CSC2412: Private Multiplicative Weights

Sasho Nikolov

Query Release

Reminder: Query Release

Recall the query release problem:

$$
q_{i}: X \rightarrow\{0,1\}
$$

- Workload $Q=\left\{q_{1}, \ldots, q_{k}\right\}$ of k counting queries

$$
q_{i}(x)=\frac{1}{n} \sum_{i=1}^{n} q_{i}(x)
$$

$$
Q(X)=\left(\begin{array}{c}
q_{1}(X) \\
\vdots \\
q_{k}(X)
\end{array}\right) \in[0,1]^{k}
$$

where $X=\left\{x_{1}, \ldots, x_{n}\right\}$

- Compute, with (ε, δ)-DP, some $Y \in \mathbb{R}^{k}$ so that

$$
\max _{i=1}^{k}\left|Y_{i}-q_{i}(X)\right| \leq \alpha
$$

with probability $\geq 1-\beta$.

Motivating example
ℓ-wise marginals queries:

- $\mathcal{X}=\{0,1\}^{d}$ ie. d binary attributes
- a query $q_{S, a}$ for any $S=\left\{i_{1}, \ldots, i_{\ell}\right\} \subseteq[d]$ and $a=\left(a_{i_{1}}, \ldots, a_{i_{Q}}\right)$:

$$
q_{S, a}(x)= \begin{cases}1 & x_{i j}=a_{i_{j}} \forall i_{j} \in S \\ 0 & \text { otherwise }\end{cases}
$$

E.g., "smoker and female?", "smoker and over 30?", "smoker and heart disease?", etc.
$Q_{l}=$ workload of all l-wise marginal queries on $\{0,1\}^{\text {d }}$

$$
\left|Q_{l}\right|=\binom{d}{l} \cdot 2^{l} \approx\left(\frac{2 d}{l}\right)^{l}
$$

What do we know?
E-DP: Using the Laplace noise mechanism, For $\frac{l \cdot w i s e \text { marg. }}{\left.\right|^{l} \cdot l \cdot l \cdot \log d}$ we can answer k counting queries $n>\frac{d^{l} \cdot l \cdot l \cdot \log d}{\alpha \varepsilon}$ with noise $\leq \alpha$ with prob $\geq 1-\beta$ when $n \gg \frac{\ln \log (k / \beta)}{\varepsilon \alpha}$
($\varepsilon, S)$-DP: Using the Gaussian noise mechanism:

$$
n \gg \frac{\sqrt{l / 2} \sqrt{1 \cdot \log d} \sqrt{\log \gamma}}{\alpha \varepsilon} \quad n \gg \frac{\sqrt{k \log (k / \beta)} \cdot \sqrt{\log 1 / \delta}}{\varepsilon \alpha}
$$

Private Multiplicative Weights

We will see an algorithm that achieves:

- under ε-DP, error α with probability $1-\beta$ when

$$
n \gg \frac{\log (k) \log (|\mathcal{X}|)}{\alpha^{3} \varepsilon}
$$

- under (ε, δ)-DP, error α with probability $1-\beta$ when
is constant
l-wise marginals
$n \gg \frac{d \cdot l \cdot \log d}{\alpha^{3} \varepsilon}$

$$
n \gg \frac{\log (k) \sqrt{\log (|\mathcal{X}|) \log (1 / \delta)}}{\alpha^{2} \varepsilon} .
$$

Learning a distribution

A probability view
We can think of $X=\left\{\begin{array}{l}\text { allowed to be } \\ \text { a multiset }\end{array}\right.$
We can think of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ as a probability distribution \underline{p} : orr

$$
\underset{x \sim p}{\mathbb{P}}(x=y)=\frac{\left|\left\{i: x_{i}=y\right\}\right|}{n} \quad \begin{aligned}
& \text { uniform } \\
& x_{1}, \ldots, x_{n}
\end{aligned}
$$

