CSC2412: Adaptive Data Analysis via Differential Privacy

Sasho Nikolov

The adaptive data analysis problem

Estimating population counts
universe of possible data points

- Unknown distribution D on $\mathcal{X}^{\mathcal{X}}$
models the population
- Predicates $q_{1}, \ldots, q_{k}: \mathcal{X} \rightarrow\{0,1\} \quad$ Egg. $q_{1}=$? smoker
$q_{2}=$? smoker and wale
Want to estimate, for all $i=1 \ldots k$:

$$
q_{i}(D)=\mathbb{E}_{x \sim D}\left[q_{i}(x)\right] .
$$

\rightarrow fraction of the population satisfying q_{i}

The classical solution

Draw a sample $X=\left\{x_{1}, \ldots, x_{n}\right\}$ id from D.
Hope that $\forall i: q_{i}(X) \approx q_{i}(D)$

$$
\mathbb{E}\left[q_{i}(x)\right]=q_{i}(D)
$$

Hoeffding: $\forall \mathbb{P}\left(\left|q_{i}(x)-q_{i}(D)\right|>\alpha\right)=\mathbb{P}\left(\left|q_{i}(x)-\mathbb{E} q_{i}(x)\right|>\alpha\right)$

$$
\mathbb{P}\left(子_{i}:\left|q_{i}(x)-q_{i}(0)\right|>\alpha\right) \leq 2 k \cdot e^{-2 n \alpha^{2}} \leq \beta \quad \text { if } n \geq \frac{\ln (2 k / \beta)}{2 \alpha^{2}}
$$

Adaptive queries?

What if q_{i} depends on q_{1}, \ldots, q_{1-1} ? the estimates for $q_{1}(D), \ldots, q_{i-1}(D)$
$E . g . q_{i}$ is chosen based on $q_{1}(X), \ldots, q_{i-1}(X)$ Egg. $\quad q_{1}=$? smokers and male 1$\left.\} \rightarrow \begin{array}{l}\text { if even split } \\ q_{2}=\text { ? smokers and female }\end{array}\right\} \begin{aligned} & q_{3}=\text { ? smokers and } \\ & \geq 35 \mathrm{~g}\end{aligned}$ Suppose we ask $q_{1}(x), q_{1}(x) \ldots$ else stop 235 gos
Suppose we ask $q_{1}(x), q_{1}(x) \ldots, q_{k}(x)$ for $k \gg n, q_{i}$ random and we ninverd to learn X

$$
q_{k+1}(x)=\left\{\begin{array}{ll}
1 & x \in X \Rightarrow q_{k+1}(X)=1 \text {. But if } D \text { is uniform on } \\
0 & 0 / w
\end{array} \mathbb{X}\right.
$$

A simple solution

Break $\quad X=\left\{x_{1}, \ldots, x_{n}\right\}$ into $X^{1}=\left\{x_{1}, x_{n}\right\}$
Answer $q_{1}(D)$ by $q_{1}\left(x^{\prime}\right)$
q_{2} by $q_{2}\left(x^{2}\right)$

$$
x^{2}=\left\{x_{n / k}+1, \ldots, x_{2 n / k}\right\}
$$

$$
x^{k}=\left\{\frac{x_{\frac{(k-1) n}{}}^{k}+1}{}, \ldots, x_{n}\right\}
$$

q_{k} by $q_{k}\left(x^{k}\right)$ to get error α w/ prob $1-\beta$ Can we do better?

$$
\frac{n}{k} \geq \frac{\ln (2 k / \beta)}{2 \alpha^{2}} \Leftrightarrow n \geq \frac{k \ln (2 k / \beta)}{2 \alpha^{2}}{ }_{5}
$$

M answers q_{1} w/ $\mu(x)_{\perp}$
q_{2} determined from $\mu(x)_{1} \rightarrow \mu$ answers w/ $\mu(x)_{2}$ by analyst $\hat{\jmath}$
Theorem
Suppose \mathcal{M} takes a dataset X and answers k adaptive queries q_{1}, \ldots, q_{k}. If

1. $\forall X \in \mathcal{X}^{n}, \mathbb{P}\left(\exists i:\left|q_{i}(X)-\mathcal{M}(X)_{i}\right|>\alpha\right)<\alpha \beta \Rightarrow M$ accurate on the
2. \mathcal{M} is $(\alpha, \alpha \beta)-D P$,
then for a constant C

$$
\underset{X \sim D^{n}}{\mathbb{P}\left(\exists i:\left|\mathcal{M}(X)_{i}-q_{i}(D)\right|>C \alpha\right)<C \beta .}
$$

$$
X \sim D^{n} \quad \Leftrightarrow \quad X=\left\{x_{2}, \ldots, x_{n}\right\} \quad x_{i} \sim D \text { independently }
$$

