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Abstract—Organizations rely on a multiplicity of processes 

covering everything from their day-to-day functioning to longer 

term viability. Together, these processes and their interrelation-

ships constitute the business process architecture (BPA) of the or-

ganization. While efforts have been dedicated to the analysis and 

design of business processes, the question of how processes in an 

organization should best relate to each other (i.e., the design of the 

BPA) has received relatively little consideration. Supported by 

technological and business innovations, the torrent of changes 

faced by today’s organizations, forces them to stop looking at their 

processes individually and focus on designing BPAs, especially 

concentrating on balancing flexibility/agility and other objectives, 

such as cost and efficiency. In this paper, we propose a framework 

for BPA design with several dimensions along which activities or 

decisions could potentially be repositioned across processes and a 
goal-driven approach for analyzing possible BPA configurations.  

Keywords—variability; flexibility; business process architecture; 

process modeling; requirements 

I. INTRODUCTION 

Organizations rely on many business processes (BPs) for 
their operational activities and for longer term viability and 
sustainability. These BPs and their relationships form the 
process architecture (BPA) of the organization. 

Extensive efforts have been devoted to analyzing and de-
signing individual BPs. In contrast, relatively little attention has 
been paid to designing BPAs, i.e., how the many BPs of an or-
ganization should best relate to each other to achieve the com-
pany’s objectives. As organizations experience massive changes 
due to technological and business model innovation, one cannot 
optimize BPs in isolation from each other. BPAs can no longer 
remain static, but frequently need to be rethought and re-engi-
neered. New capabilities are continuously created, challenging 
old approaches to innovation. Innovation cycles become shorter, 
with development being integrated with operations. Users and 
their usage processes are being coupled with development pro-
cesses in a virtuous cycle of value co-creation. 

Similarly, the boundary between planning and execution 
processes is being redrawn as analytics and massive amounts of 
data (e.g., from sensors or social networks) support greater con-
text-awareness, so decisions that used to be pre-planned are in-
creasingly made at runtime to improve responsiveness. 

Thus, modern agile organizations cannot take existing BPAs 
for granted. The process architect should be asking questions 
such as: Should some activities or decisions be deferred closer 
to the frontline, taking advantage of near‐real‐time data, to better 

meet customer needs and wants? Should more or fewer activi-
ties/decisions be pre-planned? Should activities previously per-
formed for an aggregate be performed per instance instead? 

BPA design involves making trade-offs across BPs, 
particularly regarding how to balance flexibility and agility with 
other design objectives such as cost and efficiency. Existing 
models of BPA (e.g., [3] (Ch. 2), enterprise architecture (EA) 
frameworks [13], etc.) typically treat a BPA as a given, or as 
something to be discovered with no conscious effort to design it. 
We believe there is need to explore the space of BPA 
alternatives and to guide the selection among them, recognizing 
the complex trade-offs that may exist. To address the need for a 
conceptual model, we propose four BPA analysis dimensions 
that could serve as the key elements of such a framework. 

To illustrate our approach, we chose the easy to understand 
and sufficiently rich domain of passenger transportation. It 
continues to experience change today, driven by many 
innovations and shifting attitudes. Among the driving forces in 
this domain are the focus on reducing energy consumption and 
emissions, traffic congestion, availability of location sensors and 
real-time traffic information, increased customer expectations of 
flexibility and convenience, etc. Patterns and issues identified 
here can easily be found in other domains. 

This paper is organized as follows. In Section II, we outline 
the architectural design space. In Section III, we discuss the di-
mensions comprising this space. Section IV talks about analyz-
ing BPA alternatives, while Section V discusses related work. 
Section VI presents the discussion and concludes. 

II. A DESIGN SPACE FOR PROCESS ARCHITECTURES 

When working towards a framework for BPA design, we fo-
cus on the space of possible architectural designs and thus need 
a modeling notation to capture possible BPA configurations and 
a method to reason about them.  