Then, for any counting query $q: \mathcal{X} \rightarrow\{0,1\}$,

$$
q(X)=\frac{1}{n} \sum_{i=1}^{n} q\left(x_{i}\right)=\sum_{x \in \mathbb{R}} q(x) \cdot \frac{\left|\left\{i: x_{i}=x\right\}\right|}{n}=\mathbb{E}_{x \sim p} q(x)>: q(p)
$$

ie. $q(X)=$ expectation of q under the empirical distribution of X

Learning a distribution
Query release problem
distributions over \mathscr{X}
Task: Learn an approximation \hat{p} of the empirical distribution p such that workload of
$\begin{aligned} & \text { reload of } \\ & \text { queries }\end{aligned} \quad \forall q \in Q: q q(\hat{p})-q(p){ }_{\eta} \leq \alpha$.

$$
{\underset{x}{\sim}}_{\underset{\sim}{\hat{p}_{\|}}} q(x)
$$

If we can do this, we can release answers $q(\hat{p})$ for $a l l$

$$
q \in Q
$$

Trick (again): We will assume that if q is asked, then $1-q$ is also asked
\Rightarrow enough to make sure $\max _{q \in Q} q(\hat{p})-q(p) \leq \alpha$

$$
q(x) ;
$$

Bounded mistake learner
Loess not
need to know
Distribution learning algorithm U : 7 update algorithm maker a mas m ane

- takes a \hat{p} and q such that $q(\hat{p})-q(p)>\alpha \rightarrow \hat{p}$ maker a mistake
- returns a new distribution $\left|\hat{p^{\prime}}\right|=U(\underset{\rightarrow}{q,} \hat{p}) \rightarrow$ an improvement of \hat{p}

Suppose that $\hat{p}_{0}=$ uniform over \mathcal{X} and $\hat{p}_{t}=U\left(\hat{p}_{t-1}, q_{t}\right)$.
initial "'guess $\quad()$ keep improving \hat{p}_{t} by pointing out mistakes
U makes at most L mistakes if any such sequence $\hat{p}_{0}, \hat{p}_{1}, \ldots, \hat{p}_{\ell}$ must have $\ell \leq L$.
After making L mistakes (and L improvements), \hat{p}_{L} must be accurde for all q

Multiplicative Weights Learner

Theorem
There exists a distribution learner U that makes $L \leq \frac{4 \ln |\mathcal{X}|}{\alpha^{2}}$ mistakes.

The Learner Multiplicative weight Uprate Algorithm
Reminder: $q(\hat{p})-q(p)>\alpha$
I.e. \hat{p} gives too much weight to x st. $q(x)=1$ $q(\hat{p})=\underset{x \sim \hat{p}}{\mathbb{E}} q(x) \quad \hat{p}(x)=$ prob of x
$U(q, \hat{p}):$

$\hat{p}^{\prime}(x)=\frac{\tilde{p}(x)}{\sum_{y \in \mathcal{X}} \tilde{p}(y)} \longrightarrow$ decrease $\hat{p}(y):$ if $q(x)=1$
return $\hat{p}^{\prime} \xrightarrow{ }$ normalize
to get a prob distribution

Why it works
potential
KL-divergence: $\frac{\hat{p}}{D\left(p \| \hat{p}_{t}\right)}=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{\hat{p}_{t}(x)}=\underset{x \sim p}{\mathbb{E}} \log \left(\frac{p(x)}{\hat{p}_{t}(x)}\right)$

1. $D\left(p \| \hat{p}_{0}\right) \leq \log |\mathcal{X}|$ because \hat{p}_{0} is uniform $\Leftrightarrow \hat{p}_{0}=\frac{1}{|\mathscr{L}|} \quad$ entropy of p

$$
D\left(p \| \hat{p}_{0}\right)=\sum_{x \in \infty} p(x)(\log (|X|)+\log p(x))=\log _{0}|x|-\frac{1}{|x|}-\frac{\sum_{x \in X} p(x) \cdot \log \frac{1}{p(x)} \leq \log |x|}{x} \leq
$$

2. $D\left(p \| \hat{p}_{t}\right) \geq 0$ for all t

Private Multiplicative Weights

Idea for private algorithm

- Start with $t=0, \hat{p}_{0}$ uniform.

