
Re-Designing Process Architectures
Towards a Framework of Design Dimensions

Alexei Lapouchnian, Eric Yu

University of Toronto

Toronto, Canada

alexei@cs.toronto.edu, eric.yu@utoronto.ca

Arnon Sturm

Ben-Gurion University of the Negev

Beer Sheva, Israel

sturm@bgu.ac.il

Abstract—Organizations rely on a multiplicity of processes

covering everything from their day-to-day functioning to longer

term viability. Together, these processes and their interrelation-

ships constitute the business process architecture (BPA) of the or-

ganization. While efforts have been dedicated to the analysis and

design of business processes, the question of how processes in an

organization should best relate to each other (i.e., the design of the

BPA) has received relatively little consideration. Supported by

technological and business innovations, the torrent of changes

faced by today’s organizations, forces them to stop looking at their

processes individually and focus on designing BPAs, especially

concentrating on balancing flexibility/agility and other objectives,

such as cost and efficiency. In this paper, we propose a framework

for BPA design with several dimensions along which activities or

decisions could potentially be repositioned across processes and a
goal-driven approach for analyzing possible BPA configurations.

Keywords—variability; flexibility; business process architecture;

process modeling; requirements

I. INTRODUCTION

Organizations rely on many business processes (BPs) for
their operational activities and for longer term viability and
sustainability. These BPs and their relationships form the
process architecture (BPA) of the organization.

Extensive efforts have been devoted to analyzing and de-
signing individual BPs. In contrast, relatively little attention has
been paid to designing BPAs, i.e., how the many BPs of an or-
ganization should best relate to each other to achieve the com-
pany’s objectives. As organizations experience massive changes
due to technological and business model innovation, one cannot
optimize BPs in isolation from each other. BPAs can no longer
remain static, but frequently need to be rethought and re-engi-
neered. New capabilities are continuously created, challenging
old approaches to innovation. Innovation cycles become shorter,
with development being integrated with operations. Users and
their usage processes are being coupled with development pro-
cesses in a virtuous cycle of value co-creation.

Similarly, the boundary between planning and execution
processes is being redrawn as analytics and massive amounts of
data (e.g., from sensors or social networks) support greater con-
text-awareness, so decisions that used to be pre-planned are in-
creasingly made at runtime to improve responsiveness.

Thus, modern agile organizations cannot take existing BPAs
for granted. The process architect should be asking questions
such as: Should some activities or decisions be deferred closer
to the frontline, taking advantage of near‐real‐time data, to better

meet customer needs and wants? Should more or fewer activi-
ties/decisions be pre-planned? Should activities previously per-
formed for an aggregate be performed per instance instead?

BPA design involves making trade-offs across BPs,
particularly regarding how to balance flexibility and agility with
other design objectives such as cost and efficiency. Existing
models of BPA (e.g., [3] (Ch. 2), enterprise architecture (EA)
frameworks [13], etc.) typically treat a BPA as a given, or as
something to be discovered with no conscious effort to design it.
We believe there is need to explore the space of BPA
alternatives and to guide the selection among them, recognizing
the complex trade-offs that may exist. To address the need for a
conceptual model, we propose four BPA analysis dimensions
that could serve as the key elements of such a framework.

To illustrate our approach, we chose the easy to understand
and sufficiently rich domain of passenger transportation. It
continues to experience change today, driven by many
innovations and shifting attitudes. Among the driving forces in
this domain are the focus on reducing energy consumption and
emissions, traffic congestion, availability of location sensors and
real-time traffic information, increased customer expectations of
flexibility and convenience, etc. Patterns and issues identified
here can easily be found in other domains.

This paper is organized as follows. In Section II, we outline
the architectural design space. In Section III, we discuss the di-
mensions comprising this space. Section IV talks about analyz-
ing BPA alternatives, while Section V discusses related work.
Section VI presents the discussion and concludes.

II. A DESIGN SPACE FOR PROCESS ARCHITECTURES

When working towards a framework for BPA design, we fo-
cus on the space of possible architectural designs and thus need
a modeling notation to capture possible BPA configurations and
a method to reason about them.

We consider BPA modifications as movements along four
dimensions: (1) temporal: moving a process element (PE) – an
activity or a decision – earlier or later in relation to other process
elements; (2) recurrence: positioning a PE in a BP that is re-
peated more (or less) frequently with respect to other PEs; (3)
plan/execution: positioning a PE on the planning or execution
side of a process, i.e., whether the PE is done during planning or
during the execution of the resulting plan; (4) design/use: posi-
tioning a PE on the design or usage side of a process, i.e.,
whether the PE is part of a design process or is invoked during
the usage of the outcome of the design – an artifact or capability.