We consider BPA modifications as movements along four 
dimensions: (1) temporal: moving a process element (PE) – an 
activity or a decision – earlier or later in relation to other process 
elements; (2) recurrence: positioning a PE in a BP that is re-
peated more (or less) frequently with respect to other PEs; (3) 
plan/execution: positioning a PE on the planning or execution 
side of a process, i.e., whether the PE is done during planning or 
during the execution of the resulting plan; (4) design/use: posi-
tioning a PE on the design or usage side of a process, i.e., 
whether the PE is part of a design process or is invoked during 
the usage of the outcome of the design – an artifact or capability. 
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In considering the positioning of PEs along these dimen-
sions, we aim to address a major concern of BPA design – the 
tension between flexibility and efficiency: an organization in a 
static domain can have all of its BPs tightly coupled and globally 
optimized once and for all. In a dynamic domain, however, the 
BPA needs flexibility for the organization to respond to change. 

A fundamental idea for accommodating uncertainty is to 
keep options open. This supports flexibility and allows for alter-
nate courses of action depending on the context, while also in-
curring extra costs. So, determining where/when options should 
be kept open is a core mechanism for BPA design. It needs to be 
supported by a modeling notation and a reasoning framework.  

We use the well-known term variation point (VP) (e.g., [4]) 
to refer to a place in a process where multiple options exist. A 
variant refers to each individual option in a VP. A VP is bound 
when one of its variants is selected. When and where a VP is 
bound underlies much of the reasoning behind the positioning of 
a PE along the four dimensions.  

These dimensions were determined based on existing stud-
ies, our own experiences, and the analysis of existing BPAs. 
Their purpose is to define the architecture design space. We do 
not claim that these are the only possible dimensions. However, 
we found them suitable for characterizing BPA alternatives.  

As in software architecture, the architectural description we 
strive for should outline the major elements and relationships 
while avoiding over-specification. Thus, it will likely refer only 
to certain selected elements of BP specifications. 

III. DIMENSIONS FOR PROCESS ARCHITECTING 

A. The Temporal Dimension 

In general, there are multiple possible placements for PEs 
within a BP/system specification that comply with the existing 
functional dependencies, achieve the same functional objective, 
but differ in terms of their non-functional characteristics. 

The passenger trip payment options in Fig. 1A illustrate this. 
E.g., unlike the standard fare charged before a trip, a distance-
based fare can only be reliably charged after the trip. Both obtain 

payment, but differ in the amount charged, how fair and precise 
the charge is, etc. Thus, there may be many options along the 
temporal dimension in BPs where PEs can be placed. These 
choices need to be resolved by looking at how each variant 
affects the quality criteria that the organization is interested in. 

Introducing phases. What is better – to charge the customer 
before a trip, during the trip or after travel? In fact, this depends 
on one’s point of view. Aiming for payment fairness, we want 
distance-based fares (this is how taxis operate). Here, the system 
needs a richer context (the distance travelled) only available at 
trips’ end. So, for fairness, paying on exit is better than other 
options. We identify phases – portions of a BP such that placing 
a PE anywhere within them makes no difference w.r.t. the eval-
uation criteria, e.g., charging passengers at any time before a 
trip’s end is the same for fairness as the distance is unknown 
(Fig. 1A). However, moving PEs across phase boundaries may 
affect the quality of decisions and the outcome of actions. Unlike 
most software variability approaches, we analyze when (in 
which phase) it is best to execute PEs. Note that no reuse 
happens here: an output of a phase of some BP instance can only 
be used by the subsequent phases of the same instance. Overall, 
phases help reduce the analysis complexity and focus on the rel-
evant issues by abstracting from lower-level details. 

Postponement. Here, we look at choices to postpone or ad-
vance PEs by placing them into later or earlier phases respec-
tively (see Fig. 1A). Postponement is a well-known business 
strategy (e.g., in supply chains [9]) that aims to minimize risks 
and maximize benefits by delaying some activities/decisions 
that require up-to-date information until the last possible 
moment. The key is the expectation of more precise information 
to be available at a later point, which would allow for better, 
more context-sensitive outcomes. Conversely, advancement im-
proves stability and uniformity and is enabled by either coarser-
grained PEs that rely on less information and hence can tolerate 
uncertainty or by predicting the missing information (e.g., 
through predictive analytics). The availability of data required 
for postponing PEs and data collection/analysis costs are also 
important. E.g., to collect distance-based fares at the end of trips, 
the organization needs to develop and deploy the infrastructure 
to measure the distance travelled by each passenger. 