Improving on the simple solution
Simple solution: error α with $\approx \frac{k \log (k / \beta)}{\alpha^{2}}$
Can get error α with $\approx \frac{\sqrt{k \log k}}{\alpha^{2}}$ samples.
Gaussian noise + advanced composition
answer q_{i} w/ $q_{i}(x)+z_{i} \quad z_{i} \sim N\left(0, \frac{1}{n^{2} \cdot \rho} \approx \frac{k^{2} \log 1 / \delta}{n^{2} \alpha^{2}}\right.$ and we get $(\varepsilon, \delta)-D P$
for any δ and $\varepsilon \approx \sqrt{k \rho \ln (1 / \delta)}$
Transfer Him: we need $(\alpha, \alpha \beta)-D P \quad \rho \approx \frac{\alpha^{2}}{k \log (1 / \delta)}$
std der per q_{i} is $\approx \frac{\sqrt{k \ln 1 / \delta}}{n \alpha}=\frac{\sqrt{k \ln (1 / \alpha \beta)}}{n \alpha}<\alpha$ if $n \gg \frac{\sqrt{\left.k \ln c^{1} \alpha \beta\right)}}{\alpha^{2}}$,

Key Lemma

$$
x \in X^{n}
$$

Lemma
Suppose \mathcal{W} is (ε, δ)-DP, and on input X outputs a counting query q. Let $X \sim D^{n}$.
Then

$$
|\mathbb{E}[q(D) \mid q=\mathcal{W}(X)]-\mathbb{E}[q(X) \mid q=\mathcal{W}(X)]| \leq \frac{e^{\varepsilon}-1}{\approx \varepsilon}+\delta \approx \varepsilon+\delta
$$

over random choice of $X \sim D^{n}$ and randomness of H
A DP algorithm cannot find a query that distinguishes
X from D.

Proof of Key Lemma

$$
\begin{aligned}
& q(X)=\frac{1}{n} \sum_{i=1}^{n} q\left(x_{i}\right) \quad q: \mathscr{H} \rightarrow\{0,1\} \\
& \mathbb{E}[q(X) \mid q=\mathcal{W}(X)]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[q\left(x_{i}\right) \mid q=\mathcal{W}(X)\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{P}\left(\left.q\left(x_{i}\right)^{\prime}\right|^{\downarrow} q=\mathcal{W}(X)\right)
\end{aligned}
$$

Take $\quad x_{i}^{\prime} \sim D$ independently from everything else.

$$
\begin{gathered}
X^{\prime}=\left\{x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right\} \quad \begin{array}{l}
x, x^{\prime} \text { neighbouring } \\
\mathbb{P}\left(q\left(x_{i}\right)=1 \mid q=\omega(x)\right) E e^{\varepsilon} \mathbb{P}\left(q\left(x_{i}\right): 1 \mid q=\omega\left(x^{\prime}\right)\right)+\delta \\
(\varepsilon, \delta)-D D \text { of } \omega
\end{array}
\end{gathered}
$$

Proof part 2

$$
\begin{aligned}
& X=\left\{x_{1}, \ldots, x_{n}\right\} \quad \text { Observation: }\left(x_{i}, X^{\prime}\right) \text { has the same } \\
& X^{\prime}=\left\{x_{1} \ldots, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right\} \text { as }\left(x_{i}^{\prime}, X\right) \\
& \mathbb{P}\left(q\left(x_{i}\right)=1 \mid q=\omega(x)\right) \leq e^{\varepsilon} \mathbb{P}\left(q\left(x_{i}\right)=1 \mid q=\omega\left(x^{\prime}\right)\right)+\delta \\
& \begin{aligned}
q(D)=\underset{x \sim D}{\mathbb{E}} q^{(x)}=\underset{x \sim D}{\mathbb{P}}\left(q^{(x)=1)}\right. & =e^{\varepsilon} \mathbb{P}\left(q\left(x_{i}^{\prime}\right)=1 \mid q=\omega(x)\right)+\delta \\
& =e^{\varepsilon} \mathbb{E}[q(D) \mid q=\omega(x)]+\delta
\end{aligned} \\
& =e^{\varepsilon} \mathbb{E}[q(D) \mid q=\omega(x)\}+\delta \\
& \mathbb{E}[q(x) \mid q=\omega(x)\} \leq e^{\varepsilon} \mathbb{E}[q(D) \mid q=\omega(x)]_{1}+\sqrt{5} \\
& \mathbb{E}\{q(X) \mid q=\omega(x)]-\mathbb{E}\{q(D) \mid q=\omega(X)\} \leq e^{\varepsilon}-1+\delta \\
& \geq-\left(e^{\varepsilon}-1+\delta\right) \text { analogous } 10
\end{aligned}
$$

