
CSC2412: Algorithms for Private Data Analysis Updated Fall 2020

Lecture Differentially Private Empirical Risk Minimization
Aleksandar Nikolov Scribe: Patricia Thaine

1 Set up

Today we will talk about differentially private machine learning, and specifically, about supervised learning
in an agnostic context, when no concept class may fit all the labels. This topic will also give us a chance to
discuss efficient differentially private optimization algorithms, in particular, private gradient descent.

Our dataset X will consist of n labeled points, i.e., X = {(x1, y1), ..., (xn, yn)} ⊆ X×Y, where xi ∈ X , yi ∈ Y.
Here X is the set of possible data points, and Y is the set of possible labels. We will focus on d-dimensional
data, i.e. X = [0, 1]d or {0, 1}d, and binary labels, i.e. Y = {±1}. We usually think of each (xi, yi) as coming
from some uknown distribution D over X .

Given a concept class C = {cθ : θ ∈ Θ}, our goal will be to find the function cθ (or, equivalently, the
parameter θ ∈ Θ) that best fits the data distribution D. This will be modeled as minimizing a loss function
` : Θ× (X × Y)→ R. A natural example is the binary loss:

`(θ, (x, y)) =

{
1 cθ(x) 6= y

0 cθ(x) = y

Then if cθ(x) = y, i.e. cθ correctly predicts the label of x, the loss `(θ, (xi, yi)) is 0, and otherwise it is 1.
Our goal is to minimize the loss LD(θ)) = E(x,y)∼D[`(θ, (x, y))]. Usually, we instead minimize the empirical
loss (or empirical risk) as a proxy, i.e., we minimize

LX(θ) =
1

n

n∑
i=1

`(θ, (xi, yi)).

We hope that minimizing LX(θ) corresponds to approximately minimizing LD(θ). Statistical learning theory
studies conditions on the concept class C, the loss `, and the distribution D, under which we can guarantee
this convergence. While there are many interesting questions there, they are beyond the scope of this lecture.
Instead, we will focus on how to minimize LX(θ) efficiently under differential privacy.

We will focus on a classical example of a family of functions: the linear predictors

cθ(x) = sign
(∑

xjθj + θ0

)
, θ ∈ Rd+1

Then
∑
xjθj + θ0 = 0 is the equation of a hyperplane, and fθ(x) = +1 “above” the hyperplane, and

fθ(x) = −1 below it. We have the following picture when d = 2:

+1

-1
(x, y) =

{
y = +1, loss is 0

y = −1, loss is 1

1

2 (Constrained) Logistic regression

While the binary loss from our example so far is very natural, it makes minimizing LX(θ) computationally
hard. A way around this is to define a surrogate loss for which ERM is more tractable. We will focus on the
logistic loss function, defined as

`(θ, (x, y)) = log(1 + e−cθ(x)·y),

and the class of linear functions cθ(x) =
∑d
i=1 θixi + θ0 over x ∈ X = [0, 1]d. By adding a coordinate x0 = 1

to every point x (so expanding X to [0, 1]d+1), we can simplify cθ a bit to just cθ(x) = 〈θ, x〉. This set up is
motivated by a statistical model in which the label y of a point x is a random variable with a distribution

parametrized by θ, and the logarithm of the odds ratio P(y|θ)
P(−y|θ) is 〈θ, x〉. Then 1

1+e−〈θ,x〉y
is interpreted as

P(y|θ), and minimizing the logistic loss corresponds to finding the maximum likelihood estimate of θ given
the data.

We will solve a constrained version of this problem in which θ ∈ Θ = Bd+1
2 (R), where Bd+1

2 (R) is the
Euclidean ball of radius R centered at 0. This is a form of regularization: it constrains the hypothesis cθ we
find to be “simple”, thus helping with generalization. For us, this constraint will be crucial so that we can
solve the ERM problem with differential privacy.

Instead of imposing a constraint, we can instead work with the `2-regularized logistic loss `(θ, (x, y)) =
log(1 + e−〈θ,x〉·y) + λ

2 · ‖θ‖
2
2. This is similar to the constrained problem, as it forces the optimal solution to

be in a ball of bounded radius. The techniques we will use adapt easily to the regularized setting as well.

While we will use logistic regression as a running example in this lecture, the methods apply much more
generally to constrained empirical risk minimization with convex loss.

