
Theories and Proof Systems for the PSPACE and the EXP-Time

Hierarchy

Thesis Proposal Document
$Id: wtheories.tex,v 1.50 2005/06/10 20:26:50 alan Exp $ LATEX’d on June 10, 2005

Alan Skelley

June 10, 2005

1 Introduction

This document is originally a working paper recording our results in progress. It is hoped that
with some re-organization, addition of basic definitions, introduction and conclusion, and of course
completion of the (anticipated) results, it will become a thesis. Immediately below is a short
idealized introduction describing our over-all aims, and following that is an outline of what has
been done and what remains.

1.1 (Idealized) Introduction

In this article we present bounded arithmetic theories and propositional proof systems correspond-
ing to large complexity classes, including polynomial space (PSPACE), exponential time (EXP)
and the levels of the nondeterministic exponential-time hierarchy. Zambella, Cook and more recent
authors have used second-order (i.e., two-sorted) theories to great effect to capture the string-based
computation of Turing machines more simply than with previous one-sorted theories of bounded
arithmetic. Furthermore, this second-order “viewpoint” has allowed the development of theories
for some very small complexity classes previously not captured with one-sorted theories due to
their inherent coarseness. We extend the second-order viewpoint to higher complexity classes in a
natural way by adding a third sort to represent exponentially large objects such as computations
from these strong classes, outputs of unbounded exponential-time functions, or even oracles.

Another contribution of this article is to define a calculus of functions that operate on these
three sorts of objects. From a complexity standpoint for the classes we are interested in, the ob-
jects are the usual binary strings, always of polynomial length; numbers, which are to be thought
of as short inputs and presented in unary for the purposes of resource bounds; and finally, su-
perstrings: exponential-length strings indexed by standard binary strings, and not counted in any
resource bounds. This function calculus is very nicely suited for expressing the computational ob-
jects reasoned about by our third-order theories of bounded arithmetic; additionally, it is useful for
discussing with one unified notation both polynomially-bounded functions and more exotic func-
tions dealing with exponential-sized inputs and outputs. We define complexity classes of functions
and predicates, and in each case the string functions or string predicates in these classes constitute
exactly the corresponding complexity class of polynomially-bounded string functions or languages.

Finally, we give translations of certain theorems of some of these theories into quantified versions
of BPLK.

1

1.2 Overview and Proposal for the Thesis

The document that follows is in a somewhat intermediate state. Its contents are in approximately
the same order as in a future thesis, but some things are missing, and there are notes about
unresolved questions or issues directly in the text. Here we take the reader through what has been
done and what remains to be done. We present this as a kind of idealized table of contents. Even
portions described as essentially complete should of course be understood to require polishing and
in most cases the addition of more and clearer narrative.

1. Introduction and Related Work. To be done; can borrow heavily from research proposal
and depth oral papers.

2. The Third-Order Viewpoint. This is basically section 2 below and addresses the lan-
guage of third-order arithmetic, as well as third-order computation. This is new; although
some authors have discussed higher-order computation before, it hasn’t been fully addressed,
particularly not with respect to defining functions in full generality as we aim to do. Previous
higher-order theories for our classes were number-based, and thus did not follow the newer
Zambella-Cook framework of string-based theories.

3. Preliminaries. To be done; this involves importing definitions of things such as BPLK from
my master’s thesis and papers.

4. Third-Order Theories. Basically section 3 below; defines the axiom schemes and main
theories to be considered. These are all new. There are W i

1 and TW i
1, analogues of U i2 and V i

2

(see below for the intended complexity classes), as well as HW 0
1 , a weaker PSPACE theory

based on a recursion scheme, and TTW 0
1 , an exponential-time theory which is to W 0

1 and W 1
1

as TV 0 is to V 0 and V 1.

5. Third-Order Parikh’s Theorems. Section 4 below; this is new, although of course based
on the lower-order case. Nevertheless, required some care to do properly.

6. Basic Facts About the Theories. This section will include basic points such as when
induction is derived in a theory from comprehension, how the theories relate to lower-order
theories, and so on. Section 5 below contains some of these facts in extremely condensed
form; more will be added as the need arises.

7. Replacement Schemes. Proof of replacement in some theories. Section 6 below. As
written, applies only to W 1

1 and ΣB1 -replacement, and must be expanded to W i
1 and ΣBi -

replacement. These proofs are adapted from Buss’ thesis and are not really a contribution.

8. Definability in the Theories. Section 7 below contains our definition of third-order de-
finability, which covers the most general case of arguments and function value of any sort.
These were not obvious, especially in the case of superstring-valued functions, which are
problematic as our third-order variables are unbounded. The existing definability results in
that section are for ordinary string functions only, and only for W 1

1 . We aim to prove that
(FPSPACE(Σexpi−1)�)+ and (FEXP(Σexpi−1)�)+ are ΣBi -definable in respectively W i

1 and TW i
1; re-

stricted to strings, these classes are exactly the usual complexity classes FPSPACEΣpi−1 and
FEXPΣpi−1 .

2

Although these results have lower-order analogues, they are nevertheless somewhat new; in
particular, our theories are like Buss’ original U1

2 and V 1
2 in that they are “unbounded do-

main”; later results about U i2 and V i
2 and the exponential-time hierarchy pertain to Razborov’s

“bounded domain” versions, which sidestep the problems of unbounded higher-order objects.

9. A Universal Conservative Extension of HW 0
1 . This is basically done in section 8 below;

it is somewhat nontrivial also, and new. If there is time, we plan to adapt the Cook-Thapen
argument to use this open theory to show that HW 0

1 does not prove the replacement scheme,
subject to a complexity assumption.

Since we also have a recursion-theoretic characterization of FEXP+, it should be possible to
obtain an open theory for exponential time with only a minor change, and if time allows we
will do this as well.

10. Witnessing Theorems. Section 10 below contains witnessing theorems for W 1
1 and HW 0

1

for the case of string functions; these are new but must be generalized to the full third-
order functions, and further expanded to W i

1 and TW i
1 (to match the results about definable

functions in these theories).

11. Propositional Translations. Section 11 below contains a translation of ΣB0 theorems of
W 1

1 into BPLK, which is new. We aim to generalize this translation to ΣBi theorems of W i
1

and a quantified version of BPLK.

12. Conclusions. To be done.

To summarize, our contributions thus far are: the third-order viewpoint and function calculus;
the third-order theories; third-order Parikh’s theorems; general definitions of third-order definabil-
ity; special cases (string functions only; first level of hierarchy) of the definability and witnessing
theorems for the theories; the universal conservative extension of HW 0

1 ; propositional translation
into BPLK.

What remains to be done is: generalize provability of replacement schemes; generalize definabil-
ity and witnessing theorems; clarify, expand and polish throughout. All the preceeding should be
straightforward. Showing the conditional separation of replacement from HW 0

1 is not expected to
be difficult if undertaken, nor is the universal theory for exponential time. The thorniest remaining
task is to generalize the propositional translations.

2 The Third-Order Viewpoint

In this section we define and explain the features and notation of our third-order viewpoint; First
the language and formula classes of bounded arithmetic, followed by our calculus of third-order
functions.

2.1 Bounded Arithmetic

We consider a three-sorted (“third-order”) predicate calculus with free and bound variables of the
first sort named a, b, c, ... and x, y, z, ..., respectively, and free and bound variables of the second sort
named A,B,C, ... and X,Y, Z, ..., and likewise of the third sort named A,B, C, ... and X ,Y,Z,
The first sort are intended to represent natural numbers; the second, finite sets of natural numbers;
and the third, sets (not necessarily finite) of finite binary strings, referred to as “superstrings”. The

3

language L3
Aconsists of the following set of nonlogical symbols L3

A = {0, 1,+, ·, |·|,∈2,∈3,≤,=1,=2},
the same as the set L2

Afor V 1 but with the addition of the third-order membership predicate A ∈3 B.
We will often omit the subscripts on ’=’ and ’∈’ as there is no danger of confusion. Note in particular
the absence of the smash function symbol and third-order equality, as well as the length function
being present for strings only: the expression |X| is intended to represent 1 plus the largest element
of the set X, or 0 if empty. Such sets may be thought of interchangeably with finite binary strings
under the following mapping, as in [3]: The set X represents the string with length |X| − 1 whose
ith bit is 1 exactly when i ∈2 X. This map is a bijection with the exception that the string
corresponding to the empty set would be undefined, so we define it to be the empty string.

Superstrings (or initial segments thereof) will also sometimes be thought of as finite or infinite
strings of bits. The (ordinary) strings indexing the superstring are referred to as bit-indices. Since
there is no length-function analogue for superstrings, the desired “length” (i.e., lexicographically
maximal bit-index under consideration) will have to be specified separately.

Number terms are defined identically as in V 1, in particular not including any reference to third-
order variables. Formulas are defined as usual, with the addition of the third-order variables and
quantifiers on those variables. There is a hierarchy of classes ΣBi and ΠBi of formulas in this language
analogous to the hierarchies ΣB

i and ΠB
i of second-order formulas: ΣBi consists of those formulas with

arbitrarily many bounded first- and second-order quantifiers, and exactly i alternations of third-
order quantifiers, the outer-most being restricted, i.e. equivalent to an existential quantifier. We
shall be concerned only with i ∈ {0, 1}. In contrast to this more general class, recall the definition
of strict ΣB1 -formulas as those consisting of a single existential third-order quantifier followed by
a formula with no third-order quantifiers; we shall also refer to a slightly more inclusive class of
formulas called strict ∀2ΣB1 , consisting of a single bounded universal second-order quantifier followed
by a strict ΣB1 -formula. We shall refer to this class simply as ∀2ΣB1 , omitting the explicit epithet
“strict”.

Note that third-order quantifiers are not bounded, and in fact there is no apparent way to bound
them (short of using an unbounded quantifier of a lower order) due to the lack of a length function.
Fortunately, in the appropriate fragments of the theories we shall be concerned with, these variables
will always be implicitly bounded, in the sense that the bounds on lower-order quantifiers will limit
what part of the superstring actually affects the truth-value of a given formula..

2.2 Third-Order Computation and Function Calculus

In this section we introduce our framework of third-order computation. This includes a calculus
of third-order functions and multi-functions that will be used later to obtain universal versions of
some theories. The intent is to capture the nature of computation defined by third-order theories
of bounded arithmetic. For this reason, we are primarily interested in classes of polynomially-
bounded functions (from strings to strings) or similar, as this makes operations such as composition
of functions more natural. We are consequently interested in our classes of functions somehow
maintaining an exponential-size distinction between the three sorts, as do (standard) theories of
bounded arithmetic.

Notwithstanding the above, we make the following definitions as general as possible:
Let D = 〈N, {0, 1}∗, 2{0,1}∗〉. This will be the three-sorted domain of our multi-functions: The

natural numbers, finite binary strings, and finite sets of finite binary strings. (XXX: Notation
for finite subsets?) Note that these sorts are similar to those described earlier for third-order
theories of bounded arithmetic, except that the second type is binary strings, not finite sets of
numbers, and that the third type are now finite sets of strings. We will use the same typographical

4

conventions as for variables above to refer to members of these domains. Function symbols in our
calculi will similarly be named from the lists f, g, ...;F,G, ...; and F ,G, ... to indicate the sort of
the range of the function. Functions or objects of unspecified sort will be named with a tilde such
as ã or f̃ . We will also consider third-order predicates, which for simplicity we will consider as 0-1
valued functions.

Definition 2.1. Let E = E
1 ∪E2 ∪E3 be the set of functions of the three sorts. This includes both

functions and multi-functions. The 0-1 valued functions are referred to as E0 ⊂ E1.