B. The Recurrence Dimension 

In the previous section, we assumed that PEs were executed 
for every BP instance. Here, we propose another dimension fo-
cusing on reusing the outcomes of decisions/activities in multi-
ple BP instances. To put it another way, how often should certain 
decisions or actions be (re)executed and under what conditions? 

Definitions. We group PEs that have the same execution 
cycle into process chunks called stages. A stage contains one or 
more phases (e.g., in Fig. 1A, Customer Transportation is a stage 
consisting of two phases). Once a stage executes, its output 
remains available to the subsequent stages, if any, until it is re-
executed. In our notation, a stage connects to its subsequent 
stage(s) using a control flow link (a solid line) labeled with 
“1:N” to indicate the cardinality of their relationship (see Fig. 
1B). In this case, a stage boundary exists between the stages. It 
points to the two options for placing PEs – each with a different 
recurrence pattern. Moving a PE across such a boundary can 
lead to a significant change in the PE’s execution frequency. Fig. 
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Fig. 1. Trip payment options: (A1) Before trip's end. (A2) At trip’s end. 

Splitting a single stage (B1) into multiple ones (B2) to increase 

flexibility or merging them to improve stability. 



1B shows such movement in both directions for Route 

Scheduling. A PE can also be moved across more than one stage 
at a time. A stage represents a (sub-)process and thus, while the 
temporal dimension focuses on intra-process analysis, here the 
focus is on inter-process relationships – relative rates of 
execution/change cycles among processes. 

Using the dimension. To arrive at a stage-based 
configuration we identify PEs that can be reused for multiple BP 
instances (i.e., that are independent of the variations in those 
instances), at least for a period of time. Such PEs form a stage to 
be reused by the subsequent stages, thus saving time, money 
and/or other resources and perhaps affecting other non-func-
tional objectives (NFRs). E.g., buying a transit pass improves 
convenience over paying for every trip separately. Another 
heuristic for stages is to identify PEs with the same execution 
frequency (e.g., yearly product redesign cycles accompanied by 
marketing material revisions) or triggered by the same condition 
(e.g., a change in passenger demand triggers a bus schedule 
revision, which is then immediately published). A special case 
of moving a PE across a stage boundary is splitting a stage into 
two or merging two stages into one (see Fig. 1B). 

Domain example. We now look at how public transit route 
planning and vehicle scheduling can be done. One option is to 
combine both into a single stage (Fig. 1B1): whenever routes 
need to be redrawn (e.g., due to a significant demand change), 
Route Planning & Scheduling stage is triggered. The data input 
for the stage (the message flow at the top) has all the available 
passenger demand data. Here, route planning and scheduling are 
bundled together, which means that changing schedules without 
a route network redesign is not permitted. Clearly, this option 
works for an easily predictable constant demand. However, its 
rigidity will hurt the company’s ability to change its schedules 
more frequently (while keeping the same routes) in case of 
evolving passenger demand. To address this, the process 
architect can unbundle the two stages as shown in Fig. 1B2, 
creating Route Planning and Route Scheduling, each triggered 
independently: the former when changes in long-term demand 

are detected and the latter when shorter-term demand changes 
are perceived. This BPA change allows the route network (the 
outcome of the Route Planning stage) to be reused for multiple 
Route Scheduling instances (again, note the “1:N” annotation), 
thus supporting frequent schedule updates in the same route 
network. The new BPA configuration is more flexible, but likely 
incurs higher cost, complexity and unpredictability. 

Overall, given a number of stages as possible PE placement 
choices, an organization wants the one that best fits its needs 
based on the volatility in its business environment – e.g., 
balancing the cost, complexity, and the increased 
unpredictability of the unbundled route planning configuration, 
and the inherent rigidity of the bundled one from Fig. 1B1.  