3 Nosiy Gradient Descent

Unlike least squares regression, there is no simple closed form expression for the optimal θ in the logistic
regression problem. Instead we usually solve it (approximately) using a general purpose convex optimization
algorithm. A popular choice is gradient descent:

θ0 ← 0
for t = 1...T − 1 do
θ̃t ← θt−1 − η∇L(θt−1, X)
θt ← θ̃t/max{1, ‖θ̃t‖2/R}

end for
output 1

T

∑T−i
t=0 θt

Above, ∇LX(θ) is the gradient with respect to θ, i.e. it’s a vector whose i-th coordinate is the partial

derivative (∇LX(θ))i = ∂L(θ,X)
∂θi

. At every step, the algorithm moves θ a little bit in the direction opposite
to the gradient: this is the direction in which the loss locally decreases the fastest. If θ ever leaves the ball,
it is scaled back inside. See Figure 1.

Our approach will be to try to make this algorithm differentially private. Notice that, in any single step, the
only thing that depends on the database X is the gradient of the loss L. So, a natural strategy is to add
noise to the gradient. We get the following noisy variant of gradient descent:

2

Bd+1
2 (R)

θ0

θ̃t

θt

Figure 1: Gradient Descent

θ0 ← 0
for t = 1...T − 1 do
θ̃t ← θt−1 − η(∇L(θt−1, X) + Zt)
θt ← θ̃t/max{1, ‖θt‖2/R}

end for
output 1

T

∑t−1
t=0 θt

Zt is random noise that is added to make gradient descent differentially private. The noise will be Gaussian,
and in the next section we will explore how large it needs to be.

4 Advanced composition (for Gaussian noise)

Recall the Gaussian noise mechanism: for a function f that maps databases to m-dimensional vectors, we

release MGauss(x) = f(X) + Z where Z ∼ N
(

0, (∆2f)2

ρ · I
)

, i.e., every coordinate of Z is an independent

Gaussian with mean 0 and (∆2f
2)

ρ . Here ∆2f is the `2-sensitivity of f . For any δ > 0, MGauss is (ε, δ)-DP

for ε = ρ+
√

2ρ ln(1/δ)), so setting ρ = ρε,δ ≈ ε2

ln(1/δ) gives an (ε, δ)-DP mechanism.

Say we want to publish k functions f1, ..., fk such that ∆2fi ≤ C for each one of them. One thing we can do
is publish each one using the Gaussian noise mechanism with privacy parameters (ε/k, δ/k), and then use
the composition theorem to argue about privacy. This increases the variance of the noise by roughly k2 with
respect to only releasing a single function.

We can, however, do better by just using the Gaussian noise mechanism once. Define the function

f(X) =

f1(X)
...

fk(X)

 ,

3

and observe that

∆2f
2 = max

X∼X′
‖f(X)− f(X ′)‖22

= max
X∼X′

∑
i

‖fi(X)− fi(X ′)‖22

≤
∑
i

max
X∼X′

‖fi(X)− fi(X ′)‖22

≤ kC2.

Then we can release

f(X) + Z =

f1(X) + Z1

...
fk(X) + Zk

where each Zi ∼ N

(
0, kC

2

ρε,δ
· I
)

, which is only k times the variance needed for releasing a single function.

However, the analysis via the composition theorem still had something going for it, because it still works
even when the choise of the function fi is determined by f1(X)+Z1, . . . , fi−1(X)+Zi−1. Can we get privacy
with the improved variance above in this adaptive setting too? It turns that the answer is “yes”: in fact
the privacy analysis of the Gaussian noise mechanism we did in the beginning of the course can be easily
adapted to this setting. We have the following general result.

Theorem 1 Suppose that we realease Y1 = f1(X) + Z1, . . . , Yk = fk(X) + Zk where fi : Xn → Rd depends

also on Y1, . . . , Yi−1. Suppose that each Zi is independent and sampled from N
(

0, (∆2fi)
2

ρi
· I
)

. Then the

output Y1, . . . , Yk satisfies (ε, δ)-DP for ε = kρ+
√

2kρ ln(1/δ)) and ρ = ρ1 + . . .+ ρk.

A particular special case of Theorem 1 is that we can release any, potentially adaptively chosen, functions

f1, . . . , fk, each of `2-sensitivity at most C, by adding to fi(X) the noise Zi ∼ N
(

0, kC
2

ρε,δ
· I
)

, and the final

output is ε, δ-differentially private.

This is an instance of the advanced composition theorem: check the Dwork and Roth monograph for a
more thorough discussion of it. Here we are stating it only for Gaussian noise, but, just like the simple
composition theorem, a similar statement holds for adaptive composition of arbitrary (ε, δ)-differentially
private mechanisms. The proof is again similar to the analysis of the Gaussian noise mechanism, but the
parameters become worse, which is why we will stick to the Gaussian version.