The algorithm in detail

$$
L=\frac{4 \ln |\alpha|}{\alpha^{2}}
$$

ED parameter, to be set in the priv. analysis

$$
\begin{aligned}
& \hat{p}_{0}=\text { uniform over } \mathcal{X} \\
& \text { for } t=0 . . L-1
\end{aligned}
$$

want $q \in$ Sample $q \in Q \mathrm{w} / \operatorname{prob} \propto \exp \left(\frac{n\left(q\left(\hat{p}_{t}\right)-q(p)\right)}{2 \varepsilon_{0}}\right) \rightarrow$ exponential mechanism to achieve (X) w) score $q\left(\hat{p}_{t}\right)-q(p)$ approx cist

$$
\frac{{ }^{\prime \prime}(X)}{Y_{t}=q(p)+Z_{t}, Z_{t} \sim \operatorname{Lap}\left(0, \frac{1}{\varepsilon_{0} n}\right)} \underset{\text { if } a\left(\hat{p}_{+}\right) \Longrightarrow q\left(P_{t}\right)-q(P)>\alpha}{\vdots}
$$

$$
\left|y_{t}-q(p)\right| \leq \alpha
$$

if $q\left(\hat{p}_{t}\right)=Y_{t}>2 \alpha$

$$
\hat{p}_{t+1}=U\left(\hat{p}_{t} \quad, q\right)
$$

else Output \hat{p}_{t}

$$
\text { l) } \begin{aligned}
\text { max error } & \leq q\left(\hat{p}_{t}\right)-q(p)+\alpha \\
& \leq q\left(\hat{p}_{t}\right)-y_{t}+2 \alpha \leq 3 \alpha
\end{aligned}
$$

sensitivity of the
Laplace wise mech
wore $=\frac{1}{n}$
\Rightarrow exponential mech w) privacy parameter

Approach: found privacy loss per iteration. use composition theorem to bound total priv. loss
Priv loss per iteration: Exp mech ε_{0}-DP

Total of $\leq L$ iterations tap mech $\frac{\varepsilon_{0}-D P}{2 \varepsilon_{0}-D P}$ by composition
\leadsto total priv. loss $\leq 2 L \varepsilon_{0}-O D$
Set $\varepsilon_{0}=\frac{\varepsilon}{2 L}=\frac{\varepsilon \alpha^{2}}{8 \ln |X|}$

$$
\mathbb{P}\left(\left|z_{t}\right| \geq \alpha\right) \leq e^{-n \varepsilon_{0} \alpha}
$$

1) We want that w/ prob $\geq 1-\beta$

$$
\forall t \quad\left|y_{t}-q(p)\right| \leq \alpha
$$

${ }^{\text {c) }}$ query in round t
Laplace mechanism w/ $\leq L$ adaptive queries
enough to have $n \geq \frac{\ln (L / \beta)}{\varepsilon_{0} \alpha}=\frac{2 L \ln (L / \beta)}{\varepsilon \alpha} \approx \frac{L \log (k / \beta)}{\varepsilon \alpha}$
2) wt prob? $1-\beta$
at every iteration $\quad q\left(\hat{p}_{t}\right)-q(p) \geq \max _{q^{\prime} \in Q} q^{\prime}\left(\hat{P}_{t}\right)-q^{\prime}(p)-\alpha$ if $n \gg \frac{\log (k L / \beta)}{\varepsilon_{0} \alpha}=\frac{2 L \log (k L / \beta)}{\varepsilon \alpha} \approx \frac{\log (k / \beta)}{\varepsilon \alpha}$