978-1-4673-6630-4/15/$31.00 ©2015 IEEE.

In considering the positioning of PEs along these dimen-
sions, we aim to address a major concern of BPA design – the
tension between flexibility and efficiency: an organization in a
static domain can have all of its BPs tightly coupled and globally
optimized once and for all. In a dynamic domain, however, the
BPA needs flexibility for the organization to respond to change.

A fundamental idea for accommodating uncertainty is to
keep options open. This supports flexibility and allows for alter-
nate courses of action depending on the context, while also in-
curring extra costs. So, determining where/when options should
be kept open is a core mechanism for BPA design. It needs to be
supported by a modeling notation and a reasoning framework.

We use the well-known term variation point (VP) (e.g., [4])
to refer to a place in a process where multiple options exist. A
variant refers to each individual option in a VP. A VP is bound
when one of its variants is selected. When and where a VP is
bound underlies much of the reasoning behind the positioning of
a PE along the four dimensions.

These dimensions were determined based on existing stud-
ies, our own experiences, and the analysis of existing BPAs.
Their purpose is to define the architecture design space. We do
not claim that these are the only possible dimensions. However,
we found them suitable for characterizing BPA alternatives.

As in software architecture, the architectural description we
strive for should outline the major elements and relationships
while avoiding over-specification. Thus, it will likely refer only
to certain selected elements of BP specifications.

III. DIMENSIONS FOR PROCESS ARCHITECTING

A. The Temporal Dimension

In general, there are multiple possible placements for PEs
within a BP/system specification that comply with the existing
functional dependencies, achieve the same functional objective,
but differ in terms of their non-functional characteristics.

The passenger trip payment options in Fig. 1A illustrate this.
E.g., unlike the standard fare charged before a trip, a distance-
based fare can only be reliably charged after the trip. Both obtain

payment, but differ in the amount charged, how fair and precise
the charge is, etc. Thus, there may be many options along the
temporal dimension in BPs where PEs can be placed. These
choices need to be resolved by looking at how each variant
affects the quality criteria that the organization is interested in.

Introducing phases. What is better – to charge the customer
before a trip, during the trip or after travel? In fact, this depends
on one’s point of view. Aiming for payment fairness, we want
distance-based fares (this is how taxis operate). Here, the system
needs a richer context (the distance travelled) only available at
trips’ end. So, for fairness, paying on exit is better than other
options. We identify phases – portions of a BP such that placing
a PE anywhere within them makes no difference w.r.t. the eval-
uation criteria, e.g., charging passengers at any time before a
trip’s end is the same for fairness as the distance is unknown
(Fig. 1A). However, moving PEs across phase boundaries may
affect the quality of decisions and the outcome of actions. Unlike
most software variability approaches, we analyze when (in
which phase) it is best to execute PEs. Note that no reuse
happens here: an output of a phase of some BP instance can only
be used by the subsequent phases of the same instance. Overall,
phases help reduce the analysis complexity and focus on the rel-
evant issues by abstracting from lower-level details.

Postponement. Here, we look at choices to postpone or ad-
vance PEs by placing them into later or earlier phases respec-
tively (see Fig. 1A). Postponement is a well-known business
strategy (e.g., in supply chains [9]) that aims to minimize risks
and maximize benefits by delaying some activities/decisions
that require up-to-date information until the last possible
moment. The key is the expectation of more precise information
to be available at a later point, which would allow for better,
more context-sensitive outcomes. Conversely, advancement im-
proves stability and uniformity and is enabled by either coarser-
grained PEs that rely on less information and hence can tolerate
uncertainty or by predicting the missing information (e.g.,
through predictive analytics). The availability of data required
for postponing PEs and data collection/analysis costs are also
important. E.g., to collect distance-based fares at the end of trips,
the organization needs to develop and deploy the infrastructure
to measure the distance travelled by each passenger.

B. The Recurrence Dimension

In the previous section, we assumed that PEs were executed
for every BP instance. Here, we propose another dimension fo-
cusing on reusing the outcomes of decisions/activities in multi-
ple BP instances. To put it another way, how often should certain
decisions or actions be (re)executed and under what conditions?