C. The Plan/Execute Dimension 

In typical BP modeling, a model describes a process to be 
executed, but not how it gets determined. For enterprise agility, 
it matters if a decision/activity is part of a plan, or is instead left 
to runtime. Thus, our framework supports explicit modeling of 
planning and plan execution and reasoning about the positioning 
of PEs on either side of the plan/execute boundary. 

Stages can generate plans/specifications for the subsequent 
stage(s) to execute. Such plans either fully specify or only con-
strain the subsequent stages. In most cases, plans are reused. A 
stage producing a plan is called a planning stage (PS). A stage 
using the plan is called an execution stage (ES). PS and ES are 
relative to each other: a stage can be both a PS and an ES with 
respect to several different stages. 

Full and partial plans. We allow both complete and partial 
plans. Complete plans fully specify execution and thus are re-
strictive and inflexible, but require no further planning in the ES, 
which lowers the demand on that stage, helps uniformity and 
predictability, and supports optimization at the aggregate level. 
In Fig. 2A, the (bus) route PS plans both the stops and the precise 
paths between them. No extra planning is needed when driving 
on a route. This simplifies a driver’s job, but changing a route to 
avoid traffic or other problems is impossible. Data flow links 
annotated with X (for “eXecution”) and the plan to be executed 
link PSs and ESs (e.g., Complete Route in Fig. 2A1). 

A partial plan helps separate stable and more dynamic things 
and allows for a range of behaviours in the ES since some pre-
viously planned choices are left open by moving them from a PS 
to an ES. In Fig. 2A2, the planning of paths between stops is 
moved across the plan/execute boundary to Customer Transpor-

tation stage, aiding minor route adjustments to handle unpredict-
able changes. The driver’s job, however, is harder as he needs to 
monitor/analyze road conditions and calculate updated routes. 
Overall, decreasing plan completeness helps flexibility but will 
likely incur higher costs and effort in the ES since it has to com-
plete the partial plan based on the current context. 

D. The Design/Use Dimension 

The power of technology relies crucially on the creation of 
long-term capabilities to be used by others. In today’s pro-
cess/enterprise models, tools, designs, etc. can be represented 
and utilized as modeling artifacts, though these capabilities are 
viewed as externally developed and thus not changeable. To 
support enduring enterprises and IT systems, however, one 
needs to represent those artifacts as evolvable objects that can 
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be redesigned to handle changes in business domains/require-
ments. Models of design, development or other tool/skill/etc. ac-
quisition processes need to be integrated into EAs to support the 
capture of evolving capabilities and for continuous design [6]. 
This helps the analysis of tool (re)design cycles and the rigidities 
or flexibilities due to the tools used. 

Definitions. Designs, tools or skills are produced by a design 
stage (DS) and are used in a use stage (US), see Fig. 2B. A de-
sign/use boundary is a stage boundary since a tool can be reused. 
DSs are linked to USs through data flows annotated with U (for 
“use”), entering the latter at the bottom. Tools help USs achieve 
their business/system goals and the tools’ use is not restricted 
and their internals are not known. For example, a user of an au-
tomatic transmission does not need to know how it operates. It 
is less flexible and less fuel-efficient than a manual one, but it is 
simpler to operate. The BPA variants here are about the flexibil-
ity of a tool produced in a DS – i.e., how generic or single-pur-
pose it is. The more single-purpose (less flexible) the tool is, the 
simpler it is to use. However, such a tool cannot be customized 
to take advantage of the available usage context information. 

Fig. 2B shows the crossing of the design/use boundary. Fig. 
2B1 moves a PE from a US to a DS. For an activity, this in-
creases the level of automation in the US. For a decision, it re-
duces the tool’s customizability (Design A). In contrast, moving 
a PE to the US (Fig. 2B2) reduces the automation while improv-
ing the tool’s customizability. An example of such a choice is 
having a fixed vs. variable number of cars in subway trains.  

In addition to flexibility/customizability, other important 
factors (NFRs) help in analyzing choices in this dimension. Cost 
is incurred through tool design/development or acquisition. 
Skills development also incurs costs. Tool renting/leasing and 
the use of (IT) services is a way to avoid high upfront tool costs.  

