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Query Release



Reminder: Query Release

Recall the query release problem:

• Workload Q = {q1, . . . , qk} of k counting queries

Q(X ) =

0

B@
q1(X )

.

.

.

qk(X )

1

CA 2 [0, 1]k .

• Compute, with (", �)-DP, some Y 2 Rk
so that

k
max
i=1

|Yi � qi (X )|  ↵,

with probability � 1� �.
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Motivating example

`-wise marginals queries:

• X = {0, 1}d

• a query qS ,a for any S = {i1, . . . , ik} ✓ [d ] and a = (ai1 , . . . , aik ):

qS ,a(x) =

8
<

:
1 xij = aij 8ij 2 S

0 otherwise

.

E.g., “smoker and female?”, “smoker and over 30?”, “smoker and heart

disease?”, etc.
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What do we know?
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E- DP : Using the Laplace noise mechanism
,

we can answer k counting queriesa'
' I win none

:L I;9i÷m"
( ed ) -Dp : Using the Gaussian noise mechanism :-
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Private Multiplicative Weights

We will see an algorithm that achieves:

• under "-DP, error ↵ with probability 1� � when

n � log(k) log(|X |)
↵3"

.

• under (", �)-DP, error ↵ with probability 1� � when

n �
log(k)

p
log(|X |) log(1/�)
↵2"

.
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Learning a distribution



A probability view

We can think of X = {x1, . . . , xn} as a probability distribution p:

P
x⇠p

(x = y) =
|i : xi = y |

n

Then, for any counting query q : X ! {0, 1},

q(X ) =
1

n

nX

i=1

q(x)
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Learning a distribution

Task: Learn an approximation p̂ of the empirical distribution p such that

8q 2 Q : |q(p̂)� q(p)|  ↵.
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If we can do this
,
we can release answers of 451 for

all

qeQ

Trick ( again ) : we will assume that if q is asked
,

then I- q is also asked

⇒ enough to make sure

ginger 945 ' - 947g , :p



Bounded mistake learner

Distribution learning algorithm U:

• takes a p̂ and q such that q(p̂)� q(p) > ↵

• returns a new distribution p̂0 = U(q, p̂)

Suppose that p̂0 = uniform over X and p̂t = U(p̂t�1, qt).

U makes at most L mistakes if any such sequence p̂0, p̂1, . . . , p̂` must have t  L.
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Multiplicative Weights Learner

Theorem
There exists a distribution learner U that makes L  4 ln |X |

↵2 mistakes.
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The Learner

U(q, p̂)

8x 2 X : p̃(x) = p̂(x)e�⌘q(x)

p̂0(x) = p̃(x)P
y2X p̃(y)

return p̂0
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Multiplicative weight update Algorithm
Reminder : gip ) - qcp) > L

I. e . pa gives too
much weight to x st . qcx, it

9451--17,9
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↳
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distribution



Why it works

KL-divergence: D(pkp̂t) =
P

x2X p(x) log p(x)
p̂t(x)

1. D(pkp̂0)  log |X | because p̂0 is uniform

2. D(pkp̂t) � 0 for all t

3. D(pkp̂t)� D(pkp̂t�1)  ⌘
2 (qt�1(p)� qt(p̂t�1)) +

⌘2

4 .
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Idea for private algorithm

• Start with t = 0, p̂0 uniform.

• Private find the most wrongly answered query q 2 Q

• If q(p̂t)� q(p) < ↵, output p̂t

• Else set p̂t+1 = U(p, q) and increase t
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The algorithm in detail

p̂0 = uniform over X
for t = 1 . . L

Sample q 2 Q w/ prob / exp

⇣
n(q(p̂t)�q(p))

2"0

⌘

Yt = q(p) + Zt , Zt ⇠ Lap(0, 1
"0n

)

if q(p̂t)� Yt) > 2↵

p̂t = U(p̂t�1, q)

else Output p̂t
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Privacy analysis
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Approach : found privacy
loss per iteration .

use composition theorem to bound total prior loss

F-xp mech Eo - DP

priv loss per iteration :
tap mech e

.

Leo - DP by
composition

Total of EL iterations

→ total priv .

loss E 2L Eo - DP

set eo = IT = FLIRT



Accuracy analysis
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