemma repeatedly to “sparsify” P0 without damaging the discrepancy too much. After
sparsifying the set roughly log |P0| − log n times we will end up with a set of size n that is a good
approximation of D(n,A), proving the lemma.

Proof of Lemma 3. Set ε = f(n)/n, and choose k large enough so that

D(2kn,A)

2kn
≤ ε,

and note that this is possible since D(n,A) = o(n) by assumption. Let P0 ⊆ [0, 1)d with |P0| = 2kn
be chosen so that D(P0,A|P0) = D(P0,A) ≤ ε, and consider the — necessarily finite — disc(A|P0).

By assumption, there is a±1 colouring χ of P0 so that disc(χ,A|P0) ≤ f(2kn). Applying Proposition
4 there is a set of points P1 ⊆ P0 with |P1| = |P0|/2 = 2k−1n such that P1 is an ε0-approximation
of the set system (P0,A|P0) for ε0 = f(2kn)/2kn. Applying this step k more times yields k
sets P1, P2, . . . , Pk where |Pi| = 2k−in and such that Pi is an εi-approximation of the set system
(Pi−1,A|Pi−1) for εi = f(2k−in)/2k−in. By the definition of an ε-approximation and the triangle
inequality, it follows that P0 is a ν-approximation of D(n,A), where

ν = ε+
k∑
i=0

εi.

Using the assumption that f(2n) ≤ (2− δ)f(n) and employing a geometric series we get

ν = ε+
k∑
i=0

εi =
f(n)

n
+

k∑
i=0

f(2k−in)

2k−in

≤ f(n)

n
+

k∑
i=0

f(n)(2− δ)k−i

2k−in

≤ f(n)

n

(
1 +

∞∑
i=0

(
2− δ

2

)i)
= O

(
f(n)

n

)
,

thus justifying the somewhat odd requirement on f . Since P0 is an ν-approximation of D(n,A) it
easily follows that D(P0,A) ≤ nν = O(f(n)), proving the lemma.

With the Transference Lemma in our pocket we can convert combinatorial discrepancy upper
bounds into continuous discrepancy upper bounds. To this end, fix U = [n], let S be a family
of subsets of U with |S| = m. What kind of upper bounds can we expect for the combinatorial
discrepancy of (U ,S)?

An instructive example to consider is a uniformly random colouring. As the next proposition shows,
if m is small then most colourings actually have fairly good discrepancy.
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Proposition 5. Let χ : U → {−1, 1} be a random colouring such that each χ(j) is uniformly and
independently chosen over ±1. Then with probability at least 1/2 we have disc(χ,S) = O(

√
n logm).

Proof. This is a textbook application of the probabilistic method. For any S ∈ S we have E[χ(S)] =
0 and Var(χ(S)) = E[χ(S)2] = |S|. Then a Chernoff bound gives us

Pr[|χ(S)| ≥ t
√
|S|] ≤ 2e−t

2/2.

Setting t =
√

4 lnm and using a union bound we get

Pr[∃S ∈ S : |χ(S)| ≥
√

4|S| lnm] ≤ 1/2,

thus with probability at least 1/2 we have that the discrepancy of χ is at most O(
√
n logm).

Is this upper bound the best we can hope for for all m? Often times in extremal combinatorics an
appropriately chosen “random” configuration gives optimal bounds, but for combinatorial discrep-
ancy it turns out we can eliminate the logm term when m = O(n).

Theorem 6 (Six Standard Deviations Suffice [5]). Let (U ,S) be any set system with |U| = n and
|S| = m ≥ n. Then disc(S) ≤ O(

√
n log(2m/n)). In particular, if m = n then disc(S) ≤ 6

√
n.

In what other cases can we achieve better upper bounds on the combinatorial discrepancy? A
natural case to consider is when the set system (U ,S) have bounded degree in the following sense.

Definition 7. Let (U ,S) be a finite set system. The degree of (U ,S) is

∆(S) = max
j∈U
|{S ∈ S | j ∈ S}|.

Beck and Fiala [1] provided a much better (and algorithmically effective) upper bound for set
systems with small degree.

Theorem 8. Let (U ,S) be a set system. Then disc(S) ≤ 2∆(S)− 1.

Proof. Let (U ,S) be a set system, and for brevity let ∆ = ∆(S). Let n = |U|. We provide an
iterative rounding procedure to construct a colouring χ satisfying disc(χ,S) ≤ 2∆− 1. To be more
precise, we construct a sequence of colourings χ0, χ1, . . . , χT so that for all j ∈ U :

1. χ0(j) = 0,

2. for all i = 0, 1, . . . , T , χi(j) ∈ [−1,+1],

3. χT (j) ∈ {−1,+1}.

At each time t = 1, 2, . . . , T we specify two sets: first, the active indices at t are

At := {j | − 1 < χt(j) < +1},

and second, the dangerous sets at t are

Dt = {S ∈ S | |S ∩At| > ∆}.

Our goal at time t+ 1 is to construct a χt+1 so that
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1. ∀S ∈ Dt, χt+1(S) = 0,

2. ∀j 6∈ At, χt+1(j) = χt(j),

3. At+1 ( At.

First we prove the theorem, assuming that we can construct such a sequence of colourings. It is
clear that T ≤ n, since we fix at least one active variable in each iteration and fixed variables never
become active in later iterations. Now, choose an arbitrary S ∈ S and suppose that S becomes
safe at time t. Then by the triangle inequality

|χT (S)| = |χT (S) + χt(S)− χt(S)| ≤ |χt(S)|+ |χT (S)− χt(S)|.

Since S became safe at iteration t we have χt(S) = 0. Applying this and using the definition of the
dangerous sets Dt we have

|χT (S)| = |χT (S ∩At)− χt(S ∩At)| ≤ |χT (S ∩At)|+ |χt(S ∩At)| < 2∆,

where the strict inequality follows since −1 < χt(j) < +1 for all j ∈ S ∩ At. But, the discrepancy
must be integral, so we must have |χT (S)| ≤ 2∆− 1.

Next we move on to constructing the sequence of colourings. Fix any time t ∈ {0, 1, 2, . . . , T}, and
consider the system of equations

∀S ∈ Dt :
∑
j∈S

xj = 0

where there is one variable xj for each active j ∈ At. Note that

|Dt|∆ < |{(j, S) | j ∈ S ∩At, S ∈ Dt}| ≤ |At|∆,

where the upper bound follows since each element j is contained in at most ∆ sets, and the lower
bound follows since each set S ∈ Dt is dangerous and so |S∩At| > ∆. This means that |Dt| < |At|,
and thus the above system of equations has more variables than constraints. Let y∗ be a non-zero
solution to the system: then we can define

χt+1(j) =

{
χt(j) if j 6∈ At
χt(j) + αy∗j otherwise

where α is the largest real so that χt+1(j) ∈ [−1,+1] for all j. There must be at least one j that
becomes integral after this “update”, and it follows that At+1 ( At. The other two requirements
follow directly from the construction.

In the same paper, Beck and Fiala made the following conjecture, which remains open today:

Open Problem: Prove or disprove the upper bound disc(S) ≤ O(
√

∆(S)).
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