Definitions. We group PEs that have the same execution
cycle into process chunks called stages. A stage contains one or
more phases (e.g., in Fig. 1A, Customer Transportation is a stage
consisting of two phases). Once a stage executes, its output
remains available to the subsequent stages, if any, until it is re-
executed. In our notation, a stage connects to its subsequent
stage(s) using a control flow link (a solid line) labeled with
“1:N” to indicate the cardinality of their relationship (see Fig.
1B). In this case, a stage boundary exists between the stages. It
points to the two options for placing PEs – each with a different
recurrence pattern. Moving a PE across such a boundary can
lead to a significant change in the PE’s execution frequency. Fig.

Increase R
ecu

rren
ce

Plan Route
Network

Route Planning

Assign
Vehicles to

Routes

Analyze
Route

Demand

Produce
Schedule

Route Scheduling

1:N
Route

Assign
Vehicles to

Routes

Analyze
Route

Demand

Produce
Schedule

Plan Route
Network

Route Planning & Scheduling

Passenger Demand Data

Short-Term DemandLong-Term Demand

D
e

cr
e

a
se

 R
e

cu
rr

e
n

ce
Get

Customer
On Board

Get Vehicle
to Customer

Move
Customer

Unload
Customer

Get
Customer

Order
(Optional)

Get
Customer
Payment

Before/During Travel

Customer Transportation

After Travel

Move
Customer

Get Vehicle
to Customer

Get
Customer
Payment

Unload
Customer

Get
Customer

Order
(Optional)

Get
Customer
On Board

Before/During Travel

Customer Transportation

After Travel

A1

P
o

stp
o

n
e

A
d

va
n

ce

A2

B1

B2

Fig. 1. Trip payment options: (A1) Before trip's end. (A2) At trip’s end.

Splitting a single stage (B1) into multiple ones (B2) to increase

flexibility or merging them to improve stability.

1B shows such movement in both directions for Route

Scheduling. A PE can also be moved across more than one stage
at a time. A stage represents a (sub-)process and thus, while the
temporal dimension focuses on intra-process analysis, here the
focus is on inter-process relationships – relative rates of
execution/change cycles among processes.

Using the dimension. To arrive at a stage-based
configuration we identify PEs that can be reused for multiple BP
instances (i.e., that are independent of the variations in those
instances), at least for a period of time. Such PEs form a stage to
be reused by the subsequent stages, thus saving time, money
and/or other resources and perhaps affecting other non-func-
tional objectives (NFRs). E.g., buying a transit pass improves
convenience over paying for every trip separately. Another
heuristic for stages is to identify PEs with the same execution
frequency (e.g., yearly product redesign cycles accompanied by
marketing material revisions) or triggered by the same condition
(e.g., a change in passenger demand triggers a bus schedule
revision, which is then immediately published). A special case
of moving a PE across a stage boundary is splitting a stage into
two or merging two stages into one (see Fig. 1B).

Domain example. We now look at how public transit route
planning and vehicle scheduling can be done. One option is to
combine both into a single stage (Fig. 1B1): whenever routes
need to be redrawn (e.g., due to a significant demand change),
Route Planning & Scheduling stage is triggered. The data input
for the stage (the message flow at the top) has all the available
passenger demand data. Here, route planning and scheduling are
bundled together, which means that changing schedules without
a route network redesign is not permitted. Clearly, this option
works for an easily predictable constant demand. However, its
rigidity will hurt the company’s ability to change its schedules
more frequently (while keeping the same routes) in case of
evolving passenger demand. To address this, the process
architect can unbundle the two stages as shown in Fig. 1B2,
creating Route Planning and Route Scheduling, each triggered
independently: the former when changes in long-term demand

are detected and the latter when shorter-term demand changes
are perceived. This BPA change allows the route network (the
outcome of the Route Planning stage) to be reused for multiple
Route Scheduling instances (again, note the “1:N” annotation),
thus supporting frequent schedule updates in the same route
network. The new BPA configuration is more flexible, but likely
incurs higher cost, complexity and unpredictability.

Overall, given a number of stages as possible PE placement
choices, an organization wants the one that best fits its needs
based on the volatility in its business environment – e.g.,
balancing the cost, complexity, and the increased
unpredictability of the unbundled route planning configuration,
and the inherent rigidity of the bundled one from Fig. 1B1.

C. The Plan/Execute Dimension

In typical BP modeling, a model describes a process to be
executed, but not how it gets determined. For enterprise agility,
it matters if a decision/activity is part of a plan, or is instead left
to runtime. Thus, our framework supports explicit modeling of
planning and plan execution and reasoning about the positioning
of PEs on either side of the plan/execute boundary.