2.2.1 Computation of Functions

Now, expanding the usual definition of Turing machines computing multi-functions from binary
stings to binary strings, we define what it means for Turing machines to compute multi-functions
from E:

Definition 2.2. Let Nj × ({0, 1}∗)k × (2{0,1}
∗
)l be the domain of some multi-function in f̃ ∈ E.

Then an oracle machine M computes the function if for every value of the parameters,

MA1,...Al(1a1#...#1aj#A1#...#Ak)

outputs some image of the function onto a special write-only output tape, in unary in the case of a
number-valued function.

Not to be confused with the above, if the multi-function is F ∈ E3, we say that M accepts F
if there is some image W = F(a1, ..., aj , A1, ..., Ak,A1, ...,Al) and

MA1,...Al(1a1#...#1aj#A1#...#Ak#X)

accepts (or outputs 1) exactly when X ∈ W.

We can extend this definition to other computation models operating on strings. The following
definition is vague and intended only to give an approximate naming convention. Specific instances
of this definition will need clarification.

Definition 2.3 (Meta-Definition). Let FC be a complexity class of string multi-functions with
a well-understood semantics for oracle access such as a query tape, oracle gate, or similar. Then
FC+ denotes the class of multi-functions from E computed by machines of the model of FC in the
sense of the above definition.

Alternatively, let C be a complexity class of languages, again with an oracle semantics. Then
C◦ denotes the class of multi-functions F ∈ E3 for which there is a machine MF of the model of C
accepting F in the sense of the above definition. In this case we ordinarily intend for the resource
bounds of the computation to be determined by the arguments to the function only, and not the
special query argument X.

Finally, for C a class of languages, C� denotes the class of 0-1 valued functions f ∈ E0 such
that there is a machine Mf from the class of C accepts exactly when the value of f is 1.

Some comments about superstring-valued functions are in order: For the purposes of our func-
tion calculus, the superstring values of functions are finite, bounded strings, and the (recursion-
theoretic) operations defined below will allow only such “well-behaved” superstring-valued functions
to be defined. However, the previous definition for C◦ seems to allow the superstring value of a
function to be infinite (for example, the machine accepts every X). In this case, the value of the

5

“function” is undefined, exactly as it would be if the machine ran forever. For the complexity
classes of interest to us, it will be trivial to eliminate these problems syntactically (with timers and
input length checks).

Note that for some C and FC being closely related classes, for example P and FP , the
superstring-valued functions in C◦ are in general very different from those in FC+, as the su-
perstring accepted in the former case may be much longer (by an exponential factor) than the
one computed in the latter. Thus we must be clear about which paradigm of superstring–valued
computation we mean in each circumstance. With these points in mind, call a functions from the
calculus polynomially bounded if the number outputs, lengths of string outputs and lengths of
bit-indices in superstring outputs are all bounded by polynomials in the number inputs and lengths
of string inputs of the function. We deliberately exclude superstring inputs from the computation
of this bound.

FP+∪P◦ is then the class of polynomially bounded polytime functions. FPSPACE+ is sim-
ilarly the class of polynomially bounded PSPACE functions (where the space bound applies to
both the work tape and all query tapes used for reading superstring inputs). FEXP+ is the class of
polynomially bounded exponential time functions, where the space used on query tapes is also poly-
nomially bounded. Note that unlike the case for P, PSPACE◦ ⊂FPSPACE+, and EXP◦ ⊂FEXP+.
Restricted to functions from strings to strings, these classes are just the usual function classes.

Some classes of third-order predicates, our analogue of languages, are the following: P�, NP�,
PSPACE�, NPSPACE�, EXP� and NEXP� are the predicates computable in polynomial time, non-
deterministic polynomial time, polynomial and nondeterministic polynomial space, and exponential
and nondeterministic exponential time, respectively. Restricted to unary predicates on strings, these
would be exactly the classes of characteristic functions of the usual complexity classes of languages.
It is easy to see, however, that P� 6=NP�, as a predicate in the latter class can determine if a
given superstring contains a 1 (up to a bound given by a string argument), while this predicate
is clearly not in P�. It does seem that the usual argument for Savitch’s theorem goes through, at
least for NPSPACE�: configurations are still described by polynomial-sized strings. We conclude
that PSPACE� =NPSPACE�.

XXX: Reference Klote-Takeuti for higher-order oracle semantics.
Now, in order to expand our discussion to the exponential-time hierarchy, we must first address

relativising classes of functions by adding oracles. It is most fervently desired that the reader not
confuse these third-order oracles (our generalization of ordinary oracles) with the above use of
oracle machines to receive third-order inputs.

We now define our third-order version of oracle relativisation:

Definition 2.4. A third-order oracle Turing machine has a number of specified write-only query
tapes, each one designated with a sort. The machine may write polynomially-bounded values on
these tapes, in the sense that the numbers (in unary), lengths of strings, and bit-indices of su-
perstrings written are all bounded by fixed polynomials in the machine’s (non-superstring) inputs.
When the machine enters the special query state, these tapes are erased, and a value is returned
to the machine by way of a special read-only reply tape (with random access in the case of a
superstring-valued oracle).

Now paralleling the definition of the ordinary complexity classes Σexp
i (= NEXPΣpi−1) of the

nondeterministic exponential-time hierarchy we can define the corresponding classes of 0-1 valued
functions from E

1. It is important to observe that the queries made of the Σp
i−1 oracle by the NEXP

machine in the standard definition are in general of exponential size. We define (Σexp
1)� =NEXP�

and (Σexp
i)� = (NEXP�)(Σexpi−1)� . In other words, each higher level of the hierarchy is obtained

6

by augmenting nondeterministic exponential time with a third-order oracle for the previous level.
Since the queries to this oracle must be polynomially bounded per our definition, it can be seen
that this relativisation corresponds to unbounded access to an oracle from the appropriate level of
the quasi-polynomial-time hierarchy (considered as a predicate on the superstring inputs); however
in the hands of an NEXP machine such an oracle is no more powerful than one from the same level
of the polynomial-time hierarchy, as the machine could simply make polynomially longer queries
of this latter oracle. Thus as predicates purely on strings, the levels of our hierarchy correspond
precisely with the levels of the ordinary exponential-time hierarchy.

The function classes (�expi)+=(FEXP(Σexpi−1)�)+ are the classes of polynomially bounded functions
computed by exponential-time Turing machines relativized with a third-order oracle for a function
from (Σexp

i)�, and similarly as functions purely of strings correspond to the usual �expi .
It should be noted that (Σexp

i)� = (Πexp
i)� seems to imply that the third-order exponential-time

hierarchy collapses to the ith level, while this is not known for the ordinary case.

2.2.2 Recursion Theory of Functions

Now let us define some standard functions. The number functions {x+y, x·y}, constants 0,1, etc. are
as usual. The bit, string successor and concatenation functions {bit(x, Y), s0(X), s1(X), X _ Y }
are also standard. {|X|, X ∈ Y, 1x} respectively give the length of a string, the (0-1-valued)
characteristic function of Y, and a standard string of length x.

We now define several operations on these functions. As our focus is on string functions as
opposed to the standard recursion-theoretic viewpoint of number functions, we will comment in
each case on how these operations compare to standard operations on number functions.

Define f̃ (of any sort) by limited recursion from g̃, h̃ (also of any sort) and l by f̃(0, ...) =
g̃(...), f̃(x+1, ...) = h̃(x, f̃(x, ...), ...) and either f̃(x, ...) ≤ l(x, ...) or |f̃(x, ...)| ≤ l(x, ...), as appropri-
ate. This operation corresponds roughly to limited recursion on notation for number functions, as
it iterates a function (h̃) a polynomial number of times subject to a bound on growth. Recursion
is the same operation without the bound on growth.

Define f̃ by limited doubling recursion from g̃ and l by f̃(0, ỹ, ...) = g̃(ỹ, ...), f̃(x+1, ỹ, ...) =
f̃(x, f̃(x, ỹ, ...), ...) and either f̃(x, ỹ, ...) ≤ l(x, ...) or |f̃(x, ỹ, ...)| ≤ l(x, ...), as appropriate. This
operation corresponds roughly to limited recursion for number functions, as it iterates a function
(g̃) an exponential number of times (by doubling the number of nestings a polynomial number of
times) subject to a bound on growth. Doubling recursion is the same operation without the
bound on growth.

Define f̃ (of any sort) by limited long recursion from g̃, h̃ (also of any sort) and l by
f̃(10, ...) = g̃(...), f̃(X + 1, ...) = h̃(x, f̃(X, ...), ...) and either f̃(X, ...) ≤ l(X, ...) or |f̃(X, ...)| ≤
l(X, ...), as appropriate. This operation is similar to the previous one in that it iterates a function
an exponential number of times; however, it differs in that the exponentially many iterations are
performed directly by using a string as an exponential-length counter. This operation presupposes
a suitable string successor function X + 1.

Define F by limited 3-comprehension from g, h ∈ E1 by F(..)(X)↔ (|X| ≤ g(..)∧h(X, ..) =
0).

Observe that each of the above operations, when used to obtain a superstring-valued function,
in fact defines a unique function. For our purposes pertaining to theories of bounded arithmetic
(in which superstrings are not bounded), it is important to distinguish these “pure” operations
from bounded versions of them that only specify an initial segment of the superstring value of the
function. The computational object so defined is now a multifunction, as there are many correct

7

images of the multifunction for any set of parameters. For example, here is a bounded version of
F defined by limited 3-comprehension from g and h: |X| ≤ g(...) ⊃ (F(..)(X)↔ h(X, ..) = 0).

It should be noted here that the recursion operations, as well as simple composition of functions,
appear to be significantly more powerful when applied to superstring-valued functions. This is
because in the composition of two such functions, the space may not be available to write down the
intermediate value. A space-bounded computation model would then have to query the “inner”
function many times (to retrieve bits of its output as needed) in order to compute the outer function.
The composition of two polynomially bounded number- or string-valued functions appears to require
the sum of the time requirements (computing first one then the other function), while the required
space does not increase. For superstring-valued functions, on the other hand, the time required
for the composition as described seems in general to be the product of the time required for each
component, while the space required is the sum. If space is not bounded then the intermediate
results can be written in full, and thus time and space requirements are as for the composition of
number- or string-valued functions.

At this point we can extrapolate a bit from Cobham to see that FP+∪P◦ is exactly the closure
of I = {0, 1, x+ y, x · y, 1x, |X|, s0(X), s1(X),bit(x, Y), X _ Y,X ∈ Y} under composition, limited
3-comprehension and limited recursion with the latter restricted to E1 ∪E2. Probably fewer initial
functions suffice but these are all in FP+ and are enough to generate the entire class.

Proof Sketch. With {0, 1, x + y, x · y, 1x, |X|} we can construct numbers of polynomial magnitude
(as a function of the lengths of string inputs) and thus also strings of polynomial length. Now we
have essentially all the initial functions of Cobham. Limited recursion together with bit can then
simulate limited recursion on notation. Once all functions from E

2 ∩ FP+ are available, the rest of
the class is easily obtained.

All these initial functions are clearly in FP+∪P◦, which is closed under limited recursion (not
on E3), limited 3-comprehension and composition.

To obtain FP+ but not P◦, we would need an alternative way to obtain superstrings, as in
this case 3-comprehension produces exponentially longer superstrings than functions from FP+ can
output. As this is not our focus here, we leave this problem as an exercise. XXX: Can I say that
in a thesis?