Aside: Generalization from DP
Almost the same proof
Theorem as the lemma (exercise)
For any non-negative loss $\ell(\theta,(x, y)), X=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\} \sim D^{n}$, and

$$
L_{X}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta,\left(x_{i}, y_{i}\right)\right) \quad L_{D}(\theta)=\mathbb{E}_{(x, y) \sim D}[\ell(\theta,(x, y))]
$$

if θ is computed by an (ε, δ)-DP algorithm, then

$$
\mathbb{E}\left[L_{D}(\theta)\right] \leq e^{\varepsilon} \mathbb{E}\left[L_{X}(\theta)\right]+\delta \max _{\theta, x, y} \ell(\theta,(x, y))
$$

Population loss is not much more them empirical loss for $D P a \lg 0$.

A simpler transference theorem

Theorem
If the mechanism \mathcal{M} satisfies that

1. $\forall X \in \mathcal{X}^{n}$, and all sequence of adaptive queries $q_{1}, \ldots, q_{k_{n}}$,

$$
\mathbb{E}\left[\max _{i}\left|q_{i}(X)-\mathcal{M}(X)_{i}\right|\right] \leq \alpha
$$

2. \mathcal{M} is $(\varepsilon, \delta)-D P$,
then

$$
\mathbb{E}\left[\max _{i}\left|q_{i}(D)-\mathcal{M}(X)_{i}\right|\right] \leq \underline{\alpha+e^{\varepsilon}-1+\delta} \approx \alpha+\varepsilon+\delta
$$

q_{1}, \ldots, q_{k} are adaptively cheasen based on $M(X)_{2, \ldots,} M(X)_{k}$ $X \sim D^{n}$

Proof

$$
\begin{aligned}
& q_{i}(x)=1 \Leftrightarrow 1-q_{i}(x)=0 \\
& q_{i}(x)=0 \Leftrightarrow 1-q_{i}(x)=1
\end{aligned}
$$

Trick: Suppose that if q_{i} is asked, so is $\frac{\hat{1}}{1-q_{i}}$, and is answered by $1-\mathcal{M}(X)_{i}$.
Then $\max _{i=1}^{k}\left|q_{i}(D)-\mathcal{M}(X)_{i}\right|=\max _{i=1}^{k} q_{i}(D)-\mathcal{M}(X)_{i}$.

$$
\left|q_{i}(D)-\mu(x)_{i}\right|=\max \left\{q_{i}(D)-\mu(x)_{i}, \frac{\mu(x)_{i}-q_{i}(D)}{1-q_{i}(D)-\left(1-\mu(x)_{i}\right)}\right.
$$

Define ω st. it ${ }^{p}$) simulates $l l$ on the adaptive μ is $(\varepsilon, \delta)-D p \quad$ poi processing queries q_{1}, \ldots, q_{k}

$$
\Rightarrow \omega \text { is }(\varepsilon, \delta)-D P
$$

*) Outputs q_{i} st. $q_{i}(D)-\mu(x)_{i}==_{j=1}^{k} \operatorname{los}_{j}(D)$ q_{i} has mort error $\int_{j}^{q_{i}}$ \&o, $q_{i}(1)-l_{j}=1 \quad-\mu(x) \frac{3}{j}$

Proof pt 2

$$
\begin{aligned}
& \mathbb{E} \max _{i-1}^{k} q_{i}(D)-\mu(x)_{i}=\mathbb{E}\left[q_{i}(D)-\mu(x)_{i} \mid q_{i}=\omega(x)\right] \\
& =\mathbb{E}\left[q_{i}(D)-q_{i}(x) \mid q_{i}=b(x)\right] \\
& e^{\varepsilon-1+\delta} 11+\mathbb{E}\left[q_{i}(x)-\mu(x)_{i} \mid q_{i}=\omega(x)\right] \\
& \text { by temma } \\
& \mathbb{E}\left[\max _{j=1}^{k} q_{j}^{\wedge}(x)-\mu(x)_{j}\right\} \\
& \leq e^{\varepsilon}-1+\delta+\alpha \text {. }
\end{aligned}
$$

