Matchings: Max Cardinality and Min Cost

CSC 473 Advanced Algorithms

Matchings in graphs

• A matching in a graph G = (V, E) is a subset $M \subseteq E$ of edges so that no two edges in M share an endpoint.

- <u>Maximum cardinality matching</u>: given input graph *G*, find a matching *M* of maximum size
 - Perfect matching: size $\frac{|V|}{2}$, i.e., all edges are matched
 - Solvable in polynomial time

Bipartite Graphs

Algorithm for general graphs is a deep result of Jack Edmonds.

- We will focus on max cardinality matching in *bipartite graphs*.
- <u>Bipartite graph</u>: G = (V, E) so that we can partition V into disjoint sets A and B, and all edges in E have one endpoint in A and on in B
 - We can check if G is bipartite in time O(n + m)
 - If it is, we can also find A and B in this time
- Fact: a graph is bipartite if and only if it does not have an odd cycle
 - only if : any path alternates A and B and can only come back to the starting node after an even numbers of hops.

Bipartite Matching

matching

Finding the Maximum Matching

• Greedy (keep adding edges while you can) does not work

- Do you know a polynomial time algorithm to find the max matching?
 - Compute a max flow
 - We will see a more combinatorial algorithm

Augmenting Paths

- For a bipartite graph G and a matching M, a path P is <u>alternating</u> if edges in P alternate between being in M and being outside of M.
- An alternating path is <u>augmenting</u> if it starts and ends in unmatched vertices.

Augmenting Paths

- An alternating path is <u>augmenting</u> if it starts and ends in unmatched vertices.
- Let P = augmenting path. Set $M' = M \bigtriangleup P = (M \cup P) \setminus (M \cap P)$.
- M' is a matching and |M'| = |M| + 1

First and last vertex in *P* unmatched, and others just switch which ones they are matched to.

One more non-matching edge in *P* than matching edges: size of matching increases by 1.

Characterizing Max Matchings

Theorem. A matching *M* is of maximum cardinality if and only if there is no augmenting path for it.

- only if: Augmenting path means there is a larger matching
- if: Take a matching M', |M'| > |M|, and graph H with edges $M \bigtriangleup M'$
 - $M \bigtriangleup M' = (M \cup M') \setminus (M \cap M')$

- *H* has max degree ≤ 2
- O 1 The connected components of H are alternating paths and even cycles
 - *H* has more edges from *M'*, so has a path component starting and ending with edges from *M'*: augmenting for *M*.

High-Level Algorithm

- $M = \emptyset$
- While \exists an augmenting path P for M
 - Set $M = M \bigtriangleup P$
- Correct by Theorem.
- At most $\frac{n}{2}$ iterations, since each iteration adds an edge to M
- How do we search for an augmenting path?
 - Will show a O(n + m) time algorithm, for $O(n^2 + nm)$ total time

Finding Augmenting Paths

- Idea: construct a directed graph $G_M = (V, E_M)$
- alternating paths in G <--> directed paths in G_M
 - Direct edges in *M* from right to left

- Direct edges not in *M* from left to right
- Any path in G_M must alternate edges in and outside M
- Use BFS to search for a path in G_M from an exposed vertex on the left to an exposed vertex on the right.

König's Theorem

• Vertex Cover: a set C of edges of G = (V, E), so that for any edge $(a, b) \in E$, $a \in C$ or $b \in C$ (or both)

Theorem. In any bipartite graph, the size of the minimum cardinality vertex cover equals the size of the maximum cardinality matching.

- Easy: for any v.c. C and matching M, $|M| \leq |C|$
 - Edges in *M* are disjoint, so no vertex in *C* can cover more than one of them
 - True even for non-bipartite graphs.
- <u>Harder</u>: for the max matching M, there exists a v.c. C s.t. |C| = |M|
 - This part fails for some non-bipartite graphs.

Proof of Harder Direction

а

b

С

e

2

RSITY OF TORONTO

 $L = \overline{\{d, e, 4\}}$

 $C = \{a, b, c, 4\}$

Computer Science

- *M* = max matching (no augmenting path)
- $U = exposed vertices; L = vertices reachable in G_M from <math>U \cap A$
- $C = (A \setminus L) \cup (B \cap L)$ is a vertex cover of size |C| = |M|
 - No edges (a, b) with $a \in A \cap L$ and $b \in B \setminus L$
 - $(a, b) \notin M$: if a is reachable from U, then so is b
 - $(a, b) \in M$: $a \notin U$, and only incoming edge is $a \leftarrow b$, so a is reachable from U only if b is
 - exposed
 - in vertex cover

Proof, continued

2

Y OF TORONTO

 $L = \overline{\{d, e, 4\}}$

 $C = \{a, b, c, 4\}$

Computer Science

а

b

С

d

e

- *M* = max matching (no augmenting path)
- $U = exposed vertices; L = vertices reachable in G_M from <math>U \cap A$
- $C = (A \setminus L) \cup (B \cap L)$ is a vertex cover of size |C| = |M|
 - Every vertex in C touches exactly one edge in M

- All vertices in *B* ∩ *L* are matched, otherwise there is an augmenting path.
- If $(a, b) \in M$, and $b \in B \cap L$, then $a \notin A \setminus L$ (if b is reachable from U, so is a).