FPSPACE+ is contained in the closure of FP+∪P◦ by limited recursion on E3, composition
and limited 3-comprehension: First, a superstring-valued FP+∪P◦ function can compute from
the input of a PSPACE Turing machine the transition function of the machine as a table listing
the next configuration for each given configuration. Another function in FP+∪P◦ can compose
such a function with itself by reading two (polynomial-sized) entries from this table. Therefore
after applying limited recursion on these two functions we obtain a third that outputs the 2x-step
transition function and from this it is trivial to extract the value of the original PSPACE function.
Since FPSPACE+ is closed under limited recursion (as each such operation increases the space
requirements of a function by a polynomial factor), limited 3-comprehension and composition, we
can conclude that this class is exactly the closure of the initial functions under these operations.

FPSPACE+ is alternatively characterized as the closure of FP+∪P◦ under composition and
limited doubling recursion restricted to E1 ∪ E2. The step function of a PSPACE Turing machine
can be iterated exponentially many times using these operations, and conversely FPSPACE+ is
closed under limited doubling recursion as the recursion can be unwound with only a polynomial
amount of additional space.

FEXP+ is the closure of FP+∪P◦ under limited doubling recursion on E3: The step function of
an exponential-time Turing machine can be iterated exponentially many times.

8

3 Some Third-order Theories

In this section we give the definition of several third-order theories and axiom schemes.
W i

1 is a theory over L3
A. The axioms of W i

1 are B1-B12, L1, L2 and SE of [Cook/Kolokolova],
(strict) ∀2ΣBi -IND and the following two comprehension schemes ΣB0 -2COMP:

(∃Y ≤ t(x,X))(∀z ≤ a)[φ(x,X,X , z)↔ Y (z)]

and ΣB0 -3COMP:
(∃Y)(∀Z ≤ a)[φ(x,X,X , Z)↔ Y(Z)],

where in each case φ ∈ ΣB0 subject to the restriction that neither Y nor Y, as appropriate, occurs
free in φ.

W 1
1 defined above is slightly different than the version published in CSL04 [7]; it includes a

string equality symbol and extensionality axiom. This predicate is ∆B0 -definable in the original
version of the theory and can thus be conservatively added and used in all the axiom schemes.

Define Ŵ i
1 to be the analogous theory with the induction scheme restricted to strict ΣBi for-

mulas. Note that Ŵ 0
1 = W 0

1 .
TW i

1 is defined identically as above, but with the following scheme named ΣBi -SIND (string
induction) in place of ΣBi -IND:

[∀X,Y, Z((|Z| = 0 ⊃ φ(Z)) ∧ (φ(X) ∧ S(X,Y) ⊃ φ(Y)))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣBi , where S(X,Y) is the following formula expressing that Y is the lexicographically
next finite set after X:

|Y | ≤ |X|+ 1∧ ∃i ≤ |Y |[Y (i)∧¬X(i)∧ ∀j < i(X(j)∧¬Y (j))∧ ∀j ≤ |Y |(i < j ⊃ (X(j)↔ Y (j)))].

(This formulation is due to Phuong Nguyen).
TTW i

1 is yet another theory in this vein, with a yet stronger induction scheme named ΣBi -SSIND
(“superstring” induction). Note that since (by design) there is no way to bound a third-order object,
the scheme refers to a term t, and restricts its attention to the first 2t bits of the objects. It is
intended that this t be some crucial bound from φ. The scheme is:

[∀X ,Y,Z((∀X ≤ t¬Z(X)) ⊃ φ(Z)) ∧ (φ(X) ∧ S3(X ,Y, t) ⊃ φ(Y))] ⊃ ∀Zφ(Z)

for φ ∈(strict)ΣBi , where S3(X ,Y, z) is the formula

∃Z ≤ z[Y(Z) ∧ ¬X (Z)∧
∀X ≤ z(L2(X,Z) ⊃ X (X) ∧ ¬Y(X)) ∧ ∀X ≤ z(L2(Z,X) ⊃ X (X)↔ Y(X)))

and L2(X,Y) is the formula

∃i ≤ |X|[Y (i) ∧ ¬X(i) ∧ ∀j ≤ |Y |(i < j ⊃ (X(i)↔ Y (i)))].

The scheme ΣB0 -superstring-recursion is the following:

∃Xφrec(x,X),

where φ(Y,X) ∈ ΣB0 , and

φrec(x,X) ≡ ∀Y ≤ x(X (Y)↔ φ(Y,X<Y)),

9

where X<Y is a chop function and x is not free in φ. φ (and therefore also φrec) may have other
free variables than the displayed ones, but φ must have distinguished string and superstring free
variables Y and X . φrec then has X free as well as a new variable x.

The scheme ΣB0 -superstring-halfrecursion is the following:

∃Xφhrc(x,X),

where φ(Y,X) ∈ ΣB0 , and

φhrc(S,X) ≡ ∀Y ≤ x(X (Y)↔ φ(Y,X<Y/2)),

where X<Y/2 is a chop function returning the first Y
2 (as a number) bits of X . φ and φrec have the

same free-variable conventions and requirements as in the superstring recursion scheme.
Then HW 0

1 is the theory W 0
1 with the addition of the ΣB0 -superstring-halfrecursion scheme.

4 Third-Order Parikh’s Theorems

In this section we prove a generalization of Parikh’s theorem for third-order theories. First, some
definitions:

Definition 4.1. A formula is 2-bounded if all of its first- and second-order quantifiers are
bounded. (It may contain arbitrary third-order quantifiers).

Let T be a theory extending W 0
1 and L ⊇ L3

A be the vocabulary of T . Then T is a 2-bounded
theory if it is axiomatized by 2-bounded formulas.

Definition 4.2. Let M = 〈M1,M2,M3〉 be a model of B1-B12, L1, L2, SE. Analogously to the
first-order case, a 2-cut in M is any subset I = 〈I1 ⊆ M1, I2 ⊆ M2, I3 = M3〉 closed under x + 1
and ≤ (for numbers and strings). This last point means that if b ∈ I1 and M |= a ≤ b for a ∈ M1

(or M |= |A| ≤ b for A ∈ M2), then a ∈ I1 (respectively, A ∈ I2). For a string A ∈ M2, it is
equivalent to say that if |A| ∈ I1 then A ∈ I2.

This is denoted I ⊆2
e M .

Lemma 4.3. Let M be a third-order structure with vocabulary L and and I ⊆2
e M be a 2-cut of M

closed under all the function symbols in L. Finally, let φ(a,A,A) be a 2-bounded formula with all
free variables displayed, and b,B,B ∈ I. Then

I |= φ(b,B,B) iff M |= φ(b,B,B).

Proof Sketch. This lemma is proved by induction on the quantifier complexity of φ.
The base case is quantifier-free formulas, and is clear, as all parameters are in the cut.
For the induction step, consider I |= ∀X ≤ tφ(X). All parameters (including those in t),

not shown, are from I. Then I |= φ(B) for each B ≤ t. But then M |= φ(B) for each B ≤ t
in M as all such elements are already in I, and so M |= ∀X ≤ tφ(X). The other direction
(M |= ∀X ≤ tφ(X) =⇒ I |= ∀X ≤ tφ(X)) is easier as the range of the universal quantifier is
decreased.

The case of a first-order quantifier is very similar, and existential quantifiers are handled sym-
metrically. The case of a third-order quantifier is straightforward, as the range of the quantifier
remains the same in M or I.

10

Note that the above lemma does not require any assumption about function symbols being
bounded by monotone terms. It also does not restrict the sorts of the range or any component of
the domain of a function symbol.

At this point it is apparent that the open axioms B1-B12, L1 and L2 as well as SE and the
comprehension and recursion schemes, are satisfied in any L-closed 2-cut of any model of any
2-bounded theory T , as all are 2-bounded. In fact, the same is true of the induction schemes,
even the sharply bounded ones. This is because they all have 2-bounded versions. The 2-bounded
B-ΣBi -SIND is:

[∀Z ≤ 0∀X ≤ |W |∀Y ≤ |W |(φ(Z) ∧ (φ(X) ∧ S(X,Y) ⊃ φ(Y)))] ⊃ φ(W)

and the 2-bounded B-ΣBi -IND is:

[φ(0) ∧ ∀x ≤ w(φ(x) ⊃ φ(x+ 1))] ⊃ φ(w).

These bounded induction schemes logically imply the unbounded versions. Conversely, the un-
bounded schemes prove the bounded ones: for example, ΣBi -SIND on the formula |X| ≤ |W | ⊃ φ(X)
gives

[∀X,Y, Z((|Z| = 0 ⊃ (|Z| ≤ |W | ⊃ φ(Z))) ∧ ((|X| ≤ |W | ⊃ φ(X)) ∧ S(X,Y) ⊃
(|Y | ≤ |W | ⊃ φ(Y))))] ⊃ ∀Z(|Z| ≤ |W | ⊃ φ(Z)).

By strengthening the hypothesis,

[∀Z ≤ 0∀X,Y (φ(Z) ∧ ((|X| ≤ |W | ⊃ φ(X)) ∧ S(X,Y) ⊃
(|Y | ≤ |W | ⊃ φ(Y))))] ⊃ ∀Z(|Z| ≤ |W | ⊃ φ(Z))

and again by the fact that if S(X,Y) then |X| ≤ |Y |,

[∀Z ≤ 0∀X ≤ |W |∀Y ≤ |W |(φ(Z) ∧ (φ(X) ∧ S(X,Y) ⊃ φ(Y)))] ⊃ ∀Z(|Z| ≤ |W | ⊃ φ(Z)).

Finally,
[∀Z ≤ 0∀X ≤ |W |∀Y ≤ |W |(φ(Z) ∧ (φ(X) ∧ S(X,Y) ⊃ φ(Y)))] ⊃ φ(W),

which is B-φ-SIND.
Thus we have proven that all the theories described above in section 3 are in fact 2-bounded.
A corollary of the previous lemma:

Corollary 4.4. Let T be any 2-bounded extension of W 0
1 M be a model of T . Let I ⊆2

e M be
a 2-cut of M closed under all the function symbols in L. Then the (2-bounded) axioms of T are
satisfied by I, and consequently, I |= T .

We require one additional definition before stating Parikh’s theorem for first- and second-order
existential quantifiers:

Definition 4.5. Let T be a three-sorted theory with vocabulary L ⊇ L3
A containing the open axioms

of W 0
1 . We say that T has monotone 2-bounding if the following hold:

1. For every number-valued function symbol f ∈ L, there is a number term tf of L such that

T ` ã ≤ b ⊃ f(ã) ≤ tf (b),

where ã is a list of variables of any order and b is a list of number variables, and ã ≤ b
abbreviates a conjunction of subformulas of the form ai ≤ bi or |Ai| ≤ bi, as appropriate, for
each ãi not a third-order variable.

11

2. For every string-valued function symbol F ∈ L, there is a term tF of L such that T ` ã ≤ b ⊃
|f(ã)| ≤ tf (b).

Theorem 4.6 (Third-Order Parikh’s Theorem). Let φ(x̃) be a 2-bounded formula, all free vari-
ables displayed, and T a 2-bounded extension of W 0

1 with vocabulary L and monotone 2-bounding.
Further, assume that T ` ∀x̃∃ỹφ(x̃, ỹ), where x̃ are of any sort and ỹ is first- or second-order.

Then there is some term t such that T ` ∀x̃∃ỹ ≤ t(x̃)φ(x̃, ỹ).