Stages can generate plans/specifications for the subsequent
stage(s) to execute. Such plans either fully specify or only con-
strain the subsequent stages. In most cases, plans are reused. A
stage producing a plan is called a planning stage (PS). A stage
using the plan is called an execution stage (ES). PS and ES are
relative to each other: a stage can be both a PS and an ES with
respect to several different stages.

Full and partial plans. We allow both complete and partial
plans. Complete plans fully specify execution and thus are re-
strictive and inflexible, but require no further planning in the ES,
which lowers the demand on that stage, helps uniformity and
predictability, and supports optimization at the aggregate level.
In Fig. 2A, the (bus) route PS plans both the stops and the precise
paths between them. No extra planning is needed when driving
on a route. This simplifies a driver’s job, but changing a route to
avoid traffic or other problems is impossible. Data flow links
annotated with X (for “eXecution”) and the plan to be executed
link PSs and ESs (e.g., Complete Route in Fig. 2A1).

A partial plan helps separate stable and more dynamic things
and allows for a range of behaviours in the ES since some pre-
viously planned choices are left open by moving them from a PS
to an ES. In Fig. 2A2, the planning of paths between stops is
moved across the plan/execute boundary to Customer Transpor-

tation stage, aiding minor route adjustments to handle unpredict-
able changes. The driver’s job, however, is harder as he needs to
monitor/analyze road conditions and calculate updated routes.
Overall, decreasing plan completeness helps flexibility but will
likely incur higher costs and effort in the ES since it has to com-
plete the partial plan based on the current context.

D. The Design/Use Dimension

The power of technology relies crucially on the creation of
long-term capabilities to be used by others. In today’s pro-
cess/enterprise models, tools, designs, etc. can be represented
and utilized as modeling artifacts, though these capabilities are
viewed as externally developed and thus not changeable. To
support enduring enterprises and IT systems, however, one
needs to represent those artifacts as evolvable objects that can

Identify
Stops on

Route

Plan Paths
to Stops

Route Planning

Identify
Stops on

Route

Route Planning

Move
Customer

Get
Customer
On Board

Customer Transportation

Plan Path
to Next

Stop
... ...

Move
Customer

Get
Customer
On Board

Customer Transportation

... ...

Complete Route X

Partial Route X

Increase Plan Partiality

Increase Plan Completeness

A1

A2

Use Stage

...
Process
Element

PEN

...
Process
Element

PEN+1

U

Design Stage

...
Process
Element

DPEM

...
Process
Element
DPEM+1

Design A

Use Stage

...
Decision/
Activity

DAN

...
Decision/
Activity
DAN+1

U

Design Stage

... ...
Decision/
Activity
DDAM+1

Design B

Decision/
Activity
DDAM

Increase Customizability/Decrease Automation

Decrease Customizability/Increase Automation

B1

B2

Fig. 2. Complete (A1) or partial (A2) planning choices for route planning.

Moving process elements across a design/use boundary (B).

be redesigned to handle changes in business domains/require-
ments. Models of design, development or other tool/skill/etc. ac-
quisition processes need to be integrated into EAs to support the
capture of evolving capabilities and for continuous design [6].
This helps the analysis of tool (re)design cycles and the rigidities
or flexibilities due to the tools used.

Definitions. Designs, tools or skills are produced by a design
stage (DS) and are used in a use stage (US), see Fig. 2B. A de-
sign/use boundary is a stage boundary since a tool can be reused.
DSs are linked to USs through data flows annotated with U (for
“use”), entering the latter at the bottom. Tools help USs achieve
their business/system goals and the tools’ use is not restricted
and their internals are not known. For example, a user of an au-
tomatic transmission does not need to know how it operates. It
is less flexible and less fuel-efficient than a manual one, but it is
simpler to operate. The BPA variants here are about the flexibil-
ity of a tool produced in a DS – i.e., how generic or single-pur-
pose it is. The more single-purpose (less flexible) the tool is, the
simpler it is to use. However, such a tool cannot be customized
to take advantage of the available usage context information.

Fig. 2B shows the crossing of the design/use boundary. Fig.
2B1 moves a PE from a US to a DS. For an activity, this in-
creases the level of automation in the US. For a decision, it re-
duces the tool’s customizability (Design A). In contrast, moving
a PE to the US (Fig. 2B2) reduces the automation while improv-
ing the tool’s customizability. An example of such a choice is
having a fixed vs. variable number of cars in subway trains.

