Approximating Hereditary Discrepancy via Small Width Ellipsoids

Aleksandar Nikolov Kunal Talwar

Rutgers University

MSR SVC

Nikolov, Talwar (Rutgers, MSR SVC)

∃ ► < ∃ ►</p>

Outline

- 2 Ellipsoids
- 3 Upper Bound
- 4 Lower Bound

5 Conclusion

E

イロト イヨト イヨト イヨト

Discrepancy of Set Systems

Given a collection of *m* subsets $\{S_1, \ldots, S_m\}$ of a size *n* universe *U*.

3

イロト イポト イヨト イヨト

Discrepancy of Set Systems

Color each universe element red or blue, so that each set is as balanced as possible.

Discrepancy: maximum imbalance (above: 1).

∃ ► < ∃ ►</p>

E

イロト イロト イヨト イヨト

E

<ロト <回ト < 回ト < 回ト

(4 同) ト (1 日) (1 日)

$$\operatorname{disc}(A) = \min_{x \in \{\pm 1\}^n} \|Ax\|_{\infty}$$

(4 同) ト (1 日) (1 日)

Hereditary Discrepancy

For an $m \times n$ matrix A:

• Discrepancy:

$$\mathsf{disc}(A) = \min_{x \in \{\pm 1\}^n} \|Ax\|_\infty$$

• Hereditary Discrepancy

$$\operatorname{herdisc}(A) = \max_{S \subseteq [n]} \operatorname{disc}(A|_S)$$

A|_S: submatrix of columns indexed by S
orresponds to restricted set system {S₁ ∩ S,..., S_m ∩ S}.

3

Some Applications

- Rounding: [Lovász, Spencer, and Vesztergombi, 1986] For any $y \in [-1,1]^n$, there exists $x \in \{\pm 1\}^n$ such that $||Ax Ay||_{\infty} \le 2$ herdisc(A).
 - efficient, if discrepancy solutions can be computed efficiently
 used e.g. in [Rothvoß, 2013].
- Sparsification: Constructing ϵ -approximations, and ϵ -nets.
- *Private Data Analysis*:[Nikolov, Talwar, and Zhang, 2013] Lower bounds on the necessary error to prevent a privacy breach.

イロト イポト イヨト イヨト 二日

Classical Results

- [Spencer, 1985] When $A \in [-1, 1]^{m \times n}$, herdisc $(A) = O(\sqrt{n \log \frac{m}{n}})$.
- [Beck and Fiala, 1981] When $A = (a_i)_{i=1}^n$, and $\forall i : ||a_i||_1 \le 1$, herdisc $(A) \le 2$.
- [Banaszczyk, 1998] When $A = (a_i)_{i=1}^n$, and $\forall i : ||a_i||_2 \le 1$, herdisc $(A) \le O(\sqrt{\log m})$.

• Komlos Conjecture: $herdisc(A) \leq O(1)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへ⊙

Hardness

- [Charikar, Newman, and Nikolov, 2011] NP-hard to distinguish between disc(A) = 0 and disc(A) = $\Omega(\sqrt{n})$ for A and $O(n) \times n$ matrix.
- [Austrin, Guruswami, and Håstad, 2013] NP-hard to approximate herdisc to within a factor of 2.
 - Is there super-constant hardness?
- The problem "herdisc(A) $\leq t$?" is in Π_2^P
 - Is it in NP? Is it Π_2^{P} -hard?

ヘロト 人間ト 人注ト 人注ト

Approximating Discrepancy

• [Bansal, 2010] If herdisc(A) $\leq D$, can find an x such that $||Ax||_{\infty} \leq O(D \log m)$.

• But it's possible that $\|Ax\|_{\infty} \ll D$

- [Lovász, Spencer, and Vesztergombi, 1986; Matoušek, 2013] A determinant lower bound for herdisc(A) is tight within a factor of O(log^{3/2} m). But not efficient!
- [Nikolov, Talwar, and Zhang, 2013] An $O(\log^3 m)$ -approximation to herdisc(A) by relating it to the noise complexity of an efficient differentially private algorithm.

3

ヘロト 人間ト 人団ト 人団ト

Approximating Discrepancy

• [Bansal, 2010] If herdisc(A) $\leq D$, can find an x such that $||Ax||_{\infty} \leq O(D \log m)$.

