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Introduction

Discrepancy of Set Systems

Given a collection of m subsets {S1, . . . ,Sm} of a size n universe U.
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Introduction

Discrepancy of Set Systems

Color each universe element red or blue, so that each set is as balanced as
possible.

Discrepancy: maximum imbalance (above: 1).
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Introduction

Matrix Representation


1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0
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disc(A) = min
x∈{±1}n

‖Ax‖∞
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Introduction

Hereditary Discrepancy

For an m × n matrix A:

Discrepancy:
disc(A) = min

x∈{±1}n
‖Ax‖∞

Hereditary Discrepancy

herdisc(A) = max
S⊆[n]

disc(A|S)

A|S : submatrix of columns indexed by S

corresponds to restricted set system {S1 ∩ S , . . . ,Sm ∩ S}.
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Introduction

Some Applications

Rounding:[Lovász, Spencer, and Vesztergombi, 1986] For any
y ∈ [−1, 1]n, there exists x ∈ {±1}n such that
‖Ax − Ay‖∞ ≤ 2 herdisc(A).

efficient, if discrepancy solutions can be computed efficiently
used e.g. in [Rothvoß, 2013].

Sparsification: Constructing ε-approximations, and ε-nets.

Private Data Analysis:[Nikolov, Talwar, and Zhang, 2013] Lower
bounds on the necessary error to prevent a privacy breach.
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Introduction

Classical Results

[Spencer, 1985] When A ∈ [−1, 1]m×n, herdisc(A) = O(
√

n log m
n ).

[Beck and Fiala, 1981] When A = (ai )
n
i=1, and ∀i : ‖ai‖1 ≤ 1,

herdisc(A) ≤ 2.

[Banaszczyk, 1998] When A = (ai )
n
i=1, and ∀i : ‖ai‖2 ≤ 1,

herdisc(A) ≤ O(
√

logm).

Komlos Conjecture: herdisc(A) ≤ O(1).
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Introduction

Hardness

[Charikar, Newman, and Nikolov, 2011] NP-hard to distinguish
between disc(A) = 0 and disc(A) = Ω(

√
n) for A and O(n)× n

matrix.

[Austrin, Guruswami, and Håstad, 2013] NP-hard to approximate
herdisc to within a factor of 2.

Is there super-constant hardness?

The problem “herdisc(A) ≤ t?” is in ΠP
2

Is it in NP? Is it ΠP
2 -hard?
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Introduction

Approximating Discrepancy

[Bansal, 2010] If herdisc(A) ≤ D, can find an x such that
‖Ax‖∞ ≤ O(D logm).

But it’s possible that ‖Ax‖∞ � D

[Lovász, Spencer, and Vesztergombi, 1986; Matoušek, 2013] A
determinant lower bound for herdisc(A) is tight within a factor of
O(log3/2m). But not efficient!

[Nikolov, Talwar, and Zhang, 2013] An O(log3m)-approximation to
herdisc(A) by relating it to the noise complexity of an efficient
differentially private algorithm.

This work: An O(log3/2m)-approximation to herdisc(A).

Simpler, more direct proof.
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Introduction

Our Result

Theorem

There exists an efficiently computable function f , s.t.

c

logm
f (A) ≤ herdisc(A) ≤ C

√
logm f (A),

for absolute constants c ,C .

herdisc(A) is a max over 2n subsets of a min over 2n colorings

No easy to ceritfy upper or lower bound

We prove a simple geometric certificate gives both upper and lower
bounds.

First (approximate) formulation of herdisc as convex program.
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Ellipsoids

The Min-Width Ellipsoid

(Centrally symmetric) ellipsoid: E = FBm
2 .

Hypercube: Bm
∞ = [−1, 1]m.

Convex Program (MWE): Let A = (a1, . . . , an), ai ∈ Rm.

f (A) = minw

over E , w subject to

{a1, . . . , am} ⊆ E ⊆ wB∞
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Ellipsoids

The Min-Width Ellipsoid

Minimize width w over all E and w s.t. {a1, . . . , am} ⊆ E ⊆ wB∞

2w

a1
a2

a3

a4
a5

E = FB2

wB∞

0
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Ellipsoids

Proof Strategy

Upper Bound: herdisc(A) ≤ C
√

logmf (A)

Banaszczyk’s discrepancy theorem.

Lower Bound: c
logm ≤ herdisc(A)

Extract a lower bound on herdisc(A) from any solution to a convex
dual of the (MWE) program.
Bound follows from strong duality.
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Upper Bound

Banaszczyk’s Theorem

Theorem ([Banaszczyk, 1998])

Let A = (a1, . . . , an), where ‖ai‖2 ≤ 1 for all i . Let K ⊆ Rm be a convex
body so that

Pr[g ∈ K ] ≥ 1

2
,

for g ∼ N(0, 1)m a standard guassian. Then ∃x ∈ {−1, 1}n so that

Ax ∈ 10K .
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Upper Bound

Applying the Theorem

Take some E = FB2 and w s.t. {a1, . . . , am} ⊆ E ⊆ wB∞.

a1
a2

a3

a4
a5

E = FB2

wB∞

0
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Upper Bound

Applying the Theorem

{F−1a1, . . . ,F−1am} ⊆ B2 ⊆ K .