Proof. This theorem is proved by a compactness argument. Assume the hypothesis of the theorem,
and furthermore that T 6` ∀x̃∃ỹ ≤ t(x̃)φ(x̃, ỹ) for any term t. Then by compactness the theory

T ′ = T + {∀ỹ ≤ t(c̃)¬φ(c̃, ỹ) : t any term of L}

is consistent with c̃ new constants of the appropriate sorts.
Now, let M |= T ′ and define I ⊆2

e M by b ∈ I1 (respectively, B ∈ I2) iff there is a term t such
that M |= b < t(c̃) (M |= |B| < t(c̃)). (And I3 = M3). It is evident that I is indeed a 2-cut
of M , but for I to be L-closed, it is essential at this point for T to have monotone 2-bounding.
Otherwise, there could be some b ∈ I by virtue of M |= b ≤ t(c̃), yet f(b) 6∈ I for f is not monotone.
However, our assumption ensures that M |= f(b) ≤ tf (t(c̃)). The monotone 2-bounding assumption
implies that applying function symbols to elements in I (which are bounded by terms in c̃) produces
elements which are also bounded, and so already in I.

I is then a model for T by the corollary, and yet I |= ∃x̃∀ỹ¬φ(x̃, ỹ), a contradiction.

5 Facts, Conjecture and Questions About the Theories

In this section we summarize what is known about the various theories described above. Many of
these facts are proved in subsequent sections on definability or witnessing theorems. The terminol-
ogy and notation is admittedly loose in this section as we are chronicling work in progress. Please
see the following sections for the definitions of definability of third-order functions.

Lemma 5.1. W 0
1 is a conservative extension of V , the two-sorted theory for the polytime hierarchy.

Proof outline. The only axioms stating the existence of third-order elements are the comprehension
axioms. Any model of V can therefore be expanded to a model of W 0

1 merely by adding third-order
elements to satisfy each comprehension instance (ΣB0 formula with parameters from the model under
construction). For a general ΣB0 -3COMP instance with free variables, we must supply an object
satisfying the instance for each set of parameters from the model assigned to the free variables. ΣB0
formulas are closed under substitution of formulas for free third-order variables, so ultimately each
comprehension instance unwinds to a ΣB0 formula. In the end, adding these third-order elements
will not affect the truth-value of purely second-order formulas.

The ΣB0 -definable functions of W 0
1 are thus FPH+∪FPH◦ (this requires more justification).

Following the usual argument, a function symbol for any such function can be added to W 0
1 and

results in a conservative extension. The ΣB1 -definable functions of W 0
1 are also FPH+∪FPH◦, as

the usual witnessing argument for V can be extended to handle third-order existential quantifiers,
which arise only because of the comprehension axioms and introduction rules, and in either case
are witnessed by FPH+∪FPH◦ functions.

The ΣB1 -definable functions of W 1
1 are exactly FPSPACE+ [7].

The ΣB1 -definable functions of Ŵ 1
1 are also exactly FPSPACE+.

12

A big question is whether or not this theory proves the replacement schemes from the next
section.

XXX: WPV, universal third-order polytime theory?
XXX: Question: If Ŵ 1

1 is conservative over a minimal theory for PSPACE e.g. HW 0
1 , does

this imply any complexity collapse?
The ΣB1 -definable functions of TW 0

1 are also only FPH+∪FPH◦. TW 0
1 should be a conservative

extension of TV , which is V with the addition of ΣB
∞-SIND, but TV = V . In fact,

Lemma 5.2. W 0
1 = TW 0

1

Proof. We use the same “shortening of cuts” technique for showing Si+1
2 ⊇ T i2 proves W 0

1 ` ΣB0 -
SIND:

Let φ(X) ∈ ΣB0 and A a parameter. Define

ψ(x) := ∀X ≤ x∀Y ≤ |A|∀Z ≤ |A|(φ(Y) ∧ Plus(X,Y, Z) −→ φ(Z)).

(For a suitable function symbol Plus). Now, trivially W 1
0 ` ψ(0). Also,

W 0
1 ` (∀X∀Y (φ(X) ∧ S(X,Y) −→ φ(Y))) −→ (ψ(x) −→ ψ(x+ 1))

by considering the two cases of the low-order bit of X (in ψ(x+1)) and applying the induction step
of ΣB0 -SIND if necessary. Thus by ΣB0 -IND, W 0

1 ` ψ(|A|). This and the remaining hypothesis of ΣB0 -
SIND, ∀X(|X| = 0 −→ φ(X)), imply φ(A). Therefore W 0

1 ` ΣB0 -SIND and thus W 0
1 = TW 0

1 .

The ΣB1 -definable functions of TTW 0
1 are EXP. This is because TTW 0

1 proves ΣB0 -superstring-
recursion:

∃Xφrec(Y,X),

where φ ∈ ΣB0 , and
φrec(S,X) ≡ ∀Y ≤ |S|(X (Y)↔ φ(Y,X<Y)),

where X<Y is a chop function. See section 7 for details.
The ΣB1 -definable functions of HW 0

1 are exactly FPSPACE+.

6 ΣB1 -Replacement Schemes

In this section we shall show that various replacement schemes, allowing third-order existential
quantifiers to be moved past lower-order quantifiers, are theorems of W 1

1 .
First, though, it is convenient to note that adding to W 1

1 function symbols for its number- and
string-valued ΣB1 -definable functions results in a conservative extension. The proof of the present
claim is analogous to that for first-order bounded arithmetic theories in section 2.3 of [1]. In that
proof, a given Σb

1-formula in the augmented language is shown to be equivalent to a constructed
Σb

1-formula in the original language.
W 1

1 ⊃ V (=
⋃
V i) since all the axioms of the latter theory are in the former. W 1

1 can there-
fore ΣB

0 -define all number- and string-valued functions of number and string arguments from
the polynomial-time hierarchy. By the remarks in the previous paragraph, we can add symbols
for these functions to W 1

1 and obtain a conservative extension. In particular, pairing functions
such as < x, y >, < X,Y > and < X, y > may be added. For a third-order variable X define
X [x](X) ≡ X (< x,X >) and X [X](Y) ≡ X (< X,Y >), which make X into an array, with rows
indexed by number or strings respectively, each row of which is a third-order object. With this in
mind, we can state the ΣB1 replacement schemes:

13

Definition 6.1 (ΣB1 Replacement Schemes). ΣB1 -1REPL is:

∀x ≤ y∃Xφ(x, y,X)↔ ∃X∀x ≤ yφ(x, y,X [x])

and ΣB1 -2REPL is:
∀X ≤ y∃Xφ(X, y,X)↔ ∃X∀X ≤ yφ(X, y,X [X]),

where in each case φ is a (general) ΣB1 -formula which may have other free variables than those
indicated.

Theorem 6.2. The ΣB1 replacement schemes are theorems of W 1
1 .

Proof. Although the ΣB1 -1REPL scheme has a simpler proof, it can also be proved in the same way
as the ΣB1 -2REPL scheme, so we include only a proof of the latter.
←: This direction of the equivalence, namely that for φ(X, y,X) ∈ ΣB1

W 1
1 ` ∃X∀X ≤ yφ(X, y,X [X]) ⊃ ∀X ≤ y∃Xφ(X, y,X)

is immediate.
→: The existence of a proof inW 1

1 of this direction of the equivalence is itself proved by structural
induction on φ. The base case of the induction is when φ is ΣB0 . Let ψ be ∀X ≤ y∃Xφ(X, y,X).
Let θ(c) be the formula

∀X ≤ (y−̇c)∃X∀Y ≤ cφ(X _ Y, y,X [Y]).

θ(0) is a simple logical consequence of ψ, and W 1
1 ` ψ ∧ θ(c) ⊃ θ(c + 1) by use of ΣB0 -3COMP

to combine two third-order objects (coding the two arrays of third-order objects for all strings of
length smaller than y starting with X _ 0 and X _ 1 respectively) into one third-order object
coding the array for all strings of length smaller than y starting with X. Thus W 1

1 ` ψ ⊃ θ(y) by
∀2ΣB1 -IND, and clearly W 1

1 ` θ(y) ⊃ ∃X∀X ≤ yφ(X, y,X [X]).
Now let k > 0 and assume the present theorem holds for every member of ΣB1 with fewer than k

third-order quantifiers. Let φ ∈ ΣB1 have exactly k third-order quantifiers and assume without loss
of generality that φ is in prenex normal form. (Every formula is provably in W 1

1 equivalent to one
in prenex normal form). Then every third-order quantifier in φ is existential, and φ(X, y,X) is of
the form Q1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X) for some n and ψ with k−1 existential third-order
quantifiers. Each Qi is a bounded first- or second-order quantifier and the corresponding ãi is a
variable of the appropriate sort. By several applications of the inductive hypothesis we prove

Q1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X) ⊃ ∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [ã1]...[ãn], X, y,X). (6.1)

The inductive hypothesis is not needed for those Qi which are existential, nor in that case need we
add [ãi] to the formula on the right of the equivalence, yet it is harmless and simplifies matters to
do so.

Now with ΣB0 -3COMP we can prove

∃X∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [ã1]...[ãn], X, y,X) ⊃
∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [1][ã1]...[ãn], X, y,Z [2]) (6.2)

and thus piecing together implications 6.1 and 6.2 we obtain

∀X ≤ y∃Xφ(X, y,X) ⊃ ∀X ≤ y∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [1][ã1]...[ãn], X, y,Z [2]).

14

We may now appeal to the inductive hypothesis once more and apply the current theorem to the
right-hand side of the previous implication, which results in

∀X ≤ y∃Xφ(X, y,X) ⊃ ∃Z∀X ≤ yQ1ã1...Qnãnψ(ã1, ..., ãn,Z [X][1][ã1]...[ãn], X, y,Z [X][2]).

By applying ΣB0 -3COMP we can separate in two along the second “co-ordinate” the object Z,
quantified in the right-hand side:

∀X ≤ y∃Xφ(X, y,X) ⊃ ∃X∃Z∀X ≤ yQ1ã1...Qnãnψ(ã1, ..., ãn,Z [X][ã1]...[ãn], X, y,X [X]).

The formula
∃X∀X ≤ yQ1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X [X])

is a logical consequence of the right-hand side of the previous implication and so we have proved

∀X ≤ y∃Xφ(X, y,X) ⊃ ∃X∀X ≤ yφ(X, y,X [X]),

as required.

The following is an immediate, useful corollary:

Corollary 6.3. Let φ ∈ ΣB1 . Then there exists ψ ∈ strictΣB1 such that W 1
1 ` φ↔ ψ.

Proof Sketch. Starting from the prenex normal form for φ, we may apply the theorem to obtain a
provably equivalent formula with all the third-order quantifiers at the front, all of them existential.
Then, as in line 6.2 in the proof of the theorem, by applying ΣB0 -3COMP these may be joined into
one, obtaining an equivalent strict ΣB1 -formula, as desired.

7 Definability in the Theories

First we define several versions of what it means for a function to be definable in a theory, in the
context of this document:

Definition 7.1. Let T be a theory with vocabulary L ⊇ L3
A and Φ a set of L-formulas. Then a

function f̃ ∈ E1 ∪ E2 is Φ-definable in T if there is some φ ∈ Φ such that:

1. T ` ∀x,X,X∃!ỹφ(x,X,X , ỹ)

2. φ(x,X,X , f̃(x,X,X)) is true in the standard model for all values of the parameters.

