
Computer Siene 263/B63 University of TorontoDesign and Analysis of Data StruturesNOTES ON AVL TREESby Vassos HadzilaosBinary searh trees work well in the average ase, but they still have the drawbak of linear worst ase timeomplexity for all three operations (Searh, Insert and Delete).De�nition: A binary tree of height h is ideally height-balaned if every leaf has depth h or h� 1, and everynode of depth < h� 1 has two hildren.It would be nie if we ould keep the binary searh tree ideally height-balaned at all times. Then a treeof n nodes would be guaranteed to have height h = b log2n , so searhes would always take time in O(logn).But insertions and deletions might destroy the ideally height-balaned property, and a reorganisation (tomake the tree ideally height-balaned again, while maintaining the binary searh tree property) might takeas muh as linear time.AVL (or height-balaned) trees are a happy ompromise between arbitrary binary searh trees andideally height-balaned binary searh trees. The name \AVL" omes from the names of the two Sovietmathematiians, Adelson-Velski and Landis, who devised them.De�nition: A binary tree is height-balaned if the heights of the left and right subtrees of every node di�erby at most one. An AVL tree is a height-balaned binary searh tree.Note: By onvention, the height of an empty binary tree (one with 0 nodes) is �1; the height of a treeonsisting of a single node is 0.Examples:
Non-examples:
Good news:� The worst ase height of an AVL tree with n nodes is 1:44 log2(n + 2). Thus, the Searh operationan be arried out in O(logn) time in the worst ase.� Insertions and deletions an also be done in O(logn) time, while preserving the \AVL-ness" of the tree.� Empirial studies show that AVL trees work very well on the average ase too.Bad news: The algorithms for insertion and deletion are a bit omplex.De�nition: Let hR and hL be the heights of the right and left subtrees of a node m in a binary treerespetively. The balane fator of m, BF [m℄, is de�ned as BF [m℄ = hR � hL.For an AVL tree, the balane fator of any node is �1, 0, or +1.1



� If BF [m℄ = +1, m is right heavy.� If BF [m℄ = �1, m is left heavy.� If BF [m℄ = 0, m is balaned.In AVL trees we will store BF [m℄ in eah node m. When we draw AVL trees we will put a \+", \�", or\0" next to eah node to indiate, respetively, that the node's balane fator is +1, �1, or 0.Next we onsider algorithms for the Searh, Insert and Delete operations in AVL trees.THE ALGORITHM FOR SearhWe simply treat T as an ordinary binary searh tree | there is nothing new to say here.THE ALGORITHM FOR InsertTo insert a key x into an AVL tree T , let us �rst insert x in T as in ordinary binary searh trees. That is,we trae a path from the root downward, and insert a new node with key x in it in the proper plae, so asto preserve the binary searh tree property. This may destroy the integrity of our AVL tree in that� the addition of a new leaf may have destroyed the height-balane of some nodes, and,� the balane fators of some nodes must be updated to take into aount the new leaf.We will address eah of these points in turn.Rebalaning an AVL tree after InsertionThe height-balane property of a node may have been destroyed as a result of the insertion of the new leafin two ways:(1) the new leaf inreased the height of the right subtree of a node that was already right heavy (before theinsertion); or,(2) the new leaf inreased the height of the left subtree of a node that was already left heavy (before theinsertion).These two ases are illustrated in Figures 1(a) and (b). Note that the insertion of the new leaf ana�et the balane fators only of its anestors. To see this, observe that the height of any node that is notan anestor of the new leaf is the same as before the insertion; onsequently the heights of the left and righthildren of suh a node are the same as before the insertion. Node m in Figure 1 is assumed to be theminimum height anestor of the new leaf whih is no longer height balaned as a result of the insertion.Sine the two ases are symmetri (one is obtained from the other by hanging every referene of \right"to \left", and of \+" to \�", and vie versa), we shall only onsider ase (1) in detail. There are two waysin whih (1) ould arise, illustrated in Figure 2(a) and (b) respetively. The balane fators indiated for Aand B are after the insertion of the new node.The subtree shown in Figure 2(a) an be rebalaned by a simple transformation alled \single leftrotation" on node m. This transformation is illustrated in Figure 3: In 3(a) we opied the subtree ofFigure 2(a), and 3(b) shows the result of the single left rotation on that subtree.Note that this transformation has the following properties.S.1 It rebalanes the subtree rooted at node m (so that subtree beomes height-balaned again).S.2 It maintains the binary searh tree property.S.3 It an be done in onstant time: only a few pointers have to be swithed around. As an exerise, write aprogram that implements this rotation, given a pointer to nodem, assuming the standard representationfor binary trees.S.4 It keeps the height of m equal to its height before the insertion of the new node, namely, height h+ 2.2
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Figure 2Unfortunately the subtree in Figure 2(b) annot be rebalaned by a single left rotation. You shouldhek that the subtree resulting from suh a transformation is not height-balaned.Assume for now that the subtrees of node B in Figure 2(b) are nonempty (i.e., h 6= �1). Figure 4(a)shows these subtrees in more detail. This more detailed piture leads to a di�erent way of transformingthe subtree into a height-balaned one. This transformation is alled a \double right left rotation" and isillustrated in Figure 4(b). The name omes from the fat that this transformation an be obtained if werotate �rst B to the right and then, in the resulting subtree, rotate C left. The balane fators labeled as\�=�" in Figure 4 depend on whether the new node was atually inserted under T22 (the �rst entry of thelabel) or under T21 (the seond entry of the label).If the subtrees of node B in Figure 2(b) are empty (i.e., h = �1) then A has only a right hild, B, andB has only a left hild, the new node x. The subtree rooted at A is not height-balaned and the situationan be reti�ed again with a double right-left rotation that makes x the root of the subtree, and A and B its3
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Figure 4left and right hildren, respetively. This ase an also be thought of as a degenerate instane of Figures 4(a)and (b), with C = x, and subtrees T1, T21, T22 and T3 all empty.The double right left rotation has the following properties.D.1 It rebalanes the subtree rooted at m, (so that subtree beomes height-balaned again).D.2 It maintains the binary searh tree property.D.3 It an be done in onstant time: we only have to hange a few pointers. As an exerise, write a programthat implements this rotation, given a pointer to node m.D.4 It keeps the height of m equal to that node's height before the insertion of the new node, namely,height h+ 2. 4