E. A BPA Model with Relationships from Four Dimensions 

Fig. 3 has a fragment of a BPA for a transit company show-
ing various relationships among stages (we abstract from phases 
here) and implementing the more flexible options from the ex-
amples discussed in this section. The model also captures data 
flows among stages. For a stage, its data input comes from an-
other stage (e.g., Required Capacity) or from the outside through 
monitoring or by other means (e.g., Social Network Data). A 
BPA model gives an overview of the organization and its BPs, 
shows where reuse happens, where plans are created/executed 
and how tools are utilized. The model shows one possible BPA 

configuration. It is the basis for what-if analysis, with other con-
figurations obtained by moving PEs among stages/phases (see 
below for discussion). We assume that the starting point for de-
veloping a BPA using our notation is an existing BPA in another 
notation or a collection of BPs. We are working on a goal-driven 
approach to help design the initial BPA using ideas from [5]. 

IV. ANALYZING PROCESS ARCHITECTURE ALTERNATIVES  

A. Representing and Analyzing Business Process Architecture 
Alternatives with Goal Models 

We use goal models (GMs) to represent and analyze choices 
in BPAs along the four dimensions. GMs are used in Require-
ments Engineering to capture stakeholder/system objectives. 
They can represent variability in achieving goals using OR de-
compositions (here, exclusive ORs) and use NFRs to analyze al-
ternative goal refinements. We adapted GMs to represent alter-
native placements of PEs along the four dimensions. A GM fo-
cuses on a single PE (e.g., see Fig. 3), so multiple such models 
will be used to analyze different portions of the architecture.  

Identifying BPA choices. We look at the transit trip pay-
ment options discussed in Section III.A to show how a GM is 
developed and utilized. A GM provides an intentional (vs. oper-
ational) view, captures the PE’s goal as the root node (see the 
top Get Customer Payment node in Fig. 4A), and shows how it 
is refined when achieved in various stages/phases of the BPA. 
E.g., Fig. 4A shows three phases of Customer Transportation 
stage where Get Customer Payment PE can be placed. We use 
the @P:PhaseName and @S:StageName annotations to express 
locations in the BPA. Each goal refinement explores alternative 
PE placements within a BPA along one dimension, which is in-
dicated using annotations ([T] for temporal, [R] for recurrence, 
[D] for Design/Use, and [P] for Plan/Execute, as in Fig. 4). 

How we identify choices for goal refinements is based on the 
dimension under consideration. For the recurrence dimension, 
the alternative refinements are the stages where the PE can be 
placed (existing functional constraints must be respected). The 
temporal dimension focuses on placing PEs into phases. In Fig. 
4A, customers can pay before (@P:Before Travel), during or af-
ter travel. Prior to selecting the phase for a PE we need to deter-
mine its stage. Hence, a frequent pattern in BPA-level analysis 
is [R] followed by [T]. For the Plan/Execute and Design/Use di-
mensions, the choice is binary – whether the PE is in or out of a 
particular PS or DS. A plan/design is available to all the subse-
quent stages, so we need to select the best one among them. Fig. 
4B shows a generic pattern of analysis for the Plan/Execute case. 
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We separate a PE’s objective (see the root goal in Fig. 4A) 
from its implementation (the subgoals in Fig. 4A) since the latter 
may depend on the stage/phase – e.g., a fare payment may be 
implemented differently in various places of a BPA. In our GMs, 
this is captured by varying parameters in goal nodes representing 
alternative PE placements. These depend on the available data – 
only when paying after travel, the travelled distance is known 
and thus a fairer price can be determined (note the contribution 
link). Moving towards later stages/phases (i.e., increasing recur-
rence or postponement respectively) increases contextualiza-
tion, thus increasing the number of goal parameters. 

Using NFRs. Finally, we elicit NFRs for evaluating PE 
placement choices. These are modeled as softgoals and evalu-
ated using contribution links (e.g., see [5]). The evaluation can 
be qualitative, with values such as help(+)/hurt(–), 
make(++)/break(--) (as in Fig. 4A). A softgoal is satisficed if 
there is enough positive and little negative evidence for this 
claim. Given more information, more precise evaluations are 
possible. Softgoal prioritization helps with conflicting NFRs 
that cannot be achieved simultaneously. 