The defining axiom for f̃ is then

f̃(x,X,X) = ỹ ↔ φ(x,X,X , ỹ)

Now, for superstring-valued functions we must use a slightly weaker kind of definability. This
is because there is no way to bound a superstring, and thus no (bounded) way to assert the
equality of two superstrings. Furthermore, our comprehension axioms assert the existence of certain
superstrings but specify only an initial segment of their bits. Thus the following definitions:

Definition 7.2. For superstring variables X and Y and term t, let X =t Y abbreviate the ΣB0 -
formula ∀Z ≤ t(X (Z)↔ Y(Z)), where Z does not occur in t.

15

Definition 7.3. Let T , L and Φ be as above. Let t(x,X) be a number term over L, which in the
standard model bounds the lengths of bit-indices in the output of a function F(x,X,X) ∈ E3.
Then F is length 2t Φ-definable in T if there is some φ ∈ Φ such that:

1. T ` ∀x,X,X∃Yφ(x,X,X ,Y)

2. T ` ∀x,X,X ,Y,Y ′[φ(x,X,X ,Y) ∧ φ(x,X,X ,Y ′) −→ Y =t Y ′]

3. T ` ∀x,X,X ,Y,Y ′[Y =t Y ′ ∧ φ(x,X,X ,Y) −→ φ(x,X,X ,Y ′)]

4. φ(x,X,X ,F(x,X,X)) is true in the standard model for all values of the parameters.

The defining axiom for F is then

(Y =t F(x,X,X))↔ φ(x,X,X ,Y)

If F is length 2t Φ-definable in T for some true bound t(x,X), then we say F is Φ-definable in T .

In sum, a length 2t-definable function in a theory T is provably total, provably unique up to
2t bits, and the formula defining the graph of the function is provably insensitive to bits beyond
this bound. Furthermore, the true value of the function satisfies the graph. The defining axiom
specifies the bits of the value of the function up to length 2t, but beyond this point it is undefined
(although also not relevant, as far as the graph is concerned).

Note that for suitable theories, a length 2t-definable function F is also length 2s-definable for
any s that is provably larger than t, either by modifying the defining formula to check that the
extra bits are zeroes, or by composing the function with an extender function that adds the extra
zeroes. This will be discussed further in section 8.

Note further that a superstring-valued function definable in a theory in the sense of the previous
definition can be conservatively added to the theory in the same way as the more concretely definable
functions of the previous definition. The defining axiom is deliberately vague about specifying the
value of the function, and therefore any (say) string-valued function G defined using (i.e., as a
function of) F must provably depend only on the bits of the output of F actually fixed by the
defining axiom – otherwise the uniqueness clause of the definition of G will presumably not hold.

It may be desirable in some cases to assert that a definable function with a superstring argu-
ment is insensitive in this way to variations in its superstring argument. The following definition
formalizes this concept:

Definition 7.4. Let f̃(X , y, Y ,Y) ∈ E1 ∪ E2 be a definable function of a theory T (as above) and
t(y, Y) a term of L, the language of T . Then f̃ is insensitive to X beyond t if

T ` X =t X ′ −→ f̃(X , y, Y ,Y) = f̃(X ′, y, Y ,Y)

Similarly, a function F(X) ∈ E3 that is length 2s definable in T is insensitive to X beyond t if

T ` X =t X ′ −→ F(X) =s F(X ′)

If f̃(y, Y ,Y1, ...,Yk) has k superstring arguments and is ti(y, Y)-insensitive to Yi for each I, then
we say that f̃ is (t1, ..., tk)-insensitive.

We know that W 1
1 can ΣB0 -define all functions (of string variables) from the polynomial-time

hierarchy. In fact, W 1
1 can ΣB1 -define all string functions computable in polynomial space:

16

Theorem 7.5. Let F ∈ FPSPACE+ ∩ E2. Then there is a strict ΣB1 -formula φ such that F is
ΣB1 -definable in W 1

1 by φ.
XXX: Expand to deal with all argument, output types

Proof. Let F be any polynomial-space computable function of polynomial growth rate and let M
be a PSPACE Turing machine computing F and s(X) be a (number) term bounding the space
used by M (including M ’s output tape) on input X (and thus also bounding the logarithm of
the running time). Let φM (X , Y, Z, i) state that X is a computation of M of length 2i steps,
with initial configuration coded by Y and final configuration coded by Z. X is stored as an
array of configurations, indexed by configuration number expressed as a string, and for the sake of
simplicity φM enforces that all configurations are the same size. φM (X , Y, Z, i) states that for each
configuration number smaller than 2i (bounded second order universal quantifier) the corresponding
configuration is valid and results from the previous one by one step of M (ΣB

0 subformula). Thus
φM is ΣB0 . For concreteness in what follows, we shall reason in the sequent formulation LK3 −W 1

1

of W 1
1 .
W 1

1 can clearly then prove

∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, 0).

Now, W 1
1 proves

φM (Y, A,B, i), φM (Z, B, C, i) −→ ∃X∃Y ≤ |A|φM (X , A, Y, i+ 1),

since ΣB0 -3COMP can be used to produce the third-order object X which consists of Y and Z
spliced together, and W 1

1 can subsequently prove that such X satisfies φM as shown. Now being
careful of the order in which we do so, we may introduce quantifiers in this sequent as follows, using
the fact that all configurations in a computation are the same size: First

φM (Y, A,B, i),∃X∃Y ≤ |B|φM (X , B, Y, i) −→ ∃X∃Y ≤ |A|φM (X , A, Y, i+ 1),

then adding a hypothesis to the succedent we obtain

φM (Y, A,B, i),∃X∃Y ≤ |B|φM (X , B, Y, i) −→ |A| ≤ |S| ⊃ ∃X∃Y ≤ |A|φM (X , A, Y, i+ 1),

then by reasoning about sizes of the configurations we may add a similar hypothesis to the second
formula in the antecedent:

φM (Y, A,B, i), |B| ≤ |S| ⊃ ∃X∃Y ≤ |B|φM (X , B, Y, i) −→
|A| ≤ |S| ⊃ ∃X∃Y ≤ |A|φM (X , A, Y, i+ 1),

and then introduce a quantifier like so:

φM (Y, A,B, i),∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, i) −→
|A| ≤ |S| ⊃ ∃X∃Y ≤ |A|φM (X , A, Y, i+ 1),

Then similar reasoning with the first formula in the antecedent yields

∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, i),∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, i) −→
|A| ≤ |S| ⊃ ∃X∃Y ≤ |A|φM (X , A, Y, i+ 1).

17

Contraction and the introduction of a final quantifier in the succedent yields a sequent suitable for
applying induction to:

∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, i) −→ ∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, i+ 1),

∀2ΣB1 -IND produces

−→ ∀X ≤ |S|∃X∃Y ≤ |X|φM (X , X, Y, |X|).

Now it is easy to see that W 1
1 proves

∀X∃Y ∃X∃Z ≤ s(|X)|)(φM (X , InitM (X), Z, s(|X|)) ∧OutM (Z, Y))

for a suitable function symbol InitM and formula OutM , and s(|X|) a term bounding the space
used by M . Thus the existence part of the definability is obtained.

Point 2 of the definability is clear given the definition of φM from the Turing machine M
computing f .

Finally, uniqueness is proved as follows: Firstly, define ψ(k) to be the formula

∀A ≤ s(|X|)∀B ≤ s(|X|)∀C ≤ s(|X|)∀Z ≤ s(|X|)
(φM (sub(X , Z, k), A,B, k) ∧ φM (sub(Y, Z, k), A, C, k) ⊃ B = C),

where sub(X , Z, i) is a suitably defined functional which gives the subcomputation of X starting
with configuration number encoded by Z and continuing for 2i steps. ψ(0) is provable in W 1

1 since
the next configuration of a Turing machine is computable in linear time, and thus is definable even
in V 1. ψ(i) ⊃ ψ(i+ 1) is immediate, and so by (ΣB0 -)induction, ψ(s(|X|)), from which uniqueness
follows.

Now we show that the same is true for Ŵ 1
1 :

Theorem 7.6. Let F ∈ FPSPACE+ ∩ E2. Then F is strict-ΣB1 -definable in Ŵ 1
1 .

XXX: Expand for types

Proof. Let φM be as in the previous theorem and let

φ′M (X , i, S) ≡ ∀X ≤ |S|∃Y ≤ |S|φM (X [X], X, Y, i).

This ΣB0 formula expresses that X simultaneously encodes computations of M of length 2i from
every starting configuration of length |S| to some ending configuration.

We now reason in LK3−Ŵ 1
1 . An X provably satisfying φ′M (X , 0, S) is computable in polynomial

time (as a function in E3 of S) and so comprehension on a ΣB0 formula suffices to obtain one. That
it satisfies φM (X , 0, S) follows easily so we have

∃Xφ′M (X , 0, S).

Now,
∃Xφ′M (X , i, S) −→ ∃Yφ′(Y, i+ 1, S)

is proved by one application of ΣB0 -3COMP: given an X satisfying φ′M (X , i, S), a Y satisfying
φM (Y, i + 1, S) is defined by a ΣB0 (X)-formula that for any requested initial configuration splices
together the two relevant computations from the given X .

The rest of the proof is analogous to that of the previous theorem.

18

Now we show that all string functions from FEXP+ are ΣB1 -definable in TTW 0
1 . This is because

TTW 0
1 proves ΣB0 -superstring-recursion:

∃Xφrec(Y,X),

where φ ∈ ΣB0 , and
φrec(S,X) ≡ ∀Y ≤ |S|(X (Y)↔ φ(Y,X<Y)),

where X<Y is a chop function.

Lemma 7.7. TTW 0
1 proves the ΣB0 -superstring-recursion scheme

Proof. Even TW 0
1 can prove (by induction on Y) that φrec(Y,X)∧ φrec(Y,Z) implies the bits of X

and Z are equal up to number Y . Now, following the analogous exposition from [4] for TV 0, define

φlessrec(S,X) ≡ φrec(S,X) ∨ [∃Y ≤ |S|(L(Y, S) ∧ φrec(Y,X) ∧ ¬X (Y) ∧ φ(Y,X<Y))],

stating that either φrec(S,X), or that some prefix of X is correct up to position Y , where φ(Y,X<Y),
yet ¬X (Y). In other words, if Rev(S,X) is a function symbol reversing the first S bits of X , then
Rev(S,X) is “less than” the unique string Y satisfying φlessrec(S,Rev(S,Y)).

Reasoning in TTW 0
1 , φlessrec(S,Z) holds, where Z is a null object, by induction on S. Now define

W by ∀X ≤ |S|[W(X)↔ 1]. W is an “all-ones” superstring, and if φlessrec(S,W), then φrec(S,W)
(which would complete the proof), so assume ¬φlessrec(S,W). By ΣB0 -SSIND for φlessrec(S,Rev(S,X)),
(since Rev fixes both Z and W above),

∃X∃Yφlessrec(S,Rev(S,X)) ∧ S3(X ,Y, S) ∧ ¬φlessrec(S,Rev(S,Y)).

Now TW 0
1 proves by induction on S that φrec(S,Rev(S,X)).

Now we show how to define EXP-time computations using ΣB0 -superstring-recursion:

Theorem 7.8. Let F ∈ FEXP+ ∩ E2. Then F is strict-ΣB1 -definable in TTW 0
1 .

XXX: Expand for types

Proof Sketch. Let F be as described and M an exponential-time Turing machine computing F , with
s(X) a number term bounding the output size of M on input X and t(X) bounding the logarithm
of the run-time. We describe a formula φM (X,Y,X) suitable for applying the above recursion
scheme to. The argument X denotes the input to M , and Y and X are as in the recursion scheme.
φM (X,Y,X) ≡ φ1

M (X,Y,X) ∨ φ2
M (X,Y,X).

