CSC2412: Private Multiplicative Weights

Sasho Nikolov

Query Release

Reminder: Query Release

Recall the query release problem:

• Workload $Q = \{q_1, \ldots, q_k\}$ of k counting queries

n:

$$\begin{array}{l}
q_{i} : \mathcal{X} \rightarrow \mathcal{L}_{0, i} \\
q_{i} (X) = \frac{1}{n} \sum_{i=1}^{n} q_{i} (X) \\
q_{i} (X) = \begin{pmatrix} q_{1}(X) \\
\vdots \\
q_{k}(X) \end{pmatrix} \in [0, 1]^{k}.
\end{array}$$

• Compute, with
$$(arepsilon,\delta) ext{-}\mathsf{DP}$$
, some $Y\in\mathbb{R}^k$ so that

$$\max_{i=1}^{k} |Y_i - q_i(X)| \le \alpha,$$

with probability $\geq 1 - \beta$.

 ℓ -wise marginals queries:

- $\mathcal{X} = \{0,1\}^d$ i.e. d binary affributes
- a query $q_{S,a}$ for any $S = \{i_1, \ldots, i_{\mathcal{Q}}\} \subseteq [d]$ and $a = (a_{i_1}, \ldots, a_{i_{\mathcal{Q}}})$:

$$q_{\mathcal{S}, \mathsf{a}}(x) = egin{cases} 1 & x_{i_j} = \mathsf{a}_{i_j} \; orall i_j \in \mathcal{S} \ 0 & ext{otherwise} \end{cases}.$$

E.g., "smoker and female?", "smoker and over 30?", "smoker and heart disease?", etc.

$$\begin{aligned} Q_{\ell} &= \text{workbad} \quad \text{of all } \ell \text{-wise marginal queries on } dO_{\ell} \ell^{3} \\ |Q_{\ell}| &= \begin{pmatrix} d \\ \ell \end{pmatrix} \cdot 2^{\ell} \approx \left(\frac{2d}{\ell}\right)^{\ell} \end{aligned}$$

What do we know?

We will see an algorithm that achieves:

• under $\varepsilon\text{-}\mathsf{DP}\text{, error }\alpha$ with probability $1-\beta$ when

$$n \gg \frac{\log(k)\log(|\mathcal{X}|)}{\alpha^3 \varepsilon}.$$

• under (
$$\varepsilon, \delta$$
)-DP, error α with probability $1 - \beta$ when

$$n \gg \frac{\log(k)\sqrt{\log(|\mathcal{X}|)\log(1/\delta)}}{\alpha^2 \varepsilon}$$

$$l - wise marginals$$

$$N >> \frac{d \cdot l \cdot logd}{d^3 \cdot \epsilon}$$

Learning a distribution

A probability view

We can think of
$$X = \{x_1, \dots, x_n\}$$
 as a probability distribution p :

$$\sum_{x \sim p} (x = y) = \frac{|y|}{n}$$

$$\sum_{x \sim p} (x = y) = \frac{|y|}{n}$$

Then, for any counting query $q:\mathcal{X}
ightarrow \{0,1\}$,

$$q(X) = \frac{1}{n} \sum_{i=1}^{n} q(x_i) = \sum_{x \in \mathcal{X}} q(x) \cdot \frac{|\{i: x_i = x\}|}{n} = \underset{x \sim P}{\mathbb{E}} q(x) \Rightarrow q(p)$$

i.e. $q(X) = expectation of g under the empirical distribution of X$

Learning a distribution

Query release problem distributions over
$$\mathscr{X}$$

Task: Learn an approximation $\hat{\rho}$ of the empirical distribution p such that
workload of $\forall q \in Q : \{q(\hat{p}) - q(p)\} \leq \alpha$.
If we can do this, we can release answers $q(\hat{p})$ for all
 $q \in Q$
Trick (again); We will assume that if q is asked,
then $l-q$ is also asked
=> enough to make sure max $q(\hat{p}) - q(p) \leq d$
 $q \in Q$

7

Bounded mistake learner

Theorem There exists a distribution learner U that makes $L \leq \frac{4 \ln |\mathcal{X}|}{\alpha^2}$ mistakes.