In addition to flexibility/customizability, other important
factors (NFRs) help in analyzing choices in this dimension. Cost
is incurred through tool design/development or acquisition.
Skills development also incurs costs. Tool renting/leasing and
the use of (IT) services is a way to avoid high upfront tool costs.

E. A BPA Model with Relationships from Four Dimensions

Fig. 3 has a fragment of a BPA for a transit company show-
ing various relationships among stages (we abstract from phases
here) and implementing the more flexible options from the ex-
amples discussed in this section. The model also captures data
flows among stages. For a stage, its data input comes from an-
other stage (e.g., Required Capacity) or from the outside through
monitoring or by other means (e.g., Social Network Data). A
BPA model gives an overview of the organization and its BPs,
shows where reuse happens, where plans are created/executed
and how tools are utilized. The model shows one possible BPA

configuration. It is the basis for what-if analysis, with other con-
figurations obtained by moving PEs among stages/phases (see
below for discussion). We assume that the starting point for de-
veloping a BPA using our notation is an existing BPA in another
notation or a collection of BPs. We are working on a goal-driven
approach to help design the initial BPA using ideas from [5].

IV. ANALYZING PROCESS ARCHITECTURE ALTERNATIVES

A. Representing and Analyzing Business Process Architecture
Alternatives with Goal Models

We use goal models (GMs) to represent and analyze choices
in BPAs along the four dimensions. GMs are used in Require-
ments Engineering to capture stakeholder/system objectives.
They can represent variability in achieving goals using OR de-
compositions (here, exclusive ORs) and use NFRs to analyze al-
ternative goal refinements. We adapted GMs to represent alter-
native placements of PEs along the four dimensions. A GM fo-
cuses on a single PE (e.g., see Fig. 3), so multiple such models
will be used to analyze different portions of the architecture.

Identifying BPA choices. We look at the transit trip pay-
ment options discussed in Section III.A to show how a GM is
developed and utilized. A GM provides an intentional (vs. oper-
ational) view, captures the PE’s goal as the root node (see the
top Get Customer Payment node in Fig. 4A), and shows how it
is refined when achieved in various stages/phases of the BPA.
E.g., Fig. 4A shows three phases of Customer Transportation
stage where Get Customer Payment PE can be placed. We use
the @P:PhaseName and @S:StageName annotations to express
locations in the BPA. Each goal refinement explores alternative
PE placements within a BPA along one dimension, which is in-
dicated using annotations ([T] for temporal, [R] for recurrence,
[D] for Design/Use, and [P] for Plan/Execute, as in Fig. 4).

How we identify choices for goal refinements is based on the
dimension under consideration. For the recurrence dimension,
the alternative refinements are the stages where the PE can be
placed (existing functional constraints must be respected). The
temporal dimension focuses on placing PEs into phases. In Fig.
4A, customers can pay before (@P:Before Travel), during or af-
ter travel. Prior to selecting the phase for a PE we need to deter-
mine its stage. Hence, a frequent pattern in BPA-level analysis
is [R] followed by [T]. For the Plan/Execute and Design/Use di-
mensions, the choice is binary – whether the PE is in or out of a
particular PS or DS. A plan/design is available to all the subse-
quent stages, so we need to select the best one among them. Fig.
4B shows a generic pattern of analysis for the Plan/Execute case.

Gov.
Population

Data,
Competition data

Gov.
Population

Data

Move
Customer

Get Vehicle to
Customer

Get
Customer
Payment

Unload
Customer

Get
Customer

Order
(Optional)

Get
Customer
On Board

Customer Transportation

Plan Route
Network

Route Planning

Assign Vehicles
to Routes

Analyze
Route

Demand

Produce
Schedule

Route Scheduling

Produce
Vehicle

Specifications

Acquire
Vehicles

Vehicle Acquisition

Analyze
Vehicle

Inventory

1:N

Required capacity

RT Traffic, Conds
& Demand

Schedule

X
Routes

X Vehicle

U

Price

Weather,
Road cond.

Plan Path
to Next

Stop

Legend

Recurrence

Stage Process
Element

Data
Input 1:N Plan

X
Plan/Execute

Design
U

Design/Use
Select Service

Area

Service Area Selection

1:N

Future Demand
Analysis

SN Demand Analysis
Demand

Projection

Social
Network Data

Precedence

Fig. 3. A fragment of the business process architecture for a public transit company.