The disjunct φ1
M evaluates to the appropriate bit of the initial configuration of M on input X

if Y is small enough.
The other disjunct φ2

M is as follows: For every two positions W1,W2 smaller than Y , if
L2(W1,W2) and W1 and W2 point to the start of configurations in X , and there is no W3 be-
tween them also pointing to the start of a configuration, then M computes bit Y to be 1. Bit Y is
a function of a constant number of bits preceding Y and preceding W1 +2 (Y −2 W2), where ’+2’
and ’−2’ are intended to represent arithmetic on strings.

φM as outlined is then clearly ΣB0 (in fact, even ΠB
2).

Now, applying the ΣB0 -superstring-recursion, TTW 0
1 ` ∃Xφrec

M (X,Y,X), so for a suitable formula
OutM , TTW 0

1 ` ∀X∃Y (∃X (φrec
M (X, (2t(X))2,X)∧OutM (X , (2t(X))2, Y))). Point 2 of the definability

is clear, and uniqueness follows directly from the (bounded) uniqueness of superstrings satisfying
φrec
M .

19

Now we show that HW 0
1 ΣB1 -defines the PSPACE functions:

Theorem 7.9. Let F ∈ FPSPACE+ ∩ E2. Then F is strict-ΣB1 -definable in HW 0
1 .

XXX: Expand for types

Proof. Let F be as described and M a polynomial-space Turing machine computing F , with s(X)
a number term bounding the space used by M on input X. The idea now is to use a superstring
X to encode a sequence of adjacency matrices. The ith matrix will indicate, for every pair of
configurations of F (X), if one yields the other in time at most 2i. Furthermore, these matrices will
alternate with unused space, so that the halfrecursion scheme can be applied.

Therefore we now describe a formula φM (X,Y,X) suitable for application of the halfrecur-
sion scheme. X is the input to M and Y and X are as in the recursion scheme, and as before,
φM (X,Y,X) ≡ φ1

M (X,Y,X) ∨ φ2
M (X,Y,X).

The disjunct φ1
M is |Y | = 2s(X) ∧ ∃Z,W (Y = Z _ W ∧ (NextM (Z,W) ∧ Z = W)). This

subformula ignores X and directly computes bit Y , if Y is the right length to indicate a pair of
configurations.

The other disjunct φ2
M is as follows:

∃A,B,C ≤ |Y |(2|A| = 2|B| = 2|C| = |Y | − 2 ∧ Y = 02 _ A_ C ∧ X (A _ B) ∧ X (B _ C)).

This subformula verifies that Y is 00 followed by some pair of equal-length strings, and furthermore
that 2 steps in the previous adjacency matrix in X yield the transition coded by Y .

So φM is ΣB0 and HW 0
1 ` ∃Xφhrc

m (X,Y,X). Let OutM be a suitable formula extracting the
output from the least accepting configuration reachable from the starting configuration of F (X), as
coded in X . Then OutM is clearly ΣB0 andHW 0

1 ` ∀X∃Y (∃X (φhrc
M (X, 26s(X),X)∧OutM (X , X, Y))),

satisfying the existence part of the definability. Point 2 is clear and uniqueness is as in the previous
theorem, using the provable (bounded) uniqueness of superstrings satisfying the recursion schemes.

8 A Universal Conservative Extension of HW 0
1

In this section we define and develop HW 0
1 , a universal theory intended to be a conservative

extension of HW 0
1 . We loosely follow similar constructions of universal theories for P , NL and so

on from [4] and [?]; however, our situation is considerably more complex as we have an additional
sort (superstrings), and furthermore objects of that sort are unbounded.

We start with several additional function symbols beyond those provided in L3
A: recall the

function fSE , with open defining axioms SE’ and SE”, used as open replacements for the string
extensionality axiom SE. B12’ and B12” are open replacements for B12 defining the function pd.
The superstring stretch function ς(a, b,X) is intended to return a superstring with the initial 2a+b

bits fixed such that the first 2a of them agree with the input X , and the remainder are zeroes. The
open defining axiom is:

|Y | ≤ a+ b ⊃ (ς(a, b,X)(Y)↔ |Y | ≤ a ∧ X (Y)).

All these functions are ΣB0 -definable in W 0
1 (length sa+b-definable in the case of ς).

The open theory HW 0
1 we define below defines a succession of function symbols LPS inductively

from previous ones, and specifies a set of defining axions for each one. This requires more care
than in analogous constructions because of the unbounded nature of our third-order objects, and

20

the limited sense in which superstring-valued functions can be definable. For this reason, we will
associate with each function and predicate symbol a polynomial (i.e., term in L3

A) which will be an
upper-bound on its sensitivity to its third-order arguments, as a function of its other arguments.
Each function symbol will be provably in HW 0

1 insensitive to its third-order arguments beyond
this bound, in the sense of definition 7.4. To function symbols we will additionally associate a
polynomial (L3

A-term) bounding the output as a function of the number and string arguments.
Each number- or string-valued function symbol will be definable in HW 0

1 and provably bounded by
its associated polynomial t, while superstring-valued function symbols will be length-2t-definable.
These terms will be explicitly written into the names of all function symbols defined below.

The following definition shows how to extend these sensitivity and bounding polynomials to
certain terms and open formulas. It also identifies a class of open formulas called permissible
formulas that are constructed with sufficient interleavings of the superstring stretch function to
ensure their value is well defined, and hence suitable for use in defining new function symbols:

Definition 8.1. a) The bounding polynomials for 0, 1, x+ y, x ∗ y and |X| are respectively 0, 1,
x+ y, x ∗ y and |X|. The sensitivity polynomials for these function symbols are all 0.

b) The bounding polynomials of pd(x) and fSE(X,Y) are x and |X| respectively, and sensitivity
polynomials for both are 0.

c) The superstring stretch function ς(a, b,X) has sensitivity a and bound a+ b.

XXX: Not necessary? Only used as part of the construction.

d) If f̃ is a function symbol (of any type) with sensitivity s and bound t, R1, ...,Rk are superstring
terms with sensitivity u1, ..., uk and bound v1, ..., vk, and finally h̃1, ..., h̃j are number or string
terms with sensitivity p1, ..., pj and bounds q1, ..., qj, then (assuming it is syntactically correct)

f̃(ς(v1, s(q1, ..., qj),R1), ..., ς(vk, s(q1, ..., qj),Rk), h̃1, ..., h̃k)

has sensitivity u1 + ...+ uk + p1 + ...+ pj + s(q1, ..., qk) and bound t(q1, ..., qk).

e) x ∈ Y , X ∈ Y, x ≤ y, x = y and X = Y are permissible formulas with sensitivity polynomials
0, |X|, 0, 0 and 0, respectively.

f) If R is a term of sensitivity s and bound t, and H is a string term of sensitivity u and bound v,
then X ∈ ς(t, |X|,R)) and H ∈ ς(t, v,R) are permissible formulas with sensitivities s and s+ u
respectively.

g) Any other application of a predicate symbols to terms of the appropriate type results in a per-
missible formula whose sensitivity is the sum of the sensitivities of the given terms.

h) If φ and θ are permissible formulas of sensitivity s and t, then φ∧θ, φ∨θ and ¬φ are permissible
with sensitivity s+ t, s+ t and s, respectively.

Definition 8.2 (LPS). LPS is the smallest class satisfying

a) LPS includes L3
A ∪ {pd,<2, fSE , ς}.

b) For each permissible open formula α(z, x,X,X) of sensitivity s(z) over LPS and number term
t over L3

A, there is a string function Fα,t,s(t) of sensitivity s(t) and bound t with defining axiom

Fα,t,s(t)(x,X,X)(z)↔ z < t ∧ α(z, x,X,X) (8.1)

intended to simulate 2-COMP.

21

c) For each permissible open formula α(z, x,X,X) of sensitivity s(z) over LPS and number term t
over L3

A(free variables among those of α), there is a number function gα,t,s(t) of sensitivity s(t)
and bound t with defining axioms

gα,t,s(t)(. . .) ≤ t(. . .) (8.2)

gα,t,s(t)(. . .) < t(. . .) ⊃ α(gα,t,s(t)(. . .), . . .) (8.3)

z < gα,t,s(t)(. . .) ⊃ ¬α(z, . . .) (8.4)

intended to allow elimination of number quantifiers. It follows from these defining axioms that

∃z < tα(z, . . .)↔ gα,t,s(t)(. . .) < t.

A suitable witness for these axioms is gα,t,s(t)(. . .) = min z < tα(z, . . .).

d) For each permissible open formula α(Z, . . .) of sensitivity s(|Z|) over LPS and number term t
over L3

A(free variables among those of α), there is a superstring function Fα,t,s(t) of sensitivity
s(t) and bound t with defining axiom

|Z| ≤ t ⊃ [Fα,t,s(t)(. . .)(Z)↔ α(Z, . . .)] (8.5)

intended to simulate 3-COMP.

e) For each permissible open formula α(Z, x,X,X) of sensitivity s(|Z|) over LPS and number term
t over L3

A(free variables among those of α, there is a string function Gα,t,s(t) of sensitivity s(t)
and bound t with defining axioms

|Gα,t,s(t)(. . .)| ≤ t(. . .) (8.6)

|Gα,t,s(t)(. . .)| < t(. . .) ⊃ α(Gα,t,s(t)(. . .), . . .) (8.7)

Z <2 Gα,t,s(t)(. . .) ⊃ ¬α(Z, . . .) (8.8)

intended to allow elimination of string quantifiers. It follows that

∃Z < tα(Z, . . .)↔ |Gα,t,s(t)(. . .)| < t,

and a suitable witness is Gα,t,s(t)(. . .) = minZ < tα(Z, . . .)

f) For each three functions G(. . .),H(x,Z, . . .) and l(x, . . .) of LPS with sensitivities sG , sH and sl
and bounds tG , tH and tl there is a function FG,H,l of sensitivity sG + sH + sl and bound tl with
defining axioms

|Y | ≤ l(0, . . .) ⊃ [FG,H,l(0, . . .)(Y)↔ ς(tG , tl,G(. . .))(Y)] (8.9)
|Y | ≤ l(x+ 1, . . .) ⊃ [FG,H,l(x+ 1, . . .)(Y)↔ ς(tH, tl,H(x,FG,H,l(x, . . .), . . .))(Y)] (8.10)

intended to define FG,H,l by limited recursion from G and H with limit l.

Definition 8.3. HW 0
1 is the universal theory over LPS consisting of the universal closures of B1-

B11, B12’ and B12” (open replacements for B12 defining pd), L1, L2, SE’ and SE” (the defining
axioms of fSE), the defining axiom of ς, and finally all defining axioms 8.2–8.10 of LPS.

After the lemma, we show that HW 0
1 extends HW 0

1 .

22

Lemma 8.4. For every ΣB0 formula φ there is an open formula α of LPS such that HW 0
1 ` φ↔ α.

Proof outline. This follows by structural induction on φ, using cases c and e of the definition of
LPS . The permissibility of the open formulas constructed is not a factor, as no superstring-valued
functions are constructed.

Theorem 8.5. HW 0
1 ` HW 0

1

Proof. B12 follows from B12’ and B12”. That ΣB0 -{2,3}COMP are provable follows from the
previous lemma and cases b and d of the definition of LPS .

Finally, for any given φ ∈ ΣB0 , LPS contains a function witnessing the φ-ss-hrc scheme: this
function is defined by limited recursion from a function that outputs X satisfying

∀Y ≤ z + 1(X (Y)↔ φ(Y,X Y/2))

given X ′ satisfying
∀Y ≤ z(X ′(Y)↔ φ(Y,X ′Y/2)).