The Learner Multiplicative Weight Update Algorithm
Reminder:
$$q(\hat{p}) - q(p) > d$$

I.e. \hat{p} gives too much weight to x st. $q(x) = 1$
 $q(\hat{p}) = \prod_{x \sim \hat{p}} q^{(x)}$
 $U(q, \hat{p}):$ prob of x
 $\forall x \in \mathcal{X} : \tilde{p}(x) = \hat{p}(x)e^{-tif_{x}(x)}$
 $\hat{p}'(x) = \frac{\hat{p}(x)}{\sum_{y \in \mathcal{X}} \tilde{p}(y)}$ decrease $\hat{p}(x)$: $f = q(x) = 1$
return \hat{p}' wormalize
 $\forall x \in q \text{ a probi distribution}$

Why it works

KL-divergence:
$$\overline{D(p||\hat{p}_{t})} = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{\hat{p}_{t}(x)} = \begin{bmatrix} \log\left(\frac{p(x)}{\hat{p}_{t}(x)}\right) \\ x \sim p \end{bmatrix}$$
1.
$$D(p||\hat{p}_{0}) \leq \log |\mathcal{X}| \text{ because } \hat{p}_{0} \text{ is uniform} \Rightarrow \hat{p}_{0} = \frac{1}{|\mathcal{D}|}$$

$$D(p||\hat{p}_{0}) = \sum_{x \in \mathcal{X}} p(x) \left(\log(|\mathcal{B}|) + \log p(x)\right) = \log|\mathcal{A}| - \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} \leq \log|\mathcal{A}|$$
2.
$$D(p||\hat{p}_{t}) \geq 0 \text{ for all t}$$

$$\frac{3. D(p||\hat{p}_{t}) - D(p||\hat{p}_{t-1}) \leq \frac{\eta}{2}(q_{t-1}(p) - q_{t-1}(\hat{p}_{t-1})) + \frac{\eta^{2}}{4} < d^{2}$$

$$\frac{1}{2} = U(\hat{p}_{1}, q_{2}) - \dots$$

$$\frac{1}{2} = U(\hat{p}_{1}, q_{2}) - \dots$$

$$\frac{1}{2} = d + \frac{1}{2} = -\frac{1}{2} = -\frac{1}{$$

Private Multiplicative Weights

• Start with t = 0, \hat{p}_0 uniform.

• Private find the most wrongly answered query
$$q \in Q$$

• If $q(\hat{p}_t) - q(p) < \alpha$, output $\hat{p}_t \rightarrow all$ opperies in Q have error $\leq d$
• Else set $\hat{p}_{t+1} = U(\hat{p}_t, q)$ and increase t
 q is a mistake
 $ferminates$ after $\leq L = \frac{4 \log 12t}{dt}$ iterations

The algorithm in detail

Privacy analysis

Approach: bound privacy loss per iteration.
We composition theorem to bound total priviloss
Priv loss per iteration: Exp mech
$$\varepsilon_0 - DP$$

Priv loss per iteration: Lap mech $\varepsilon_0 - DP$
 $2\varepsilon_0 - DP$ by
composition
Total of ε_0 iterations
 \sim total priviloss $\varepsilon_0 - DP$
by
 $2\varepsilon_0 - DP$ by
 \sim total priviloss $\varepsilon_0 - DP$
 \sim total priviloss $\varepsilon_0 - DP$
Det $\varepsilon_0 = \frac{\varepsilon}{2L} = \frac{\varepsilon d^2}{8\ln|\varepsilon|}$

Accuracy analysis

1) We want that w/ prob Z 1-B

$$P(1Z_{t}| 2d) \leq e^{-n\xi d}$$

$$F(1Z_{t}| 2d) \leq e^{-n\xi d}$$