CSC265: Modular Arithmetic

1 Notation

For two integers a and q, we use $q \mid a$ to denote that q divides b. We use a mod q to denote the remainder when dividing a by q. I.e. a mod q is the unique integer r in $\mathbb{Z}_q = \{0, \ldots, q-1\}$ such that a = kq + r for an integer $k = \lfloor a/q \rfloor$. We use $a \equiv b \pmod{q}$ to denote that $q \mid (a-b)$, or, equivalently that $a \mod q = b \mod q$. The "equation" $a \equiv b \pmod{q}$ is called a congruence. Notice that when $a, b \in \mathbb{Z}_q$, then $a \equiv b \pmod{q}$ implies a = b.

A prime number is a positive integer which is divisible by exactly two positive integers: 1 and itself. By convention 1 is not prime.

For some intuition, you can imagine $(a + b) \mod q$ for $a, b \in \mathbb{Z}_q$ as going around a circle. Imagine a circle with q equally spaced marks on it, labeled from 0 to q - 1 clockwsise. Then $(a + b) \mod q$ is the mark you get by starting from the mark a and counting b marks forward, i.e. clockwise. You can interprete $(a - b) \mod q$ and $ab \mod q$ similarly. Figure 1 illustrate $(4 + 5) \mod 8 = 1$ this way.

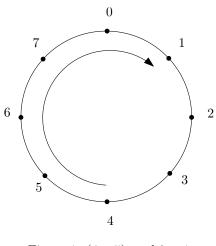


Figure 1: $(4+5) \mod 8 = 1$

2 Greatest Common Divisor

The greatest common divisor of two non-negative integers a and b, denoted gcd(a, b), is equal to the largest non-negative integer g such that $g \mid a$ and $g \mid b$. The greatest common divisor can be computed very efficiently using Euclid's algorithm: in time linear in the number of bits needed to write a and b.

The most important fact about the greatest common divisor is Bézout's identity: for any non-negative integers a, b, there exist (possibly zero or negative) integers s, t such that

$$gcd(a,b) = sa + tb$$

The integers s and t can also be computed efficiently using Euclid's algorithm.

Notice that if p is a prime number then $gcd(a, p) \in \{1, p\}$. Specifically, for any $a \in \mathbb{Z}_p$, gcd(a, p) = 1.

3 Basic Properties of Modular Arithmetic

Assume we have the following congruences:

$$a \equiv b \pmod{q}$$
$$c \equiv d \pmod{q}$$

Then the following congruences also hold:

$$a + c \equiv b + d \pmod{q}$$
$$-a \equiv -b \pmod{q}$$
$$ac \equiv bd \pmod{q}$$

From these you can also derive many other equivalent congruences, e.g. $a - c \equiv b - d \pmod{q}$, etc.

Assume that gcd(a,q) = 1. Then $q \mid (ab)$ implies $q \mid b$.

For any a such that gcd(a,q) = 1 there exists a unique $b \in \mathbb{Z}_q$ such that $ab \equiv 1 \pmod{q}$. We denote this b by $a^{-1} \mod q$. To see this, take s and t be such that sa + tq = 1, and let $b = s \mod q$. Then, using $tq \equiv 0 \pmod{q}$, $(\mod q)$,

$$ba \equiv sa \equiv sa + tq \equiv 1 \pmod{q}$$
.

To show that this is the unique solution, assume towards contradiction that there is $y \in \mathbb{Z}_q, y \neq x$ such that $ay \equiv 1 \pmod{q}$. Then $a(x-y) \equiv 0 \pmod{q}$, i.e. $q \mid a(x-y)$. But gcd(a,q) = 1, so $q \mid (x-y)$, i.e. $x \equiv y \pmod{q}$. But, since we assumed that $x, y \in \mathbb{Z}_q$, it must be that x = y, and we have reached a contradiction.

This implies also that, for any a such that gcd(a,q) = 1, and any integer b, there is a unique $x \in \mathbb{Z}_q$ such that $ax \equiv b \pmod{q}$. Namely, we can take $x = ((a^{-1} \mod q)b) \mod q$. The proof of uniqueness is analogous to the case b = 1 we addressed above.