The correctness of this function is proved by open(LPS)-IND, which is derived in the standard way
in HW 0

1 from the comprehension. XXX: Expand

To show that HW 0
1 is conservative over HW 0

1 , we inductively show that every function of LPS
is ΣB1 -definable in HW 0

1 . In fact, this seems not to be a strong enough induction hypothesis, so we
in fact show something stronger: that each function symbol of LPS is ΣB0 -HR-definable, a concept
that we now define:

Definition 8.6. Let T be a theory over L ⊇ L3
A and Φ a set of L-formulas. Then a function

f̃(x,X,X) ∈ E1 ∪E2 is Φ-HR-definable in T if there are φ1(Y,Z, x,X,X), φ2(ỹ,Z, x,X,X) ∈ Φ
and term s(x,X) over L (all free variables displayed) such that

1. T ` ∀x,X,X∃!ỹ∃Z(φhrc1 (s(...),Z, x,X,X) ∧ φ2(ỹ,Z<s(...), x,X,X))

2. f̃(x,X,X) satisfies the defining formula in the standard model for all values of the parameters.

Similarly, F(x,X,X) ∈ E3 is length 2t(x,X) Φ-HR-definable in T if there are φ1, φ2 ∈ Φ and s
over L (as above) such that

1. T ` ∀x,X,X∃Y∃Z(φhrc1 (s(...),Z, x,X,X) ∧ ∀Y ≤ t(x,X)(Y(Y)↔ φ2(Y,Z<s(...), x,X,X)))

2. F(x,X,X) satisfies the defining formula in the standard model for all values of the parame-
ters.

If F is length 2t Φ-HR-definable in T for some true bound t, then we say F is Φ-HR-definable in
T .

Some explanation of the previous definition is in order. A function f̃ that is Φ-HR-definable
in a theory T is defined syntactically by a Φ-halfrecursion (computing a superstring) composed
with a Φ-definition. In the case that Φ = ΣB0 and T = HW 0

1 , this corresponds to defining a
superstring with a halfrecursion operation from a PH predicate, and composing with a PH function
to produce the final value. These two operations composed in this way can produce every function
in FPSPACE+, as the halfrecursion operation can produce the computation of a PSPACE Turing
Machine (or an array of computations if a superstring-valued function is to be computed), and then
a PH function can extract the output of the machine (or collect the bits of the superstring value
of the function from the array of computations).

Now the conservativity of HW 0
1 over HW 0

1 follows from the following lemma:

23

Lemma 8.7. The functions of LPS are all ΣB0 -HR-definable in HW 0
1 . Furthermore, they are all

provably insensitive to their superstring arguments past the claimed sensitivity bounds.

Proof. This is proved by induction on the definition of the functions, considered in some appropriate
enumeration. At each step, the ΣB0 -HR-definitions of all relevant function symbols are combined
into one ΣB0 -HR-definition of the new function symbol.

Consider for example a function symbol F defined from a permissible formula α and L3
A-term

t using case d) of the definition of LPS . By the induction hypothesis, each function symbol in α
is ΣB0 -HR-definable in HW 0

1 . Now all the formulas φ1 and φ2 from the ΣB1 -HR-definitions of these
functions symbols can be combined into one ΣB0 formula φ, such that φhrc asserts the existence of
one large superstring computing the value of F . This large superstring contains subcomputations
for each occurrence of a function symbol in α, arranged in some suitable order of evaluation;
each such subcomputation is followed by another phase extracting the output of the corresponding
function symbol occurrence from the computation. Bounds on the lengths of these computations
and outputs are all known in advance, so the φ1 and φ2 formulas can be amended to reference
their respective parts of this big superstring. Finally, a ΣB1 -formula extracts the result from the end
of this large computation. Since α is permissible, at every step the computation is provably well
defined (i.e., provably depends only on bits of superstring outputs actually fixed by defining axioms
of the appropriate function symbols). Thus by induction on the structure of α, F is uniquely
defined to the given bound.

Case b) is similar. Cases c) and e) use the function symbols from cases b) and d) respectively to
construct a table of values of α on all inputs up to the given bound and then extract the minimum
value satisfying α. The defining axioms are then proved in HW 0

1 directly from the definition of
this table.

Finally, a function symbol F defined using case f) is computed by limited recursion. Again, one
large superstring records, one after the other, the computations of each step of this recursion (and
there are polynomially many). The ΣB0 -HR-definition of F asserts that this superstring exists and
is defined appropriately, and the value of F is extracted by a ΣB0 -bit-definition.

Theorem 8.8 (KPT Witnessing for HW 0
1). Let φ(X,Y, Z) be a ΣB0 -formula such that HW 0

1 `
∀X∃Y∀Zφ(X,Y, Z). Then there are functions F1, ...,Fk ∈ FPSPACE+ such that

HW 0
1 ` ∀X∀Z[φ(X,F1(X), Z1) ∨ ... ∨ φ(X,Fk(X,Z1, ..., Zk−1), Zk)]

Proof Sketch. The standard model-theoretic argument applies using HW 0
1 .

9 Sequent Calculus Formulations

In this section we introduce some equivalent sequent formulations of several theories. LK3 is like
the system LK, but with the addition of the following quantifier introduction rules:

∀ : left
φ(Ỹ),Γ −→ ∆
∀X̃φ(X̃),Γ −→ ∆

and ∃ : right
Γ −→ ∆, φ(Ỹ)

Γ −→ ∆,∃X̃φ(X̃)

and

∃ : left
φ(Ỹ),Γ −→ ∆
∃X̃φ(X̃),Γ −→ ∆

and ∀ : right
Γ −→ ∆, φ(Ỹ)

Γ −→ ∆,∀X̃φ(X̃)

24

where X̃ and Ỹ are either both second- or both third-order variables, and in the latter two rules Ỹ
may not occur in the conclusion of the inference. Formally, LK3 also adopts the usual conventions
concerning free and bound variables, as in [2].

The system LK3 −W i
1 additionally includes the ∀2ΣBi -IND rule:

Γ, φ(b) −→ φ(b+ 1),∆
Γ, φ(0) −→ φ(t),∆

,

where b appears only as indicated and φ ∈ ∀2ΣBi . As initial sequents we allow all substitution
instances of the axioms (other than induction) of W 1

1 . Note that all rules of LK3−W i
1 are valid in

W i
1, and furthermore, LK3 −W i

1 proves the induction and comprehension schemes of W i
1.

The system LK3 − Ŵ i
1 is as above, but with the ΣBi -IND rule instead.

The system LK3−HW 0
1 is LK3 plus, as initial sequents, all substitution instances of axioms of

HW 0
1 .

10 Witnessing Theorems

10.1 A Witnessing Theorem for W 1
1

In this section we prove a Buss-style witnessing theorem showing that every ΣB1 -definable string
function of W 1

1 is computable in PSPACE.
The standard definition of an anchored cut in LK3 is extended in the usual way for LK3 −W 1

1

by allowing cuts on the descendents of principal formulas of the ∀2ΣB1 -IND rule, in addition to cuts
on descendents of formulas in nonlogical axioms. The anchored completeness theorem for LK3 can
be extended to LK3 −W 1

1 in the usual way to cope with the induction rules, as detailed in [8].
With this in mind, we can now state the witnessing theorem we wish to prove:

Theorem 10.1. Suppose W 1
1 ` ∃Y φ(X,Y), for φ(X,Y) ∈ ΣB1 with all free variables displayed.

Then there exists a function f ∈ PSPACE of polynomial growth rate such that for every string X,
φ(X, f(X)) is true.

Before we prove the theorem, we shall need several definitions:

Definition 10.2. Let ψ ≡ ∀X ≤ t∃Xφ(X,X) ∈ ∀2ΣB1 , with other free variables not shown. Con-
sider an assignment to the free variables of ψ. Then the string relation A(A,B) satisfies ψ (with
respect to the assignment to the free variables of ψ) iff for every string A of no more than t bits,
φ(A, {B}(A(A,B))) is true in the standard model, where {B}(A(A,B)) denotes the predicate on
strings obtained by fixing to A the first argument to the relation A.

Definition 10.3. Let S be the sequent Γ −→ ∆ such that Γ
⋃

∆ ⊂ ∀2ΣB1 , i.e.

Γ = {∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b)}

and
∆ = {∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)},

with {γi}
⋃
{δi} ⊂ ΣB0 , and although we write for simplicity the initial string and third-order quan-

tifiers for each formula, in fact for some of the formulas either the initial string quantifier or both
initial quantifiers may be absent.

25

Then PSPACE Oracle Witnessing Operators (POWOs) for S are operators, or type-2
predicates. For each formula from ∆

∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)

which is not ΣB0 (and may or may not have the leading string quantifier as pictured), the POWO
fi is a predicate with arguments {B, B, b} (for the free variables of the sequent), {Aj(Aj , X)} (for
the string relations satisfying the formulas in the antecedent) and finally {Ci, X}, making fi into a
two-place string relation when the other arguments are fixed. The fi must have the property that for
any assignment to the free variables B, B, b of S and string relations {Aj(Aj , X)}, if each formula
γj is satisfied by the corresponding Aj, then some δi is satisfied by the string relation {Ci, X}fi,
obtained by fixing all but the last two arguments to the operator fi.

Furthermore, each fi is computable by an oracle Turing machine in space (including on the
query tapes) polynomial in the lengths of its string and number inputs.

Now the theorem will follow from the following lemma:

Lemma 10.4. Suppose LK3 −W 1
1 ` Γ −→ ∆, where Γ

⋃
∆ ⊂ ∀2ΣB1 . Then there exist PSPACE

Oracle Witnessing Operators for Γ −→ ∆.

Proof of Theorem 10.1 from Lemma 10.4. Suppose W 1
1 ` ∃Y φ(X,Y), for φ(X,Y) ∈ ΣB1 with all

free variables displayed. By Parikh’s theorem, W 1
1 ` ∃Y ≤ t(|X|)φ(X,Y), for some term t.

By Corollary 6.3, W 1
1 ` φ(X,Y) ↔ ∃Yψ(X,Y,Y), for some ψ ∈ ΣB0 . Also, W 1

1 ` ∃Y ≤
t(|X|)∃Yψ(X,Y,Y) ↔ ∃Y∃Y ≤ t(|X|q)ψ(X,Y,Y). Applying the lemma to the sequent −→
∃Y∃Y ≤ t(|X|)ψ(X,Y,Y), we obtain a PSPACE (in |X|) predicate for Y satisfying that sequent,
and so for particular X the string Y can be obtained in PSPACE by evaluating ψ, with access to
the predicate Y, on each string of length ≤ t(|X|) in turn. It is easy to see that the computed
string Y satisfies φ(X,Y) (for the same fixed X).

All that remains is to prove the lemma:

Proof of Lemma 10.4. Suppose LK3 − W 1
1 ` Γ −→ ∆, where Γ

⋃
∆ ⊂ ∀2ΣB1 , and consider an

anchored proof π of this sequent. Since both the endsequent of π and every nonlogical axiom of
LK3 −W 1

1 is ∀2ΣB1 , and since the induction rule is limited to this same class of formulas, every
formula in π is ∀2ΣB1 .