We separate a PE’s objective (see the root goal in Fig. 4A)
from its implementation (the subgoals in Fig. 4A) since the latter
may depend on the stage/phase – e.g., a fare payment may be
implemented differently in various places of a BPA. In our GMs,
this is captured by varying parameters in goal nodes representing
alternative PE placements. These depend on the available data –
only when paying after travel, the travelled distance is known
and thus a fairer price can be determined (note the contribution
link). Moving towards later stages/phases (i.e., increasing recur-
rence or postponement respectively) increases contextualiza-
tion, thus increasing the number of goal parameters.

Using NFRs. Finally, we elicit NFRs for evaluating PE
placement choices. These are modeled as softgoals and evalu-
ated using contribution links (e.g., see [5]). The evaluation can
be qualitative, with values such as help(+)/hurt(–),
make(++)/break(--) (as in Fig. 4A). A softgoal is satisficed if
there is enough positive and little negative evidence for this
claim. Given more information, more precise evaluations are
possible. Softgoal prioritization helps with conflicting NFRs
that cannot be achieved simultaneously.

Handling trade-offs. Moving PEs along the four dimen-
sions affects many NFRs. Some are domain/PE-independent.
Common NFRs of this type and the effects of moving PEs on
them are shown in Table 1. Others are domain-specific, relevant
for a particular PE (e.g., security and fairness for fare payment,
Fig. 4A). Trade-offs are resolved based on two things: 1) busi-
ness domain dynamics (what changes, how frequently, etc.) and
2) the enterprise’s prioritization of the above-mentioned NFRs.

Once the analysis of BPA alternatives is done, a place
(stage/phase) in the BPA is identified for the PE under consid-
eration. This represents the delta between the as-is and to-be
BPAs – an instruction for evolving the architecture.

B. Business Process Architecture Adaptation

We strive to help organizations determine the right balance
of flexibility and stability in their BPAs based on their business
domain volatility and their preferences/priorities.

Change can have two types of effect on a BPA. A particular
BPA has some amount of flexibility to support certain types of
changes in the domain (e.g., a distance-based fare payment is
flexible in supporting payments for varying trip distances). If
flexibility currently available in a BPA can accommodate the
change (the different trip lengths), no BPA reconfiguration is
needed. However, if the assumption that passengers’ trips are of
very different lengths (which justifies the added complexity/cost

of distance-based fares) no longer holds, that payment option
becomes too flexible for the domain and the BPA may need to
be changed. Thus, a BPA reconfiguration takes place when the
domain dynamics changes – i.e., not when some change hap-
pens, but when the rate (or range) of change becomes different.

V. RELATED WORK

The notion of a BPA has been discussed for a while (e.g.,
[3]). Over the years, various sets of relationships among BPs
have been identified (e.g., [2][3]), including sequence, hierar-
chy, composition, trigger, etc. In [2], the authors also classified
approaches for designing BPAs: goal-based, action-based,
object-based, and function-based. All approaches utilize a subset
of these relationships when analyzing BPAs.

In the enterprise architecture area, the notion of BPA is
referred to as BP cooperation. E.g., in ArchiMate [8] such
cooperation includes causal relationships between BPs,
mapping of BPs onto business functions, realization of services
by BPs, and the use of shared data. These aspects can also imply
the type of relationships among BPs.

Other relevant domains are BP variability [1], which focuses
on the realization relationships among BPs and on BP binding
times, and software product lines. A major reason to support
variability is to postpone concrete design decisions to the latest
economically feasible point [10]. In general, early binding
facilitates static analysis, while late binding enables user
configuration and post-deployment updates [1]. Positioning VPs
earlier in the process can improve efficiency by decreasing
uncertainty and identifying redundancies [11]. Intentional vari-
ability approaches [5] look at the many ways of achieving or-
ganizational objectives as a means to develop customizable,
adaptive, and evolving systems (e.g., [5]). Other approaches
weaving requirements and BPs have also emerged – e.g., using
NFRs and contexts for runtime BP configuration [12].

