Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem

Daniel Dadush ${ }^{1}$ Shashwat Garg ${ }^{2}$ Shachar Lovett ${ }^{3}$
Sasho Nikolov ${ }^{4}$
${ }^{1} \mathrm{CWI}$
${ }^{2}$ TU Eindhoven
${ }^{3}$ UCSD
${ }^{4} \mathrm{U}$ of Toronto

Discrepancy of Set Systems

Given: System of m subsets $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ of $[n]=\{1, /$ dots, $n\}$. Color each element of P red or blue, so that each set is as balanced as possible.

Discrepancy of a coloring: maximum imbalance (above: 1). Discrepancy of \mathcal{S} : discrepancy of the best coloring.

$$
\operatorname{disc} \mathcal{S}:=\min _{\chi:[n] \rightarrow\{-1,1\}} \max _{i}\left|\sum_{j \in S_{i}} \chi(j)\right|
$$

Discrepancy of Set Systems

Given: System of m subsets $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ of $[n]=\{1, /$ dots, $n\}$. Color each element of P red or blue, so that each set is as balanced as possible.

Discrepancy of a coloring: maximum imbalance (above: 1). Discrepancy of \mathcal{S} : discrepancy of the best coloring.

$$
\operatorname{disc} \mathcal{S}:=\min _{\chi:[n] \rightarrow\{-1,1\}} \max _{i}\left|\sum_{j \in S_{i}} \chi(j)\right|
$$

Beck-Fiala

Theorem ([Beck and Fiala, 1981])
Suppose each $i \in[n]$ appears in at most t sets of \mathcal{S}. Then $\operatorname{disc} \mathcal{S} \leq 2 t-1$.
Beck-Fiala Conjecture. disc $\mathcal{S}=O(\sqrt{t})$.

Beck-Fiala

Theorem ([Beck and Fiala, 1981])
Suppose each $i \in[n]$ appears in at most t sets of \mathcal{S}. Then disc $\mathcal{S} \leq 2 t-1$.
Beck-Fiala Conjecture. disc $\mathcal{S}=O(\sqrt{t})$.

- Recently improved to $2 t-\log ^{*} t$ [Bukh, 2013]
- No better bound known in terms of t only!
- The proof of the theorem is an (efficient) algorithm!

Komlòs Conjecture

Komlòs Conjecture. For any vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ with $\max _{i}\left\|u_{i}\right\|_{2} \leq 1$, there exist signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ for which

$$
\left\|\sum_{i} \varepsilon_{i} u_{i}\right\|_{\infty}=O(1)
$$

Komlòs Conjecture

Komlòs Conjecture. For any vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ with $\max _{i}\left\|u_{i}\right\|_{2} \leq 1$, there exist signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ for which

$$
\left\|\sum_{i} \varepsilon_{i} u_{i}\right\|_{\infty}=O(1)
$$

- $O(1)$ is independent of m and n.
- Implies the Beck-Fiala Conjecture: Take u_{j} to be the j-th column of the incidence matrix of \mathcal{S}, scaled by $t^{-1 / 2}$.
- j-th column of incidence matrix: indicator vector of $\left\{i: j \in S_{i}\right\}$.
- $\sqrt{t}\left\|\sum_{j} \varepsilon_{j} u_{j}\right\|_{\infty}$ is the discrepancy of the coloring $\chi(j)=\varepsilon_{j}$.

Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])
Let X be a standard m-dimensional Gaussian, and let K be a convex body in \mathbb{R}^{m} such that $\operatorname{Pr}[X \in K] \geq 1 / 2$.

Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])
Let X be a standard m-dimensional Gaussian, and let K be a convex body in \mathbb{R}^{m} such that $\operatorname{Pr}[X \in K] \geq 1 / 2$.
For any vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ with $\max _{i}\left\|u_{i}\right\|_{2} \leq 1 / 5$, there exist signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ for which

$$
\sum_{i} \varepsilon_{i} u_{i} \in K
$$

Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body in \mathbb{R}^{m} such that $\operatorname{Pr}[X \in K] \geq 1 / 2$.
For any vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ with $\max _{i}\left\|u_{i}\right\|_{2} \leq 1 / 5$, there exist signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ for which

$$
\sum_{i} \varepsilon_{i} u_{i} \in K .
$$

- The proof is not an efficient algorithm!
- By taking $K=O(\sqrt{\log m}) \cdot[-1,1]^{m}$, we get a bound of $O(\sqrt{\log m})$ for Komlòs and $O(\sqrt{t \log m})$ for Beck-Fiala.
- Recent algorithmic proof of these bounds, but not the full theorem, in [Bansal, Dadush, and Garg, 2016].

Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body in \mathbb{R}^{m} such that $\operatorname{Pr}[X \in K] \geq 1 / 2$.
For any vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{m}$ with max ${ }_{i}\left\|_{i}\right\|_{2} \leq 1 / 5$, there exist signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ for which

$$
\sum_{i} \varepsilon_{i} u_{i} \in K .
$$

- The proof is not an efficient algorithm!
- By taking $K=O(\sqrt{\log m}) \cdot[-1,1]^{m}$, we get a bound of $O(\sqrt{\log m})$ for Komlòs and $O(\sqrt{t \log m})$ for Beck-Fiala.
- Recent algorithmic proof of these bounds, but not the full theorem, in [Bansal, Dadush, and Garg, 2016].
- Also used in approximation algorithm for hereditary discrepancy, bounds on discrepancy of boxes, vector-rearrangement problems.

Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if

$$
\operatorname{Pr}[|X| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 s^{2}}\right)
$$

Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if

$$
\operatorname{Pr}[|X| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 s^{2}}\right)
$$

A random variable $Y \in \mathbb{R}^{m}$ is s-subgaussian if for every unit vector $\theta \in \mathbb{S}^{m-1}$ the marginal $\langle\theta, Y\rangle$ is s-subgaussian.

Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if

$$
\operatorname{Pr}[|X| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 s^{2}}\right) .
$$

A random variable $Y \in \mathbb{R}^{m}$ is s-subgaussian if for every unit vector $\theta \in \mathbb{S}^{m-1}$ the marginal $\langle\theta, Y\rangle$ is s-subgaussian.
I.e., an s-subgaussian random variable shrinks about as fast as a Gaussian with variance s^{2} in every direction.

The Main Equivalence

Theorem

Let $T=\left\{\sum_{i} \pm u_{i}\right\}$ where the vectors u_{1}, \ldots, u_{n} satisfy $\max _{i}\left\|u_{i}\right\|_{2} \leq 1 / 5$.
The following two are equivalent:
(1) Banaszczyk's theorem restricted to convex bodies K symmetric around 0.
(2) There exists an $O(1)$-subgaussian Y supported on T, where $O(1)$ is independent of m, n, or the vectors.

The Main Equivalence

Theorem

Let $T=\left\{\sum_{i} \pm u_{i}\right\}$ where the vectors u_{1}, \ldots, u_{n} satisfy $\max _{i}\left\|u_{i}\right\|_{2} \leq 1 / 5$.
The following two are equivalent:
(1) Banaszczyk's theorem restricted to convex bodies K symmetric around 0.
(2) There exists an $O(1)$-subgaussian Y supported on T, where $O(1)$ is independent of m, n, or the vectors.

- 2. was not known before, and we know no direct proof.
- If we can sample Y efficiently, we would have an algorithmic version of Banaszczyk's theorem!
- Using a random walk, we can sample an $O(\sqrt{\log m})$-subgaussian Y : recovers Banaszczyk algorithmically for symmetric K, up to a factor of $O(\sqrt{\log m})$.

2. $\Rightarrow 1$.

Theorem
Let X be a standard Gaussian in \mathbb{R}^{m}, and $K \subset \mathbb{R}^{m}$ be a symmetric convex body such that $\operatorname{Pr}[X \in K] \geq 1 / 2$. Then, for any s-subgaussian Y,

$$
\operatorname{Pr}[Y \in O(s) \cdot K] \geq 1 / 2 .
$$

- Universal sampler: there is a single distribution on $\sum_{i} \pm u_{i}$ which works for all K.

Proof of Theorem

Need: $\mathbb{E}\|Y\|_{K}=O(s)$. Then done by Markov.

Proof of Theorem

Need: $\mathbb{E}\|Y\|_{K}=O(s)$. Then done by Markov.
i. [Borell, 1975] For any symmetric convex body K, and a standard Gaussian $X, \operatorname{Pr}[X \in K] \geq 1 / 2 \Rightarrow \mathbb{E}\|X\|_{K}=O(1)$.
ii. [Talagrand, 1987] For any s-subgaussian Y, and any symmetric convex body $K, \mathbb{E}\|Y\|_{K}=O(s) \cdot \mathbb{E}\|X\|_{K}$.

From i. and ii., we get $\mathbb{E}\|Y\|_{K}=O(s)$.
$1 . \Rightarrow 2$.

Define a zero-sum game:

- Min has strategies $T=\left\{\sum_{i} \pm u_{i}\right\}$.
- Max player has strategies $\left\{v \in \mathbb{R}^{m}\right\}$.
- The payoff of $y \in T$ and $v \in \mathbb{R}^{m}$ is $\left(e^{\langle y, v\rangle}+e^{-\langle y, v\rangle}\right) / e^{\|v\|_{2}^{2} / 2}$.