5 Back to Noisy Gradient Descent

Let us now apply the Gaussian advanced composition theorem to the noisy gradient descent algorithm and
determine how large the noise needs to be at each step. In this case the function f1, f2, . . . are simply the
gradients ∇LX(θ0), ∇LX(θ1), etc. To apply the composition theorem, we need to bound the sensitivity of
these gradients, now seen as functions of X.

Suppose ‖∇`(θ, (x, y)‖2 ≤ C for every θ ∈ Θ and every x ∈ X , y ∈ {−1,+1}, where again we take gradients
with respect to θ.

4

Then, because ∇LX(θ) = 1
n

∑n
i=1∇`(θ, (xi, yi)),

∆2∇LX(θ) = max
X∼X′

‖∇LX(θ)−∇LX′(θ)‖2

= max
(x,y),(x′,y′)∈X×{±1}

1

n
‖∇`(θ, (x, y))−∇`(θ, (x′, y′))‖2

≤ max
x∈X ,y∈{±1}

2

n
‖∇`(θ, (x, y))‖2 ≤

2C

n
.

So, in private gradient descent, we can set Zt ∼ N
(

0, 4TC2

n2ρε,δ
· I
)

, for each t in order to achieve (ε, δ)-

differential privacy.

For logistic regression: with the loss `(θ, (xi, yi)) = log(1 + e−yi〈θ,xi〉) we have

∇ log(1 + e−yi〈θ,xi〉) = − 1

1 + eyi〈θ,xi〉
yixi ⇒ ‖∇ log(1 + e−yi〈θ,xi〉)‖2 ≤ ‖xi‖2 ≤

√
d+ 1.

So Zt ∼ N
(

0, 4T (d+1)
n2ρε,δ

· I
)

is enough noise to achieve (ε, δ)-differential privacy.

6 Error analysis

Finally, we want to say that the noisy gradient descent algorithm, given sufficient data, does actually come
close to the optimal parameter vector of the logistic regression problem. Luckily, gradient descent is an
incredibly robust algorithm, and it’s possible to still give convergence guarantees under a very general noise
model.

Algorithms like the noisy gradient descent algorithm above are special cases of Stochastic Gradient Descent.
In general, in stochastic gradient descent we take a step in a random direction, which ideally has expectation
equal to minus te gradient, and not too large variance. The general algorithm is

θ0 ← 0
for t = 1...T − 1 do
θ̃t ← θt−1 − ηGt
θt ← θ̃t/max{1, ‖θt‖2/R}

end for
output 1

T

∑T−1
t=0 θt

Above Gt is a random variable, whose distribution may depend on theta0, . . . , θt−1. In our case Gt =
∇LX(θt−1) + Zt. Another common variant of SGD is to set it equal to the gradient of a random point in
the dataset, or the average of the gradients of several random points. This is often done to speed up the
algorithm, since the most expensive step in gradient descent is to compute the gradient of the entire loss
function.

In the next section we will prove the following general guarantee for SGD.

Theorem 2 Let LX(θ) be convex in θ for all X. Suppose E[Gt | θt−1] = ∇LX(θt−1) and E‖Gt‖22 ≤ B2.

For η = R
BT 1/2 we have ELX

(
1
T

∑T−1
t=0 θt

)
≤ minθ∈Bd+1

2 (R) LX(θ) + RB
T 1/2 .

5

Using this theorem for private gradient descent, we have

Gt = ∇LX(θt−1) + Zt

E‖Gt‖22 = ‖∇LX(θt−1)‖22 + E‖Zt‖22 ≤ C2 +
4TC2(d+ 1)

n2ρε,δ
= C2

(
1 +

4T (d+ 1)

n2ρε,δ

)
This bounds B, and plugging the bound into Theorem 2, we get

EL
(1

T

T−1∑
t=0

θt, X
)
− min
θ∈Bd+1

2 (R)
L(θ,X) ≤ RB

T 1/2
≤ RC

T 1/2
·
(

1 +
4T (d+ 1)

n2ρε,δ

)1/2

≤ RC

T 1/2
+

2RC
√
d+ 1

n
√
ρε,δ

Note that this error bound decomposes into two parts: one goes to 0 with T , and would be there even if we
added no noise, i.e. just ran standard gradient descent. The second term in the error bound is due to the
noise, and goes down with n, since the variance of our noise decreases with n as well. To bound the error
by α, we set both terms to be less than α

2 and we get the following setting of parameters

T ≥ 4R2C2

α2
; n ≥ 4RC

√
d+ 1

α
√
ρε,δ

&
RC
√
d
√

log(1/δ)

αε
.