TABLE I. EFFECTS OF MOVING PES ALONG VARIABILITY DIMENSIONS

Dimension PE Movement Effect of Movement on NFRs

Temporal

Postpone +: flexibility, context-awareness;
–: cost, complexity, stability

Advance +: cost, complexity, stability;
–: flexibility, context-awareness

Recurrence Increase Recurrence +: flexibility; –: cost, reuse, stability

Decrease Recurrence +: cost, reuse, stability; –: flexibility

Plan/
Execute

 Move to Plan +: plan completeness, stability

Move to Execute +: plan partiality, flexibility

Design
/Use

Move to Design +: automation; –: customizability

Move to Use +: customizability; –: automation

[T] [T]

[R]

Get Customer
Payment

@S:Customer
Transportation

Get Customer
Payment (Basic Fare)

@P:Before Travel

Get Customer
Payment (Travelled

Distance, DistanceToFare
Mapping)

@P:After Travel

Security
(Payment)

Fairness
(Payment)

Flexibility
(Payment)

Cost
(Payment)

Legend

Softgoal
Functional

Goal

Alternative
Refinement

Softgoal
Contribution

@P:PhaseName
@S:StageName

Location in BP
Architecture

[T]

G

GE

[P]

GE11@P:E11

GP2@P:P2

[T]

GP@S:P

GP1@P:P1 GE1@S:E1 GE2@S:E2

GE12@P:E12 GE21@P:E21 GE22@P:E22

A

B

Get Customer
Payment (Basic Fare)

@P:During Travel

Variability
Dimension

[T]

Fig. 4. (A) Analyzing the temporal ([T]) placement of customer payment PE.

(B) Generic goal model for positioning a PE with the objective G along
the Plan/Execute dimension (goal parameters are omitted).

In process-aware systems, Weber et al. [14] identify four
dimensions of change. They use the notion of patterns for
changes in predefined regions to define these dimensions and
include (1) late selection of BP fragments, (2) late modeling of
BP fragments, (3) late composition of BP fragments, and (4) the
multi-instance activity. This points to the new BP relationships:
creation, where a BP creates another one, and recurrence, where
a BP is followed by another BP multiple times.

Overall, the existing approaches focus on variability at the
BP level, while we concentrate on the BPA-level variability.
Each set of choices for placing PEs into stages/phases (see Fig.
4) is a VP at the BPA level. Changing the binding of such a VP
produces modified BPAs with new characteristics. These BPAs
are then analyzed using a goal-driven approach focusing on
trade-offs among NFRs. This analysis is missing from the other
approaches. For PEs that are decisions (BP-level VPs), position-
ing them into phases/stages defines when and how often respec-
tively to bind them, thus creating domain-specific binging op-
tions that are much richer and more flexible than the design
time/runtime choices usually discussed in the variability
research (e.g., [4]). In addition, the Plan/Execute and De-
sign/Use dimensions that allow for modeling BPA evolution are
also missing from the current methods.

VI. CONCLUDING DISCUSSION AND FUTURE WORK

The four dimensions for BPA design help both adaptation
and evolution of BPs and BPAs within enterprises. The
temporal and recurrence dimensions select, among the
configurations supported by the existing set of BPs and
enterprise/IT capabilities, the one that best matches the cur-
rent/expected domain dynamics. The other dimensions look at
the options for evolving BPAs to accommodate more signifi-
cant/unpredictable changes through changing plans/capabilities.

A good BPA must reflect its domain. Assumptions about the
domain dynamics, including the availability and volatility of
data, need to be carefully analyzed to justify the BPA and its
flexibility. Such assumptions are not yet captured in our ap-
proach. We currently work on their formal modeling, which will
help specify conditions that trigger adaptations – both supported
by the current BPA and those needing a change in the BPA.

It is easy to see that the analysis in Section IV favours
optimization at the level of individual PEs, likely at the cost of
global optimality. We are working on better integrating multiple
goal models of the type shown in Fig. 4A to alleviate this.

We allow for some model incompleteness to reduce the
modeling/analysis complexity. E.g., our BPA analysis requires
GMs to be constructed only for the PEs in the volatile portions
of the domain, where flexibility is needed to accommodate
change. Also, many finer-grained BP modeling details are below
our threshold of interest, which is a phase. To help with the goal-
based analysis, we plan to utilize both top-down and bottom-up
GM analysis algorithms already successfully used in a variety of
applications (e.g., in [5] for BP configuration).

To summarize, we presented an approach for analyzing
changes to BPAs to allow organizations to be better aligned with
their business domain dynamics and their desired level of flexi-
bility. We introduced four dimensions for BPA design and used

GMs to analyze BPA alternatives. Based on our experience in
the transportation (discussed here), internet retail, and automo-
tive domains, we found the approach useful for identifying/ana-
lyzing feasible BPA alternatives and as the basis for changing
BPAs.