As we already remarked, the imbalane shown in Figure 1(b) an be �xed in a symmetri way. The twosubases, and the transformations that rebalane the subtrees, alled \single right rotation" and \double leftright rotation", are illustrated in Figures 5 and 6 respetively. Remarks analogous to S.1{S.4 and D.1{D.4apply in these transformations as well. single right 00� ��
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Updating the Balane Fators after InsertionThe balane fators of some nodes may hange as a result of inserting a new node. First of all, observe thatonly the balane fators of the new node's anestors may need updating: For any other node i, i's left andright subtrees (and, in partiular, their heights) have not hanged and thus neither has the balane fatorof i. But not all of the new node's anestors' balane fators may need updating. Figure 7 illustrates theissue. Insertion of key 8 to the AVL tree in 7(a) results in the AVL tree in 7(b). Note that only the balaneof 9, 8's parent, has hanged. On the other hand, insertion of key 8 to the AVL tree in 7() results in theAVL tree in 7(d), where the balane fators of all of 9's anestors have hanged.
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Figure 7In general, let n be the new node just inserted into the tree and let p be n's parent. Further, let m bethe losest anestor of p that was not balaned (that is, that had balane fator � 1) before the insertionof n; if no suh anestor of p exists, let m be the root of the tree. (Note that m ould be p, if BF [p℄ 6= 0before the insertion.)Claim. Only the balane fators of the nodes between p and m (inluded) need to be hanged as a resultof the insertion of n.Justi�ation: Consider the (0 or more) nodes that are anestors of p and proper desendents of m. Byhoie of m, all these nodes were balaned before the insertion of n. Thus their two subtrees had the sameheight and the insertion of n has inreased the height of one of the subtrees; hene for eah suh node, itsbalane fator must be set to �1 or +1, depending on whether n was inserted to the left or right subtree,6