B2

F−1a1

F−1a2

0

F−1a3

F−1a4

F−1a5

K = wF−1B∞
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Upper Bound

Applying the Theorem

B2

F−1a1

F−1a2

0

F−1a3

F−1a4

F−1a5

K = wF−1B∞ Every facet of K is at least distance 1
from the origin.

Because B2 ⊆ K .

Chernoff bound + Union bound:
Pr[g ∈ C

√
logm K ] ≥ 1

2 .

By B.’s Theorem: ∃x ∈ {−1, 1}n, so
that F−1Ax ∈ K

⇔ Ax ∈ w · C
√

logm B∞.
⇔ ‖Ax‖∞ ≤ w · C

√
logm.

disc(A) ≤ w · C
√

logm.
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Upper Bound

The Bound is Hereditary

The bound immediately works for A|S :

{ai}i∈S ⊆ {a1 . . . , an} ⊆ E ⊆ wB∞.

I.e. E an w are feasible for A|S

a1
a2

a3

a4
a5

E = FB2

wB∞

0

Nikolov, Talwar (Rutgers, MSR SVC) Approximating Discrepancy 19 / 28



Upper Bound

The Bound is Hereditary

The bound immediately works for A|S :

{ai}i∈S ⊆ {a1 . . . , an} ⊆ E ⊆ wB∞.

I.e. E an w are feasible for A|S

a1
a2

a3

a4
a5

E = FB2

wB∞

0

Nikolov, Talwar (Rutgers, MSR SVC) Approximating Discrepancy 19 / 28



Upper Bound

The Bound is Hereditary

The bound immediately works for A|S :

{ai}i∈S ⊆ {a1 . . . , an} ⊆ E ⊆ wB∞.

I.e. E an w are feasible for A|S
herdisc(A) ≤ w · C

√
logm.

a1
a2

a3

a4
a5

E = FB2

wB∞

0

Nikolov, Talwar (Rutgers, MSR SVC) Approximating Discrepancy 19 / 28



Lower Bound

Outline

1 Introduction

2 Ellipsoids

3 Upper Bound

4 Lower Bound

5 Conclusion

Nikolov, Talwar (Rutgers, MSR SVC) Approximating Discrepancy 20 / 28



Lower Bound

Spectral Lower Bound

Smallest singular value: σmin(A) = minx
‖Ax‖2
‖x‖2 .

Proposition

For any m × n matrix A, any diagonal P ≥ 0, tr(P2) = 1,

disc(A)2 ≥ nσ2min(PA).

Comes from (the dual of) a convex relaxation of disc(A).

Implies for any S ⊆ [n]:

herdisc(A)2 ≥ |S |σ2min(PA|S).
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Lower Bound

Proof.

disc(A)2 = min
x∈{−1,1}n

m
max
i=1

 n∑
j=1

Aijxj

2

≥ min
x∈{−1,1}n

m∑
i=1

P2
ii

 n∑
j=1

Aijxj

2

(avaraging)

= min
x∈{−1,1}n

‖PAx‖22

≥ nσ2min(PA) (x ∈ {−1, 1}n ⇒ ‖x‖2 = n1/2)
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Lower Bound

Dual of (MWE)

Primal

f (A) = minw

subject to

{a1, . . . , am} ⊆ E ⊆ wB∞

Nuclear norm: ‖M‖S1 is equal to the sum of singular values of M.
Dual

f (A) = max ‖PAQ‖S1
subject to

P,Q ≥ 0, diagonal

tr(P2) = tr(Q2) = 1
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Lower Bound

Spectral LB from the Dual

Lemma

For any feasible P and Q, there exists a set S ⊆ [n] such that

|S |σmin(PA|S)2 ≥ c2

(logm)2
‖PAQ‖2S1 .

The set S is efficiently computable.

Spectral lowerbound ⇒ herdisc(A) ≥ c
logm f (A).
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Lower Bound

Restricted Invertibility Principle

Theorem ([Bourgain and Tzafriri, 1987; Spielman and Srivastava, 2010])

Assume that any two nonzero singular values σi , σj of the m× k matrix M
satisfy 1

2 ≤
σi
σj
≤ 2. Then there exists a subset S ⊆ [k] such that

|S |σmin(M|S)2 ≥ 1

64k
‖M‖2S1

Simple transformations to PAQ to get a matrix M:

M satisfies the assumption of the restricted invertibility principle

‖M‖S1 ≥
√
k

logm‖PAQ‖S1
Captures a large fraction of the dual value

All columns of M are projections of columns of PA

Spectral lower bounds for M lower bound herdisc(A)
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Conclusion

Conclusion

This work:

O(log3/2m) approximation for hereditary discrepancy

Direct proof using geometric techniques

Approximate characterization of hereditary discrepancy as a convex
program

Can use tools of convex analysis to understand herdisc.

Open:

2 + ε hardness of approximating hereditary discrepancy

How far can f (A) be from herdisc(A)?

Constructive proof of Banaszczyk’s theorem

Improve the approximation ratio
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Conclusion

Thank you!
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