Handling trade-offs. Moving PEs along the four dimen-
sions affects many NFRs. Some are domain/PE-independent. 
Common NFRs of this type and the effects of moving PEs on 
them are shown in Table 1. Others are domain-specific, relevant 
for a particular PE (e.g., security and fairness for fare payment, 
Fig. 4A). Trade-offs are resolved based on two things: 1) busi-
ness domain dynamics (what changes, how frequently, etc.) and 
2) the enterprise’s prioritization of the above-mentioned NFRs.  

Once the analysis of BPA alternatives is done, a place 
(stage/phase) in the BPA is identified for the PE under consid-
eration. This represents the delta between the as-is and to-be 
BPAs – an instruction for evolving the architecture. 

B. Business Process Architecture Adaptation 

We strive to help organizations determine the right balance 
of flexibility and stability in their BPAs based on their business 
domain volatility and their preferences/priorities.  

Change can have two types of effect on a BPA. A particular 
BPA has some amount of flexibility to support certain types of 
changes in the domain (e.g., a distance-based fare payment is 
flexible in supporting payments for varying trip distances). If 
flexibility currently available in a BPA can accommodate the 
change (the different trip lengths), no BPA reconfiguration is 
needed. However, if the assumption that passengers’ trips are of 
very different lengths (which justifies the added complexity/cost 

of distance-based fares) no longer holds, that payment option 
becomes too flexible for the domain and the BPA may need to 
be changed. Thus, a BPA reconfiguration takes place when the 
domain dynamics changes – i.e., not when some change hap-
pens, but when the rate (or range) of change becomes different. 

V. RELATED WORK 

The notion of a BPA has been discussed for a while (e.g., 
[3]). Over the years, various sets of relationships among BPs 
have been identified (e.g., [2][3]), including sequence, hierar-
chy, composition, trigger, etc. In [2], the authors also classified 
approaches for designing BPAs: goal-based, action-based, 
object-based, and function-based. All approaches utilize a subset 
of these relationships when analyzing BPAs. 

In the enterprise architecture area, the notion of BPA is 
referred to as BP cooperation. E.g., in ArchiMate [8] such 
cooperation includes causal relationships between BPs, 
mapping of BPs onto business functions, realization of services 
by BPs, and the use of shared data. These aspects can also imply 
the type of relationships among BPs. 

Other relevant domains are BP variability [1], which focuses 
on the realization relationships among BPs and on BP binding 
times, and software product lines. A major reason to support 
variability is to postpone concrete design decisions to the latest 
economically feasible point [10]. In general, early binding 
facilitates static analysis, while late binding enables user 
configuration and post-deployment updates [1]. Positioning VPs 
earlier in the process can improve efficiency by decreasing 
uncertainty and identifying redundancies [11]. Intentional vari-
ability approaches [5] look at the many ways of achieving or-
ganizational objectives as a means to develop customizable, 
adaptive, and evolving systems (e.g., [5]). Other approaches 
weaving requirements and BPs have also emerged – e.g., using 
NFRs and contexts for runtime BP configuration [12]. 

TABLE I.  EFFECTS OF MOVING PES ALONG VARIABILITY DIMENSIONS 

Dimension PE Movement Effect of Movement on NFRs 

Temporal 

Postpone +: flexibility, context-awareness;  
–: cost, complexity, stability 

Advance +: cost, complexity, stability;  
–: flexibility, context-awareness 

Recurrence Increase Recurrence +: flexibility; –: cost, reuse, stability 

Decrease Recurrence +: cost, reuse, stability; –: flexibility 

Plan/ 
Execute 

 Move to Plan +: plan completeness, stability 

Move to Execute +: plan partiality, flexibility 

Design 
/Use 

Move to Design +: automation; –: customizability 

Move to Use +: customizability; –: automation 
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Fig. 4. (A) Analyzing the temporal ([T]) placement of customer payment PE. 