In the case of logistic regression, we can just plug in C ≤
√
d+ 1 in the bounds above and get

T ≥ 4R2(d+ 1)

α2
; n &

Rd
√

log(1/δ)

αε
.

7 Proof of Theorem 2

To be more concise, let’s define g(θ) = LX(θ). We start with a basic fact about convex functions: the graph
of a convex function always lies above any of its tangent hyperplanes (see Figure 2 for what this looks like
in a single variable). This means that for all θ and θ′, we have

g(θ′) ≥ g(θ) + 〈∇g(θ), θ′ − θ〉 (1)

Stated equivalently, the local linear approximation to g at θ (on the right hand side) is always an underes-
timate with respect to the actual function.

Let θ∗ = arg minθ∈Θ g(θ) be the optimal solution. Applying (1) to θ∗ and θt−1, for any 1 ≤ t ≤ T , we get

g(θ∗) ≥ g(θt−1) + 〈∇g(θt−1), θ∗ − θt−1〉

or, equivalently,

g(θt−1)− g(θ∗) ≤ 〈∇g(θt−1), θt−1 − θ∗〉 = E[〈Gt, θt−1 − θ∗〉 | θt−1].

Taking expectations over θt−1, by the total law of expectation, we have

E[g(θt−1)− g(θ∗)] ≤ E[E[〈Gt, θt−1 − θ∗〉 | θt−1]] = E[〈Gt, θt−1 − θ∗〉]

=
1

η
E[〈θt−1 − θ̃t, θt−1 − θ∗〉] = (?)

6

θ θ′

g(θ)

g(θ′)

g(θ) + (θ′ − θ)dg
dθ
(θ)

Figure 2: Illustration of (1)

Next, we use a nice little trick, known as polarization: for any two vectors x and y in Rd+1, we have
‖x− y‖22 = ‖x‖22 + ‖y‖22− 2〈x, y〉, so we can express their dot product as 〈x, y〉 = 1

2 (‖x‖22 + ‖y‖22−‖x− y‖22).

Applying this to x = θt−1 − θ∗ and y = θt−1 − θ̃t, on the right hand side above, we get

(?) =
1

2η
E[‖θt−1 − θ̃t‖22 + ‖θt−1 − θ∗‖22 − ‖θ∗ − θ̃t‖22]

=
1

2η
E[‖θt−1 − θ∗‖22 − ‖θ∗ − θ̃t‖22] +

η

2
E[‖Gt‖22]

≤ 1

2η
E[‖θt−1 − θ∗‖22 − ‖θ∗ − θ̃t‖22] +

ηB2

2
= (??).

Now we need one final inequality:
‖θ∗ − θt‖2 ≤ ‖θ∗ − θ̃t‖2. (2)

This follows from a simple geometric argument. When ‖θ̃t‖2 ≤ R the two sides above are equal. Otherwise,
θt = Rθ̃t/‖θ̃t‖2 is the closest point to θ̃t inside the ball Bd+1

2 (R). This means that θ∗, θ̃t and θt form a
triangle with a non-acute (i.e. right or obtuse) angle at θt, as in Figure 3. Therefore, the right hand side in
(2) equals the length of the side of the triangle opposite the non-acute angle, and the left hand side is the
length of one of the other sides, which can be only smaller, by the cosine law.

Plugging (2) back into our calculations, we see that

(??) ≤ 1

2η
E[‖θt−1 − θ∗‖22 − ‖θ∗ − θt‖22] +

ηB2

2
.

Putting everything together, we have shown that

E[g(θt−1)− g(θ∗)] ≤ 1

2η
E[‖θt−1 − θ∗‖22 − ‖θ∗ − θt‖22] +

ηB2

2

=
1

2η
E[‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22] +

ηB2

2

We have one of these inequalities for each t ∈ {1, . . . , T}, and if we average them, the right hand sides

7

θ0

θ̃t

θt

Figure 3: Projection back to the ball

telescope, and we get

E

[
g

(
1

T

T−1∑
t=0

θt

)
− g(θ∗)

]
≤ E

[
1

T

T−1∑
t=0

g(θt)− g(θ∗)

]

= E

[
1

T

T∑
t=1

g(θt−1)− g(θ∗)

]

≤ 1

2Tη
E[‖θ0 − θ∗‖22 − ‖θT − θ∗‖22] +

ηB2

2

≤ R2

2Tη
+
ηB2

2
.

The first inequality above follows from the convexity of g. The final inequality follows because θ0 = 0 and
θ∗ ∈ Bd+1

2 (R), so ‖θ0 − θ∗‖2 ≤ R. Optimizing over the choice of η finishes the proof.

8