respetively. Next onsider node m. If m is the root and was balaned before the insertion, similar remarksas above apply to m: in this ase the insertion of n has the e�et of inreasing the height of the entire tree.If m was not balaned before the insertion, we have two possibilities:� If m was left heavy and n was inserted to m's right subtree, or if m was right heavy and n was insertedto m's left subtree, the subtree rooted at m beomes balaned as a result of the insertion (so we mustset BF [m℄ = 0), but its height does not hange. Therefore, neither do the heights of m's anestors'subtrees; so the balane fators of m's proper anestors do not hange, and we an stop the proess ofbalane fator updating here.� If, on the other hand, m was right heavy and n was inserted to m's right subtree, or if m was left heavyand n was inserted to m's left subtree, the subtree rooted at m beomes unbalaned (these are the twoases illustrated in Figures 1(a) and 1(b) respetively). We an rebalane the subtree as we disussedpreviously (by the appropriate type of rotation). After the rebalaning, however, the subtree rootedat m will have the same height as it did before the insertion of n (reall Remarks S.4 and D.4). Thus, asargued before, the balane fators of m's anestors do not hange. Note, however, that when we rotate,the balane fators of the rotated nodes need updating, so we must do that before stopping.yThe disussion on rebalaning and updating the balane fators after an insertion leads us to thefollowing outline for the AVL tree insertion algorithm.Insert(x; T )1. Trae a path from the root down, as in binary searh trees, and insert x into a new leaf at the end of thatpath (the new leaf must be in the proper position, so as to maintain the binary searh tree property).2. Set the balane fator of the new leaf to 0. Retrae the path from the leaf up towards the root andproess eah node i enountered as follows:(a) If the new node was inserted in i's right subtree, then inrease BF [i℄ by 1 (beause i's right subtreegot taller); otherwise, derease BF [i℄ by 1 (beause i's left subtree got taller).(b) If BF [i℄ = 0 (so the subtree rooted at i beame balaned as a result of the insertion, and its heightdid not hange) then stop.() If BF [i℄ = +2 and BF [rhild(i)℄ = +1 then do a single left rotation on i, adjust the balane fatorsof the rotated nodes (A and B in Figure 3(b)), and stop.(d) If BF [i℄ = +2 and BF [rhild(i)℄ = �1 then do a double right left rotation on i, adjust the balanefators of the rotated nodes (A, B and C in Figure 4(b)), and stop.(e) If BF [i℄ = �2 and BF [lhild(i)℄ = �1 then do a single right rotation on i, adjust the balanefators of the rotated nodes (A and B in Figure 5(b)), and stop.(f) If BF [i℄ = �2 and BF [lhild(i)℄ = +1 then do a double left right rotation on i, adjust the balanefators of the rotated nodes (A, B and C in Figure 6(b)), and stop.(g) If i = root then stop.
y After a rotation, some of the rotated nodes are no longer anestors of the inserted node; however, theymay still need to have their balane fators updated. 7



THE ALGORITHM FOR DeleteTo delete a key x from an AVL tree T , we �rst loate the node n where x is stored. (This an be done byusing the algorithm for Searh.) If no suh node exists, we're done (there's nothing to delete). Otherwisewe have three ases (as with ordinary binary searh trees).(1) n is a leaf: Then we simply remove it. This may ause the tree to ease being height-balaned. So wemay need to rebalane it. We also have to update the balane fators of some nodes. These issues willbe dealt with shortly.(2) n is a node with only one hild: Let n0 be n's only hild. Note that n0 must be a leaf; otherwise thesubtree rooted at n would not have been height-balaned before the deletion. In this ase we opy thekey stored at n0 into n and we remove n0 as in ase (1) (sine, as we just argued, it must be a leaf).(3) n has two hildren: Then we �nd the smallest key in n's right subtree whih, by the binary searh treeproperty, is the smallest key in T larger than the key stored in n. To �nd this key, we go to n's righthild (whih exists), and we follow the longest hain of left hild pointers until we get to a node n0 thathas no left hild. We opy the key stored in n0 into n and remove n0 from the tree, as in (1), if n0 doesnot have a right hild either, or as in (2), if n0 has only a right hild.To omplete the algorithm we must disuss the onditions under whih rebalaning is required and howthe rebalaning an be performed. Sine ases (2) and (3) ultimately redue to deleting a leaf, ase (1) isthe only one we need to onsider.Rebalaning an AVL Tree after Deleting a LeafThe deletion of a leaf n will ause the tree to beome unbalaned in one of two ases:(a) It redues the height of the right subtree of a left heavy node; or,(b) It redues the height of the left subtree of a right heavy node.These two ases, illustrated in Figure 8, are symmetri (as are the analogous ases in insertion), so we willonly onsider the �rst. As an exerise, you should treat the other.
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Figure 10The above two transformations have the following properties.1. They rebalane the subtree rooted at m (so the subtree beomes height-balaned again).9