1. $\Rightarrow 2$.

Define a zero-sum game:

- Min has strategies $T=\left\{\sum_{i} \pm u_{i}\right\}$.
- Max player has strategies $\left\{v \in \mathbb{R}^{m}\right\}$.
- The payoff of $y \in T$ and $v \in \mathbb{R}^{m}$ is $\left(e^{\langle y, v\rangle}+e^{-\langle y, v\rangle}\right) / e^{\|v\|_{2}^{2} / 2}$.

Using Banaszczyk's theoremm, and the von Neumann min-max principle, we can bound the value of the game:

$$
\min _{Y \text { r.v. supp. on } T} \max _{v \in \mathbb{R}^{m}} \mathbb{E}\left[\frac{e^{\langle Y, v\rangle}+e^{-\langle Y, v\rangle}}{e^{\|v\|_{2}^{2} / 2}}\right] \leq 2 .
$$

Implies $\mathbb{E}\left[e^{|\langle Y, v\rangle|}\right] \leq 2 e^{\|v\|_{2}^{2} / 2}$. By Chernoff trick, Y is $O(1)$-subgaussian.

Asymmetric Bodies

Does an efficient sampler for $O(1)$-subgaussian Y imply algorithmic Banaszczyk for asymmetric K?

Asymmetric Bodies

Does an efficient sampler for $O(1)$-subgaussian Y imply algorithmic Banaszczyk for asymmetric K?

Bad News: Take $K=\left\{x \in \mathbb{R}^{m}: x_{1} \leq 0\right\}$ and $Y=e_{1}$. Then:

- Y is $O(1)$-subgaussian
- $\operatorname{Pr}[X \in K]=1 / 2$ for standard Gaussian X.
- For any $t>0, Y \notin t K=K$.

Asymmetric Bodies

Does an efficient sampler for $O(1)$-subgaussian Y imply algorithmic Banaszczyk for asymmetric K?

Bad News: Take $K=\left\{x \in \mathbb{R}^{m}: x_{1} \leq 0\right\}$ and $Y=e_{1}$. Then:

- Y is $O(1)$-subgaussian
- $\operatorname{Pr}[X \in K]=1 / 2$ for standard Gaussian X.
- For any $t>0, Y \notin t K=K$.

Good news: If K 's barycenter $b(K)=\mathbb{E}[X \cdot 1\{X \in K\}]$ is at the origin, then $\operatorname{Pr}[Y \in O(1) \cdot(K \cap-K)] \geq 1 / 2$.

Asymmetric Bodies

Does an efficient sampler for $O(1)$-subgaussian Y imply algorithmic Banaszczyk for asymmetric K?

Bad News: Take $K=\left\{x \in \mathbb{R}^{m}: x_{1} \leq 0\right\}$ and $Y=e_{1}$. Then:

- Y is $O(1)$-subgaussian
- $\operatorname{Pr}[X \in K]=1 / 2$ for standard Gaussian X.
- For any $t>0, Y \notin t K=K$.

Good news: If K 's barycenter $b(K)=\mathbb{E}[X \cdot 1\{X \in K\}]$ is at the origin, then $\operatorname{Pr}[Y \in O(1) \cdot(K \cap-K)] \geq 1 / 2$.

We design a recentering procedure that

- Either finds signs $\varepsilon_{1}, \ldots, \varepsilon_{n}$ such that $\sum_{i} \varepsilon_{i} u_{u} \in K$,
- Or reduces to the case when $b(K)=0$.

Open Problems

- Find a direct proof that there exists an $O(1)$-subgaussian Y supported on $\left\{\sum_{i} \pm u_{i}\right\}$.
- Find an efficient algorithm to sample Y.

Thank you!

Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Structures Algorithms, 12(4): 351-360, 1998. ISSN 1042-9832.
Nikhil Bansal, Daniel Dadush, and Shashwat Garg. Algorithm for Komlós conjecture: Matching Banaszczyk's bound. To appear in FOCS 2016., 2016.

József Beck and Tibor Fiala. "Integer-making" theorems. Discrete Appl. Math., 3(1):1-8, 1981. ISSN 0166-218X.
Christer Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2):207-216, 1975. ISSN 0020-9910.
Boris Bukh. An improvement of the Beck-Fiala theorem. CoRR, abs/1306.6081, 2013.
Michel Talagrand. Regularity of Gaussian processes. Acta Math., 159 (1-2):99-149, 1987. ISSN 0001-5962. doi: 10.1007/BF02392556. URL http://dx.doi.org/10.1007/BF02392556.