(B) Generic goal model for positioning a PE with the objective G along 
the Plan/Execute dimension (goal parameters are omitted). 



In process-aware systems, Weber et al. [14] identify four 
dimensions of change. They use the notion of patterns for 
changes in predefined regions to define these dimensions and 
include (1) late selection of BP fragments, (2) late modeling of 
BP fragments, (3) late composition of BP fragments, and (4) the 
multi-instance activity. This points to the new BP relationships: 
creation, where a BP creates another one, and recurrence, where 
a BP is followed by another BP multiple times.  

Overall, the existing approaches focus on variability at the 
BP level, while we concentrate on the BPA-level variability. 
Each set of choices for placing PEs into stages/phases (see Fig. 
4) is a VP at the BPA level. Changing the binding of such a VP 
produces modified BPAs with new characteristics. These BPAs 
are then analyzed using a goal-driven approach focusing on 
trade-offs among NFRs. This analysis is missing from the other 
approaches. For PEs that are decisions (BP-level VPs), position-
ing them into phases/stages defines when and how often respec-
tively to bind them, thus creating domain-specific binging op-
tions that are much richer and more flexible than the design 
time/runtime choices usually discussed in the variability 
research (e.g., [4]). In addition, the Plan/Execute and De-
sign/Use dimensions that allow for modeling BPA evolution are 
also missing from the current methods. 

VI. CONCLUDING DISCUSSION AND FUTURE WORK 

The four dimensions for BPA design help both adaptation 
and evolution of BPs and BPAs within enterprises.  The 
temporal and recurrence dimensions select, among the 
configurations supported by the existing set of BPs and 
enterprise/IT capabilities, the one that best matches the cur-
rent/expected domain dynamics. The other dimensions look at 
the options for evolving BPAs to accommodate more signifi-
cant/unpredictable changes through changing plans/capabilities.  

A good BPA must reflect its domain. Assumptions about the 
domain dynamics, including the availability and volatility of 
data, need to be carefully analyzed to justify the BPA and its 
flexibility. Such assumptions are not yet captured in our ap-
proach. We currently work on their formal modeling, which will 
help specify conditions that trigger adaptations – both supported 
by the current BPA and those needing a change in the BPA. 

It is easy to see that the analysis in Section IV favours 
optimization at the level of individual PEs, likely at the cost of 
global optimality. We are working on better integrating multiple 
goal models of the type shown in Fig. 4A to alleviate this. 

We allow for some model incompleteness to reduce the 
modeling/analysis complexity. E.g., our BPA analysis requires 
GMs to be constructed only for the PEs in the volatile portions 
of the domain, where flexibility is needed to accommodate 
change. Also, many finer-grained BP modeling details are below 
our threshold of interest, which is a phase. To help with the goal-
based analysis, we plan to utilize both top-down and bottom-up 
GM analysis algorithms already successfully used in a variety of 
applications (e.g., in [5] for BP configuration). 

To summarize, we presented an approach for analyzing 
changes to BPAs to allow organizations to be better aligned with 
their business domain dynamics and their desired level of flexi-
bility. We introduced four dimensions for BPA design and used 

GMs to analyze BPA alternatives. Based on our experience in 
the transportation (discussed here), internet retail, and automo-
tive domains, we found the approach useful for identifying/ana-
lyzing feasible BPA alternatives and as the basis for changing 
BPAs.  

We believe that IS research needs to start focusing on adapt-
ability, flexibility, etc. in addition to execution, correctness, etc. 
Consequently, our motivation is to address change through iden-
tification, analysis, and management of alternative BPAs, 
whereas most existing works (e.g., [2][3]) coordinate across 
multiple BPs, but do not investigate how PEs are distributed/al-
located among them. We previously outlined the vision for the 
proposed framework [15]. Here, we elaborated on a portion of 
that vision. An extended version of this paper is available [7]. 
We have identified a research program to enhance our approach 
with the aim of addressing the above challenges. To evaluate the 
proposal, we are applying it to domains facing both a high rate 
of change and changes in the domain dynamics to further vali-
date the expressiveness and usability of the notation and the an-
alytical capabilities of the proposal. 
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