CSC 265: Enriched Data Structures and Analysis Review of Probability

A sample space S is a set of elementary events (which can be viewed as the possible outcomes of an experiment).
A probability distribution function f maps each point in S to a number in $[0,1]$, so that $\sum_{x \in S} f(x)=1$.
A probability space is a sample space plus a probability distribution function.

An event is a subset of the sample space.
If $A \subseteq S$ is an event, then $\operatorname{Prob}[A]=\sum_{x \in A} f(x)$.
If A and B are events, then $\operatorname{Prob}[A \cup B]=\operatorname{Prob}[A]+\operatorname{Prob}[B]-\operatorname{Prob}[A \cap B]$.
A random variable is a function that assigns a value to each element of a probability space.
The expected value of a random variable $V: S \rightarrow R$ is $E[V]=\sum_{x \in S} V(x) \cdot f(x)$, where S is the sample space and f is the probability distribution function. An equivalent definition is $\sum_{r \in R} r \cdot \operatorname{Prob}[V=r]$ where $\operatorname{Prob}[V=r]=\sum\{f(x) \mid V(x)=r\}$.

Linearity of Expectation

$E[X+Y]=E[X]+E[Y]$ for any random variables X and Y
$E[a X]=a E[X]$ for any constant a
X and Y are independent random variables if

$$
\operatorname{Prob}[X=x \text { and } Y=y]=\operatorname{Prob}[X=x] \cdot \operatorname{Prob}[Y=y]
$$

for all values x of X and all values y of Y.
If X and Y are independent random variables, then $E[X Y]=E[X] E[Y]$.
If range $(X) \subseteq N$ then

$$
\begin{aligned}
E[X] & =\sum_{i=0}^{\infty} i \operatorname{Prob}[X=i] \\
& =\sum_{i=0}^{\infty} i(\operatorname{Prob}[X \geq i]-\operatorname{Prob}[X \geq i+1]) \\
& =\sum_{i=1}^{\infty} \operatorname{Prob}[X \geq i]
\end{aligned}
$$

The last equality follows since each term $\operatorname{Prob}[X \geq i]$ is added i times and subtracted $i-1$ times.

Indicator Variables

A random variable with range $\{0,1\}$ is called an indicator variable.
For example, if we consider the sample space of the rolls of a die, then the random variable $O d d:\{1,2,3,4,5,6\} \rightarrow\{0,1\}$ is an indicator variable, where

$$
O d d(i)=\left\{\begin{array}{ll}
1 & \text { if } i \text { is odd } \\
0 & \text { if } i \text { is even }
\end{array} .\right.
$$

For any indicator variable X,
$E[X]=1 \cdot \operatorname{Prob}[X=1]+0 \cdot \operatorname{Prob}[X=0]=\operatorname{Prob}[X=1]$.

Conditional Probability

The conditional probability of an event A occurring given that another event B has occurred is $\operatorname{Prob}[A \mid B]=\operatorname{Prob}[A \cap B] / \operatorname{Prob}[B]$. Note that this is only defined if $\operatorname{Prob}(B)>0$.

Bayes' Theorem $\operatorname{Prob}[A \mid B]=\operatorname{Prob}[B \mid A] \cdot \operatorname{Prob}[A] / \operatorname{Prob}[B]$.