• But it's possible that $\|Ax\|_{\infty} \ll D$

- [Lovász, Spencer, and Vesztergombi, 1986; Matoušek, 2013] A determinant lower bound for herdisc(A) is tight within a factor of O(log^{3/2} m). But not efficient!
- [Nikolov, Talwar, and Zhang, 2013] An $O(\log^3 m)$ -approximation to herdisc(A) by relating it to the noise complexity of an efficient differentially private algorithm.

This work: An $O(\log^{3/2} m)$ -approximation to herdisc(A).

• Simpler, more direct proof.

Our Result

Theorem

There exists an efficiently computable function f, s.t.

$$rac{c}{\log m} f(A) \leq \operatorname{herdisc}(A) \leq C \sqrt{\log m} f(A),$$

for absolute constants c, C.

- herdisc(A) is a max over 2ⁿ subsets of a min over 2ⁿ colorings
 No easy to ceritfy *upper* or *lower* bound
- We prove a *simple geometric certificate* gives both upper and lower bounds.
- First (approximate) formulation of herdisc as convex program.

イロト イポト イヨト イヨト

Outline

3 Upper Bound

4 Lower Bound

5 Conclusion

E

<ロト <回ト < 回ト < 回ト

The Min-Width Ellipsoid

(Centrally symmetric) ellipsoid: $E = FB_2^m$. Hypercube: $B_{\infty}^m = [-1, 1]^m$.

Convex Program (MWE): Let $A = (a_1, \ldots, a_n)$, $a_i \in \mathbb{R}^m$.

 $f(A) = \min w$ over *E*, *w* subject to $\{a_1, \dots, a_m\} \subseteq E \subseteq wB_{\infty}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The Min-Width Ellipsoid

Minimize width w over all E and w s.t. $\{a_1, \ldots, a_m\} \subseteq E \subseteq wB_\infty$

3

イロト イポト イヨト イヨト

Proof Strategy

- Upper Bound: herdisc(A) $\leq C\sqrt{\log m}f(A)$
 - Banaszczyk's discrepancy theorem.
- Lower Bound: $\frac{c}{\log m} \leq \operatorname{herdisc}(A)$
 - Extract a lower bound on herdisc(A) from any solution to a *convex dual* of the (MWE) program.
 - Bound follows from *strong duality*.

3

Outline

1 Introduction

2 Ellipsoids

3 Upper Bound

4 Lower Bound

5 Conclusion

E

<ロト <回ト < 回ト < 回ト

Banaszczyk's Theorem

Theorem ([Banaszczyk, 1998])

Let $A = (a_1, ..., a_n)$, where $||a_i||_2 \le 1$ for all *i*. Let $K \subseteq \mathbb{R}^m$ be a convex body so that

$$\Pr[g \in K] \geq \frac{1}{2},$$

for $g \sim N(0,1)^m$ a standard guassian. Then $\exists x \in \{-1,1\}^n$ so that

 $Ax \in 10K$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Applying the Theorem

Take some $E = FB_2$ and w s.t. $\{a_1, \ldots, a_m\} \subseteq E \subseteq wB_{\infty}$.

3

イロト イポト イヨト イヨト

Applying the Theorem

 $\{F^{-1}a_1,\ldots,F^{-1}a_m\}\subseteq B_2\subseteq K.$

Applying the Theorem

- Every facet of *K* is at least distance 1 from the origin.
 - Because $B_2 \subseteq K$.
- Chernoff bound + Union bound: $\Pr[g \in C\sqrt{\log m} K] \ge \frac{1}{2}.$
- By B.'s Theorem: $\exists x \in \{-1,1\}^n$, so that $F^{-1}Ax \in K$ • $\Leftrightarrow Ax \in w \cdot C\sqrt{\log m} B_{\infty}$.

・ロト ・四ト ・ヨト ・ヨト

• $\Leftrightarrow ||Ax||_{\infty} \le w \cdot C\sqrt{\log m}$. • disc $(A) \le w \cdot C\sqrt{\log m}$.

The Bound is Hereditary

The bound immediately works for $A|_S$:

•
$$\{a_i\}_{i\in S} \subseteq \{a_1\ldots,a_n\} \subseteq E \subseteq wB_{\infty}$$
.

• I.e. *E* an *w* are feasible for $A|_S$

3

- 4 伊ト イヨト イヨト

The Bound is Hereditary

The bound immediately works for $A|_S$:

•
$$\{a_i\}_{i\in S} \subseteq \{a_1\ldots,a_n\} \subseteq E \subseteq wB_{\infty}$$
.