We believe that IS research needs to start focusing on adapt-
ability, flexibility, etc. in addition to execution, correctness, etc.
Consequently, our motivation is to address change through iden-
tification, analysis, and management of alternative BPAs,
whereas most existing works (e.g., [2][3]) coordinate across
multiple BPs, but do not investigate how PEs are distributed/al-
located among them. We previously outlined the vision for the
proposed framework [15]. Here, we elaborated on a portion of
that vision. An extended version of this paper is available [7].
We have identified a research program to enhance our approach
with the aim of addressing the above challenges. To evaluate the
proposal, we are applying it to domains facing both a high rate
of change and changes in the domain dynamics to further vali-
date the expressiveness and usability of the notation and the an-
alytical capabilities of the proposal.

REFERENCES

[1] V. Chakravarthy and E. Eide. Binding Time Flexibility for Managing

Variability, In Proc. the OOPLSA 2005 Workshop on Managing
Variabilities Consistently in Design and Code (MVCDC 2), 2006.

[2] R. Dijkman, I. Vanderfeesten, and H. Reijers. Business process

architectures: overview, comparison and framework. Enterprise
Information Systems, DOI: 10.1080/17517575.2014.928951.

[3] M. Dumas, M. La Rosa, J. Mendling and H. Reijers. Fundamentals of

Business Process Management, Ch.2. Springer-Verlag, Berlin-
Heidelberg, 2013.

[4] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou.

Variability in Software Systems – A Systematic Literature Review. IEEE
TSE, 40(3), pp. 282–306, 2014.

[5] A. Lapouchnian, Y. Yu and J. Mylopoulos. Requirements-Driven Design
and Configuration Management of Business Processes. In Proc. BPM

2007, Brisbane, Australia, Sep 24-28, 2007.

[6] A. Lapouchnian, E. Yu, S. Deng. Responding to Ongoing Change –
Challenges for Information Systems Modeling. International Journal of

Information System Modeling and Design (IJISMD), 5(4), 2014.

[7] A. Lapouchnian, E. Yu, A. Sturm. Re-Designing Process Architectures.
Technical Report CSRG-625, University of Toronto, 2015. Available at:

ftp://ftp.cs.toronto.edu/csrg-technical-reports/625

[8] Open Group, The. ArchiMate 2.1 Specification, 2013. Retrieved from
http://pubs.opengroup.org/architecture/archimate2-doc/

[9] J. Pagh, and M. Cooper. Supply Chain Postponement and Speculation

Strategies: How to Choose the Right Strategy. Journal of Business
Logistics, 19(2):13-33. 1998.

[10] M. Svahnberg, J. van Gurp and J. Bosch. A taxonomy of variability

realization techniques: Research Articles, Software – Practice &
Experience, v.35 n.8, p.705-754, July 2005.

[11] S. Subramaniam, et al. Improving process models by discovering decision
points. Information Systems, 32(7):1037–1055, 2007.

[12] E. Santos, J. Pimentel, T. Pereira, K. Oliveira, J. Castro. Business Process

Configuration with NFRs and Context-Awareness. ER@BR, 2013.

[13] TOGAF Version 9.1. 2011. Retrieved from:
http://pubs.opengroup.org/architecture/togaf9-doc/arch/

[14] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and Change

Support Features – Enhancing Flexibility in Process-Aware Information
Systems. Data and Knowledge Eng. 66(3):438–466, 2008.

[15] E. Yu and A. Lapouchnian. Architecting the Enterprise to Leverage a

Confluence of Emerging Technologies. In Proc. ACET 2013 at CASCON
2013, Toronto, Canada, 2013.

http://dl.acm.org/citation.cfm?id=1070905&CFID=458377398&CFTOKEN=33538302
http://dl.acm.org/citation.cfm?id=1070905&CFID=458377398&CFTOKEN=33538302
http://dl.acm.org/citation.cfm?id=1070905&CFID=458377398&CFTOKEN=33538302
http://ceur-ws.org/Vol-1005/erbr2013_submission_29.pdf
http://ceur-ws.org/Vol-1005/erbr2013_submission_29.pdf

	I. Introduction
	II. A Design Space for Process Architectures
	III. Dimensions for Process Architecting
	A. The Temporal Dimension
	B. The Recurrence Dimension
	C. The Plan/Execute Dimension
	D. The Design/Use Dimension
	E. A BPA Model with Relationships from Four Dimensions

	IV. Analyzing Process Architecture Alternatives
	A. Representing and Analyzing Business Process Architecture Alternatives with Goal Models
	B. Business Process Architecture Adaptation

	V. Related Work
	VI. Concluding Discussion and Future Work
	References

