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Discrepancy of Set Systems
Given: System of m subsets S = {S1, . . . ,Sm} of [n] = {1, ldots, n}.
Color each element of P red or blue, so that each set is as balanced as
possible.

Discrepancy of a coloring: maximum imbalance (above: 1).
Discrepancy of S: discrepancy of the best coloring.

discS := min
χ:[n]→{−1,1}

max
i

∣∣∣∑
j∈Si

χ(j)
∣∣∣
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Beck-Fiala

Theorem ([Beck and Fiala, 1981])

Suppose each i ∈ [n] appears in at most t sets of S. Then discS ≤ 2t − 1.

Beck-Fiala Conjecture. discS = O(
√
t).

Recently improved to 2t − log∗ t [Bukh, 2013]

No better bound known in terms of t only!

The proof of the theorem is an (efficient) algorithm!
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Komlòs Conjecture

Komlòs Conjecture. For any vectors u1, . . . , un ∈ Rm with
maxi ‖ui‖2 ≤ 1, there exist signs ε1, . . . , εn for which∥∥∥∥∥∑

i

εiui

∥∥∥∥∥
∞

= O(1).

O(1) is independent of m and n.

Implies the Beck-Fiala Conjecture: Take uj to be the j-th column of

the incidence matrix of S, scaled by t−1/2.
I j-th column of incidence matrix: indicator vector of {i : j ∈ Si}.
I
√
t‖∑j εjuj‖∞ is the discrepancy of the coloring χ(j) = εj .
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Banaszczyk’s Theorem

Theorem ([Banaszczyk, 1998])

Let X be a standard m-dimensional Gaussian, and let K be a convex body
in Rm such that Pr[X ∈ K ] ≥ 1/2.

For any vectors u1, . . . , un ∈ Rm with maxi ‖ui‖2 ≤ 1/5, there exist signs
ε1, . . . , εn for which ∑

i

εiui ∈ K .

The proof is not an efficient algorithm!

By taking K = O(
√

logm) · [−1, 1]m, we get a bound of O(
√

logm)
for Komlòs and O(

√
t logm) for Beck-Fiala.

I Recent algorithmic proof of these bounds, but not the full theorem,
in [Bansal, Dadush, and Garg, 2016].

Also used in approximation algorithm for hereditary discrepancy,
bounds on discrepancy of boxes, vector-rearrangement problems.
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Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if

Pr[|X | ≥ t] ≤ 2 exp

(
− t2

2s2

)
.

A random variable Y ∈ Rm is s-subgaussian if for every unit vector
θ ∈ Sm−1 the marginal 〈θ,Y 〉 is s-subgaussian.

I.e., an s-subgaussian random variable shrinks about as fast as a Gaussian
with variance s2 in every direction.

DGLN Vector Balancing 6 / 12



Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if

Pr[|X | ≥ t] ≤ 2 exp

(
− t2

2s2

)
.

A random variable Y ∈ Rm is s-subgaussian if for every unit vector
θ ∈ Sm−1 the marginal 〈θ,Y 〉 is s-subgaussian.

I.e., an s-subgaussian random variable shrinks about as fast as a Gaussian
with variance s2 in every direction.

DGLN Vector Balancing 6 / 12



Interlude: Subgaussian Random Variables

Definition

A real-valued random variable X is s-subgaussian if

Pr[|X | ≥ t] ≤ 2 exp

(
− t2

2s2

)
.

A random variable Y ∈ Rm is s-subgaussian if for every unit vector
θ ∈ Sm−1 the marginal 〈θ,Y 〉 is s-subgaussian.

I.e., an s-subgaussian random variable shrinks about as fast as a Gaussian
with variance s2 in every direction.

DGLN Vector Balancing 6 / 12



The Main Equivalence

Theorem

Let T = {∑i ±ui} where the vectors u1, . . . , un satisfy maxi ‖ui‖2 ≤ 1/5.
The following two are equivalent:

1 Banaszczyk’s theorem restricted to convex bodies K symmetric
around 0.

2 There exists an O(1)-subgaussian Y supported on T , where O(1) is
independent of m, n, or the vectors.

2. was not known before, and we know no direct proof.

If we can sample Y efficiently, we would have an algorithmic version
of Banaszczyk’s theorem!

Using a random walk, we can sample an O(
√

logm)-subgaussian Y :
recovers Banaszczyk algorithmically for symmetric K , up to a factor
of O(

√
logm).
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2. ⇒ 1.

Theorem

Let X be a standard Gaussian in Rm, and K ⊂ Rm be a symmetric convex
body such that Pr[X ∈ K ] ≥ 1/2. Then, for any s-subgaussian Y ,

Pr[Y ∈ O(s) · K ] ≥ 1/2.

Universal sampler: there is a single distribution on
∑

i ±ui which
works for all K .

DGLN Vector Balancing 8 / 12



Proof of Theorem

x

K

tK

‖x‖K = min{t : x ∈ tK}

Need: E‖Y ‖K = O(s). Then done by Markov.

i. [Borell, 1975] For any symmetric convex body K , and a standard
Gaussian X , Pr[X ∈ K ] ≥ 1/2⇒ E‖X‖K = O(1).

ii. [Talagrand, 1987] For any s-subgaussian Y , and any symmetric
convex body K , E‖Y ‖K = O(s) · E‖X‖K .

From i. and ii., we get E‖Y ‖K = O(s).

DGLN Vector Balancing 9 / 12



Proof of Theorem

x

K

tK

‖x‖K = min{t : x ∈ tK}

Need: E‖Y ‖K = O(s). Then done by Markov.

i. [Borell, 1975] For any symmetric convex body K , and a standard
Gaussian X , Pr[X ∈ K ] ≥ 1/2⇒ E‖X‖K = O(1).

ii. [Talagrand, 1987] For any s-subgaussian Y , and any symmetric
convex body K , E‖Y ‖K = O(s) · E‖X‖K .

From i. and ii., we get E‖Y ‖K = O(s).

DGLN Vector Balancing 9 / 12



1. ⇒ 2.

Define a zero-sum game:

Min has strategies T = {∑i ±ui}.
Max player has strategies {v ∈ Rm}.
The payoff of y ∈ T and v ∈ Rm is (e〈y ,v〉 + e−〈y ,v〉)/e‖v‖

2
2/2.

Using Banaszczyk’s theoremm, and the von Neumann min-max principle,
we can bound the value of the game:

min
Y r.v. supp. on T

max
v∈Rm

E

[
e〈Y ,v〉 + e−〈Y ,v〉

e‖v‖
2
2/2

]
≤ 2.

Implies E[e |〈Y ,v〉|] ≤ 2e‖v‖
2
2/2. By Chernoff trick, Y is O(1)-subgaussian.
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Asymmetric Bodies

Does an efficient sampler for O(1)-subgaussian Y imply algorithmic
Banaszczyk for asymmetric K?

Bad News: Take K = {x ∈ Rm : x1 ≤ 0} and Y = e1. Then:

Y is O(1)-subgaussian

Pr[X ∈ K ] = 1/2 for standard Gaussian X .

For any t > 0, Y 6∈ tK = K .

Good news: If K ’s barycenter b(K ) = E[X · 1{X ∈ K}] is at the origin,
then Pr[Y ∈ O(1) · (K ∩ −K )] ≥ 1/2.

We design a recentering procedure that

Either finds signs ε1, . . . , εn such that
∑

i εiuu ∈ K ,

Or reduces to the case when b(K ) = 0.
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Open Problems

Find a direct proof that there exists an O(1)-subgaussian Y
supported on {∑i ±ui}.

Find an efficient algorithm to sample Y .

Thank you!
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