• I.e. *E* an *w* are feasible for $A|_S$

3

- 4 伊ト イヨト イヨト

The Bound is Hereditary

The bound immediately works for $A|_S$:

- $\{a_i\}_{i\in S} \subseteq \{a_1\ldots,a_n\} \subseteq E \subseteq wB_{\infty}$.
- I.e. *E* an *w* are feasible for $A|_S$
- herdisc(A) $\leq w \cdot C \sqrt{\log m}$.

3

- 4 同 1 - 4 回 1 - 4 回 1

Outline

1 Introduction

- 2 Ellipsoids
- 3 Upper Bound

4 Lower Bound

5 Conclusion

E

<ロト <回ト < 回ト < 回ト

Spectral Lower Bound

Smallest singular value:
$$\sigma_{\min}(A) = \min_x \frac{||Ax||_2}{||x||_2}$$
.

Proposition

For any $m \times n$ matrix A, any diagonal $P \ge 0$, $tr(P^2) = 1$,

 $\operatorname{disc}(A)^2 \ge n\sigma_{\min}^2(PA).$

Comes from (the dual of) a convex relaxation of disc(A).

3

Spectral Lower Bound

Smallest singular value:
$$\sigma_{\min}(A) = \min_x \frac{||Ax||_2}{||x||_2}$$
.

Proposition

For any $m \times n$ matrix A, any diagonal $P \ge 0$, $tr(P^2) = 1$,

 $\operatorname{disc}(A)^2 \ge n\sigma_{\min}^2(PA).$

Comes from (the dual of) a convex relaxation of disc(A). Implies for any $S \subseteq [n]$:

$$\operatorname{herdisc}(A)^2 \ge |S|\sigma_{\min}^2(PA|_S).$$

Nikolov, Talwar (Rutgers, MSR SVC)

イロト 不得 トイヨト イヨト 二日

Proof.

$$\operatorname{disc}(A)^2 = \min_{x \in \{-1,1\}^n} \max_{i=1}^m \left(\sum_{j=1}^n A_{ij} x_j \right)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三■ ・ ��や

Proof.

$$\operatorname{disc}(A)^{2} = \min_{x \in \{-1,1\}^{n}} \max_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right)^{2}$$
$$\geq \min_{x \in \{-1,1\}^{n}} \sum_{i=1}^{m} P_{ii}^{2} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right)^{2} \text{ (avaraging)}$$

Proof.

$$disc(A)^{2} = \min_{x \in \{-1,1\}^{n}} \max_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right)^{2}$$

$$\geq \min_{x \in \{-1,1\}^{n}} \sum_{i=1}^{m} P_{ii}^{2} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right)^{2} \text{ (avaraging)}$$

$$= \min_{x \in \{-1,1\}^{n}} \|PAx\|_{2}^{2}$$

Proof.

$$disc(A)^{2} = \min_{x \in \{-1,1\}^{n}} \max_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right)^{2}$$

$$\geq \min_{x \in \{-1,1\}^{n}} \sum_{i=1}^{m} P_{ii}^{2} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right)^{2} \text{ (avaraging)}$$

$$= \min_{x \in \{-1,1\}^{n}} \|PAx\|_{2}^{2}$$

$$\geq n\sigma_{\min}^{2}(PA) \quad (x \in \{-1,1\}^{n} \Rightarrow \|x\|_{2} = n^{1/2})$$

Dual of (MWE)

Primal

Nuclear norm: $||M||_{S_1}$ is equal to the sum of singular values of M. **Dual**

$$egin{aligned} f(A) &= \max \| PAQ \|_{S_1} \ & ext{ subject to } \ &P, Q \geq 0, ext{ diagonal } \ & ext{ tr}(P^2) &= ext{ tr}(Q^2) = 1 \end{aligned}$$

Ξ

イロト イロト イヨト イヨト

Spectral LB from the Dual

Lemma

For any feasible P and Q, there exists a set $S \subseteq [n]$ such that

$$|S|\sigma_{\min}(PA|_S)^2 \ge \frac{c^2}{(\log m)^2} \|PAQ\|_{S_1}^2.$$

The set S is efficiently computable.

Spectral lowerbound \Rightarrow herdisc $(A) \ge \frac{c}{\log m} f(A)$.

