
CSC265: Modular Arithmetic

1 Notation

For two integers a and q, we use q
∣∣ a to denote that q divides b. We use a mod q to denote the remainder

when dividing a by q. I.e. a mod q is the unique integer r in Zq = {0, . . . , q− 1} such that a = kq + r for an
integer k = ba/qc. We use a ≡ b (mod q) to denote that q

∣∣ (a− b), or, equivalently that a mod q = b mod q.
The “equation” a ≡ b (mod q) is called a congruence. Notice that when a, b ∈ Zq, then a ≡ b (mod q)
implies a = b.

A prime number is a positive integer which is divisible by exactly two positive integers: 1 and itself. By
convention 1 is not prime.

For some intuition, you can imagine (a+ b) mod q for a, b ∈ Zq as going around a circle. Imagine a circle
with q equally spaced marks on it, labeled from 0 to q−1 clockwsise. Then (a+b) mod q is the mark you get
by starting from the mark a and counting b marks forward, i.e. clockwise. You can interprete (a− b) mod q
and ab mod q similarly. Figure 1 illustrate (4 + 5) mod 8 = 1 this way.
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Figure 1: (4 + 5) mod 8 = 1

2 Greatest Common Divisor

The greatest common divisor of two non-negative integers a and b, denoted gcd(a, b), is equal to the largest
non-negative integer g such that g

∣∣ a and g
∣∣ b. The greatest common divisor can be computed very

efficiently using Euclid’s algorithm: in time linear in the number of bits needed to write a and b.
The most important fact about the greatest common divisor is Bézout’s identity: for any non-negative

integers a, b, there exist (possibly zero or negative) integers s, t such that

gcd(a, b) = sa + tb.

The integers s and t can also be computed efficiently using Euclid’s algorithm.
Notice that if p is a prime number then gcd(a, p) ∈ {1, p}. Specifically, for any a ∈ Zp, gcd(a, p) = 1.
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3 Basic Properties of Modular Arithmetic

Assume we have the following congruences:

a ≡ b (mod q)

c ≡ d (mod q)

Then the following congruences also hold:

a + c ≡ b + d (mod q)

−a ≡ −b (mod q)

ac ≡ bd (mod q)

From these you can also derive many other equivalent congruences, e.g. a− c ≡ b− d (mod q), etc.
Assume that gcd(a, q) = 1. Then q

∣∣ (ab) implies q
∣∣ b.

For any a such that gcd(a, q) = 1 there exists a unique b ∈ Zq such that ab ≡ 1 (mod q). We denote this
b by a−1 mod q. To see this, take s and t be such that sa + tq = 1, and let b = s mod q. Then, using tq ≡ 0
(mod q),

ba ≡ sa ≡ sa + tq ≡ 1 (mod q).

To show that this is the unique solution, assume towards contradiction that there is y ∈ Zq, y 6= x such that
ay ≡ 1 (mod q). Then a(x − y) ≡ 0 (mod q), i.e. q

∣∣ a(x − y). But gcd(a, q) = 1, so q
∣∣ (x − y), i.e. x ≡ y

(mod q). But, since we assumed that x, y ∈ Zq, it must be that x = y, and we have reached a contradiction.
This implies also that, for any a such that gcd(a, q) = 1, and any integer b, there is a unique x ∈ Zq such

that ax ≡ b (mod q). Namely, we can take x = ((a−1 mod q)b) mod q. The proof of uniqueness is analogous
to the case b = 1 we addressed above.
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