2. They maintain the binary searh tree property.3. They an be done in onstant time by simply manipulating a few pointers. As an exerise, writeprograms that implement the rotations of Figures 9 and 10, given a pointer to m.4. They may derease the height of the subtree rooted at m, ompared to the height of the subtree beforethe deletion.Compare 4 with remarks S.4 and D.4 about rotations to restore balane in insertions. The di�erene isimportant: In the insertion algorithm just one rotation always rebalanes the subtree, and, by maintainingthe height of that subtree, it rebalanes the entire tree. In the deletion algorithm the rotation balanesthe subtree, but sine the height is dereased, the balane fator of nodes higher up (loser to the root)may hange as a result | so we may have to go on rotating subtrees all the way up to the root in orderto rebalane the entire tree. Thus in deletion we may have to do as many as O(logn) rotations. (That'saeptable though, beause eah one takes only onstant time! We will say more about the omplexity ofoperations shortly.)Updating the Balane Fators after Deleting a LeafWe must also address the question of how the deletion of a leaf a�ets the balane fators of its anestors(learly, it doesn't a�et the balane fators of other nodes).Let n be the deleted leaf and let p be its parent. We trae the path from p bak to the root and weproess eah node i we enounter on the way as follows:� If i was balaned before the deletion (so BF [i℄ = 0) then the left and right subtrees of i had the sameheight. The removal of n shortened one of them (so i's balane fator must be updated), but the heightof the subtree rooted at i after the deletion remains the same as before it. This means that the deletionof n does not a�et the balane fators of i's proper anestors. So, in this ase, all we have to do isinrease BF [i℄ by one if n was in i's left subtree (beause then the deletion made the right subtree of italler than the left), or derease BF [i℄ by one if n was in i's right subtree (beause then the deletionmade the left subtree of i taller than the right). After this, we an stop the proess of updating balanefators.� If i was right or left heavy before the deletion (BF [i℄ = � 1), we again update BF [i℄ as above. If thisbalanes node i, the deletion of n shortened one of the two subtrees of i, so we go up the path to onsiderthe next node. Otherwise, the inrease or derease of BF [i℄ by one auses the subtree rooted at i tobeome (height) unbalaned (BF [i℄ beomes � 2). In this ase we need to rebalane the subtree by theappropriate rotation, as disussed previously. If the rotation auses the height of i to derease omparedto its height before the deletion (see Remark 4 above), the proess of updating balane fators and,possibly, rotating, must ontinue with i's parent. Otherwise, the rotation leaves the height of i the sameas it was before the deletion, and therefore the proess stops at i.� Finally, if the proess propagated all the way to the root (i = root) we an stop.From this disussion you should be able to distill the outline of an algorithm for AVL tree deletion.WORST CASE TIME COMPLEXITY FOR Searh, Insert, DeleteTheorem. (Adelson-Velski and Landis) The height of an AVL tree with n nodes is at most 1:44 log2(n+2).Proof: Let Th be a height-balaned tree of height h with the minimum possible number of nodes, and letnh be that number of nodes. Sine Th is height-balaned, one of its left subtrees must have height h� 1 andthe other height h� 1 or h� 2. Sine we want Th to have the minimum number of nodes, we may assumethat one of its subtrees is Th�1 and the other is Th�2. Thus, the number of nodes in Th is equal to thenumber of nodes in Th�1 plus the number of nodes in Th�2 plus one (for the root); that is,nh = nh�1 + nh�2 + 1:10



Thus n0 = 1, n1 = 2, n2 = 4, n3 = 7, n4 = 12, and so on. Comparing this with the sequene of Fibonainumbers we see that, in general, nh = Fh+3 � 1 (where Fh is the hth Fibonai number).y From the theoryof Fibonai numbers we know that Fh > (�h=p5) � 1, where � = (1 + p5)=2z (if interested in this andother results on Fibonai numbers, see Knuth, The Art of Computer Programming, Vol. 1 (FundamentalAlgorithms), pp. 78{83.)Thus for the number n of nodes in any AVL tree of height h we must have:n � nh = Fh+3 � 1 > ��h+3p5 �� 2:Therefore, h < log�((n+ 2)p5)� 3;so h < � 1log2�� � (log2p5 + log2(n+ 2))� 3;from whih the theorem follows by arithmeti.In the worst ase, the algorithms for Searh, Insert, and Delete have to proess all nodes in apath from the root to a leaf. The above theorem says that this path must involve at most O(logn) nodes.Proessing a node (be it just omparing the key stored in it to a key we are searhing for, updating thebalane fator, or performing a rotation on that node) takes onstant time. Thus all these algorithms takeO(logn) time in the worst ase.

y The ith Fibonai number is de�ned indutively as follows: F1 = F2 = 1, and for i > 2, Fi = Fi�1+Fi�2.z � is known as the \golden ratio". 11