3

Restricted Invertibility Principle

Theorem ([Bourgain and Tzafriri, 1987; Spielman and Srivastava, 2010]) Assume that any two nonzero singular values σ_i , σ_j of the $m \times k$ matrix Msatisfy $\frac{1}{2} \leq \frac{\sigma_i}{\sigma_j} \leq 2$. Then there exists a subset $S \subseteq [k]$ such that

$$|S|\sigma_{\min}(M|_S)^2 \ge \frac{1}{64k} \|M\|_{S_1}^2$$

Restricted Invertibility Principle

Theorem ([Bourgain and Tzafriri, 1987; Spielman and Srivastava, 2010]) Assume that any two nonzero singular values σ_i , σ_j of the $m \times k$ matrix Msatisfy $\frac{1}{2} \leq \frac{\sigma_i}{\sigma_j} \leq 2$. Then there exists a subset $S \subseteq [k]$ such that

$$|S|\sigma_{\min}(M|_S)^2 \ge rac{1}{64k} \|M\|_{S_1}^2$$

Simple transformations to PAQ to get a matrix M:

• M satisfies the assumption of the restricted invertibility principle

•
$$\|M\|_{S_1} \geq \frac{\sqrt{k}}{\log m} \|PAQ\|_{S_1}$$

• Captures a large fraction of the dual value

- All columns of *M* are projections of columns of *PA*
 - Spectral lower bounds for M lower bound herdisc(A)

Outline

Conclusion

E

<ロト <回ト < 回ト < 回ト

Conclusion

This work:

- $O(\log^{3/2} m)$ approximation for hereditary discrepancy
- *Direct* proof using geometric techniques
- Approximate *characterization* of hereditary discrepancy as a *convex program*
 - Can use tools of convex analysis to understand herdisc.

3

Conclusion

This work:

- $O(\log^{3/2} m)$ approximation for hereditary discrepancy
- *Direct* proof using geometric techniques
- Approximate *characterization* of hereditary discrepancy as a *convex program*
 - Can use tools of convex analysis to understand herdisc.

Open:

- $2 + \epsilon$ hardness of approximating hereditary discrepancy
- How far can f(A) be from herdisc(A)?
- Constructive proof of Banaszczyk's theorem
- Improve the approximation ratio

イロト イポト イヨト イヨト

Conclusion

Thank you!

Ξ

イロト イヨト イヨト イヨト

References

Per Austrin, Venkatesan Guruswami, and Johan Håstad. $(2 + \epsilon)$ -sat is np-hard. *ECCC TR13-159, 2013.*, 2013.

- Wojciech Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex bodies. *Random Structures & Algorithms*, 12(4): 351–360, 1998.
- N. Bansal. Constructive algorithms for discrepancy minimization. In *Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on*, pages 3–10. IEEE, 2010.
- József Beck and Tibor Fiala. Integer-making theorems. *Discrete Applied Mathematics*, 3(1):1–8, 1981.
- J. Bourgain and L. Tzafriri. Invertibility of large submatrices with applications to the geometry of banach spaces and harmonic analysis. *Israel journal of mathematics*, 57(2):137–224, 1987.
- M. Charikar, A. Newman, and A. Nikolov. Tight hardness results for minimizing discrepancy. In *Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1607–1614. SIAM, 2011.

- L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancy of set-systems and matrices. *European Journal of Combinatorics*, 7(2):151–160, 1986.
- Jiří Matoušek. The determinant bound for discrepancy is almost tight. *Proceedings of the American Mathematical Society*, 141(2):451–460, 2013.
- Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: the sparse and approximate cases. In *Proceedings of the 45th annual ACM symposium on Symposium on theory of computing*, STOC '13, pages 351–360, New York, NY, USA, 2013.
 ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/2488608.2488652. URL http://doi.acm.org/10.1145/2488608.2488652.
- Thomas Rothvoß. Approximating bin packing within o (log opt* log log opt) bins. In Foundations of Computer Science (FOCS), 2013 54th Annual IEEE Symposium on, 2013.
- Joel Spencer. Six standard deviations suffice. *Transactions of the American Mathematical Society*, 289(2):679–706, 1985.
- D.A. Spielman and N. Srivastava. An elementary proof of the restricted invertibility theorem. *Israel Journal of Mathematics*, pages 1–9, 2010.