We now show by induction on the number of sequents in π that POWOs exist for Γ −→ ∆.
Base Case: The base case is that Γ −→ ∆ is either an initial sequent of LK3 or an instance

of an axiom. The only such sequents requiring POWOs are those with a third-order quantifier in
the succedent, namely an instance

−→ (∃Y)(∀Z ≤ s(B, b))[φ(B, B, b, Z)↔ Y(Z)]

of ΣB0 -3COMP, where φ ∈ ΣB0 , subject to the restriction that Y does not occur free in φ. The only
POWO required for this sequent is computed by the predicate

f(B, B, b,A, Z)↔ |Z| ≤ s(B, b) ∧ φ(B, B, b, Z),

which is in some level of the polynomial-time hierarchy, and thus certainly in PSPACE.
Induction Step: The induction step has several cases depending on which rule has been used

to derive Γ −→ ∆.

26

1. Weakening:

The POWOs from the hypothesis are modified to take any extra arguments the new formula
introduces (free variables or an existential third-order quantifier in the antecedent) and to
ignore them. If the formula is added to the succedent and contains a third-order quantifier,
a constant-false predicate taking the appropriate arguments is added as the new POWO for
the conclusion.

2. Contraction:

If the contraction occurs in the succedent on a formula φ with a third-order quantifier, then
one less POWO is required for the conclusion. Construct a new POWO for φ which evaluates
φ on each original POWO in turn (each evaluation is computable in PSPACE) and then
behaves like whichever satisfies φ, if any. This computation requires only a constant number
of bits more than the maximum of the space used by the two original POWOs.

If the contraction occurs in the antecedent on a formula φ with a third-order quantifier, then
all original POWOs must be modified to accept one less oracle argument. Each is modified
to query the original POWO but now passing the oracle argument from φ twice.

3. Exchange, introduction of ¬, ∨ on the right and ∧ on the left:

These rules can neither introduce nor eliminate free variables. No third-order quantifiers are
added or removed, and no formula with a third-order quantifier is changed, so the POWOs
from the hypothesis are used without modification for the conclusion.

4. Introduction of ∨ on the left and ∧ on the right:

These inferences have two hypotheses, and the principal formula is ΣB0 and so needs no
POWO. Any side formula which is not ΣB0 will have a POWO for each hypothesis. As in the
case of contraction, the POWO for such a formula in the conclusion evaluates the formula on
each POWO from the hypotheses, and then simulates whichever satisfies it, if any.

5. First- or second-order ∀ : left and ∃ : right:

The conclusion of such an inference may have less free variables than the hypothesis. Taking
for example an ∃ : right inference with principal formula ∃Xφ(X) with the corresponding
formula in the hypothesis being φ(B) and B not free in the conclusion, all POWOs for
the hypothesis will have B as an argument. If this argument is fixed to the empty string,
the resulting set of POWOs will suffice for the conclusion of the inference (unless φ 6∈ ΣB0 ,
addressed below). ∀ : left is similar and in the first-order cases one analogously substitutes 0
for eliminated variables.

If φ 6∈ ΣB0 then the principal formula of the inference is ∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b) and
occurs in the antecedent. In addition to the procedure above (substituting the empty string
for the eliminated free string variable), the POWOs must be modified so that any query
Ai(X) becomes Ai(λ,X), adding the empty string as an additional argument, since in the
conclusion this oracle argument to the POWOs is two-place.

6. First- or second-order ∀ : right and ∃ : left:

As in the previous case free variables are eliminated by such inferences. However, it is not
sufficient to substitute a dummy value for them as above since such a value would not witness
the new quantifier properly. For example, if the new quantifier is universal on the right and

27

the principal formula is false under some assignment, the POWOs (from the hypothesis) for
the remaining formulas expect a value falsifying the principal formula. This value is found
by exhaustive search, evaluating the formula on each possible value of the new quantifier
(subject to the bound). The POWOs for the conclusion perform this search before querying
the POWOs from the hypothesis. The extra search is clearly carried out in polynomial space.

If the principal formula is not ΣB0 , then it is ∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b) and is in the succe-
dent. In this one special case the POWO for δi retains the same number of arguments in the
conclusion, due to the string quantifier preceding the third-order quantifier. The POWO for
δi alone is not modified as above, but instead passes the new argument, Ci, to the POWO
from the hypothesis, in place of the eliminated free variable.

7. Third-order ∃ : left:

The principal formula is ∃Aiγi(Ai,Ai,B, B, b). All POWOs from the antecedent are modi-
fied to accept oracle argument Ai instead of the free third-order variable eliminated by the
quantifier introduction.

8. Third-order ∃ : right:

If the eigenvariable B occurs in the lower sequent, then the POWO for the principal formula
is defined by

f(B, B, b,A, Z)↔ B(Z)

If not, analogously to the lower-order cases of this rule, the new quantifier is witnessed by
any value and thus the POWO for the new quantifier may ignore its arguments and always
return false. Furthermore, a constant-false predicate is supplied in the place of the eliminated
variable as an argument to the other POWOs from the hypothesis.

9. The cut rule:

The inference is
Γ −→ φ,∆ Γ, φ −→ ∆

Γ −→ ∆
.

A POWO for the conclusion proceeds in two phases: First, it evaluates its formula using
the POWO from the left hypothesis, and if that POWO satisfies the formula, it emulates it.
Otherwise, it emulates the POWO from the right hypothesis, and uses the POWO for φ from
the left hypothesis to supply a value for the oracle argument. The whole procedure uses at
most the sum of the space requirements of the two POWOs from the hypotheses.

If any free variables are eliminated, then as before a dummy argument of the correct type is
supplied to the POWOs.

10. ∀2ΣB1 -IND:

The inference is:
Γ, φ(b) −→ φ(b+ 1),∆

Γ, φ(0) −→ φ(t),∆
.

The POWOs for the conclusion will iterate the construction from the previous case, as the
current instance of the induction rule could be simulated by t instances of the cut rule, along
with some weakenings.

28

More precisely, let fφ be the POWO for the instance of φ in the succedent of the hypothesis.
Let ψ be any formula in the succedent of the hypothesis (including φ) and fψ its POWO. We
construct a POWO f ′ψ for ψ in the conclusion in stages:

f0
ψ(X,Y)↔ fψ(X,Y).

fkψ(X,Y)↔ (ψ(fk−1
ψ) ∧ fk−1

ψ (X,Y)) ∨ (¬ψ(fk−1
ψ) ∧ fk−1

ψ (fφ, X, Y)).

f1
ψ checks if fψ satisfies ψ and if so, simulates fψ. If not, f1

ψ computes fψ(fφ), that is to say,
uses fφ to answer queries to the oracle argument corresponding to φ.

fkψ checks if fk−1
ψ satisfies ψ and if so, simulates fk−1

ψ . If not, fkψ computes fk−1
ψ (fφ).

f ′ψ, then, evaluates t and computes f tψ. Computing f tψ requires t times the space required
to compute fφ plus the space requirements of fψ, and so only increases the space usage of
POWOs by a polynomial factor.

10.2 Witnessing for HW 0
1

Theorem 10.5. Suppose HW 0
1 ` ∃Y φ(X,Y), for φ(X,Y) ∈ ΣB1 with all free variables displayed.

Then there exists a function F ∈ FPSPACE+ for every string X, φ(X, f(X)) is true.

Proof. This theorem is proved analogously to the previous theorem. The witnessing lemma required
is in fact simpler, as all formulas in the anchored proof will be ΣB1 . All cases of the previous
witnessing lemma are the same for the present one, except of course the induction rule is now
much more restricted. We need one additional case for the ΣB0 -superstring-halfrecursion scheme.
A witnessing operator for the superstring quantifier ∃X on an instance of this scheme computes a
requested bit of X by evaluating the ΣB0 formula φ from the scheme, and recursively computing the
bits of X required by φ. Modulo the recursive calls, this computation is clearly in the PH. Now,
the depth of the recursion is only polynomial, as each recursive call halves the relevant number of
bits of X . This entire recursive procedure is thus computable in polynomial space.

11 Translation into BPLK

In this section we define a translation of ΣB0 formulas in the language L3
Aof W 1

1 (i.e. possibly with
free third-order variables, but no third-order quantifiers) into families of propositional sequents
in the language of Boolean programs. We prove a lemma implying that if φ(A) ∈ ΣB

∞ and if
W 1

1 ` φ(A) then BPLK has short proofs of the translations of φ. BPLK is from [6].
First, we can extend the definitions of a Boolean Program and of a BPLK proof as follows:

Definition 11.1. A Boolean semiprogram is like a Boolean program, except we allow that some
function symbols used in the program be undefined (“free”).

Definition 11.2. A BPLK-sequence is the same as a BPLK proof except that the requirement
that all function symbols occurring in the sequence be defined by the accompanying Boolean program
is dropped. Furthermore, the accompanying Boolean program is instead a Boolean semiprogram.
Any undefined function symbol appearing in the sequence or the semiprogram is called “free”.

The following translation is defined for the larger class ΣB0 and is necessary for the main lemma
in the proof:

29

Definition 11.3. Let φ(A1, ...,Aj , A1, ..., Ak) be ΣB0 in the language L3
A. For every m1, ...,mk we

construct a Boolean semiprogram Pm1,...,mk
φ and a formula ||φ||m1,...,mk in the language of Boolean

programs, with the atoms p = (pi, i = 1, ..., k), where each pi = (pi,0, ..., pi,mk). By induction on the
structure of φ:

• If φ is the atomic formula s = t then s and t are first-order terms with no free first-order
variables. Third-order variables do not appear in first-order terms so all variable occurrences
in s and t are of the form |Ai| for some second-order variable Ai. Then using the value mi

for this subterm the terms s and t can be evaluated to s and t. We define ||s = t||m1,...,mk := 1
if s = t and ||s = t||m1,...,mk := 0 otherwise. The semiprogram Pm1,...,mk

φ := ∅.

• The case for φ ≡ t ≤ s is similar.

• If φ is the atomic formula t ∈2 Ai then we can as above evaluate t and then ||φ||mi := pi,t if
t ≤ mi and ||φ||mi := 0 otherwise. Pmiφ := ∅.

• If φ is the atomic formula Ai ∈ Aj then ||φ||mi := gAj (pi,0, ..., pi,mi). P
mi
φ := ∅. The intention

is that gAj be a free function symbol and we shall be careful not to add a definition for any
function symbol of this form to our Boolean semiprograms. Furthermore, this is the only case
in the construction where a free function symbol is produced.

• If φ ≡ ¬ψ then ||φ||m1,...,mk := ¬||ψ||m1,...,mk and Pm1,...,mk
φ := Pm1,...,mk

ψ .

• If φ ≡ ψ ◦ ξ (◦ ∈ {∧,∨}), then ||φ||m1,...,mk := ||ψ||m
′
1,...,m

′
k′ ◦ ||ξ||m

′′
1 ,...,m

′′
k′′ and Pm1,...,mk

φ :=

P
m′1,...,m

′
k′

ψ �Pm
′′
1 ,...,m

′′
k′′

ξ . Here the lists m′ and m′′ are the sublists of m corresponding to which
of the free variables of φ occur free in ψ and ξ, and the “�” operator is the merging of Boolean
semiprograms, defined in [5].

• If φ is ∃x ≤ tψ(x) then ||φ||m1,...,mk :=
∨
n≤t ||ψ(n)||m1,...,mk (φ(n) is φ(x)[s/x] where s is a

constant term of value n, say
n︷ ︸︸ ︷

1 + ...+ 1). Pm1,...,mk
φ := Pm1,...,mk

ψ .

• If φ is ∀x ≤ tψ(x) then ||φ||m1,...,mk :=
∧
n≤t ||ψ(n)||m1,...,mk . Pm1,...,mk

φ := Pm1,...,mk
ψ .

• If φ is ∃X ≤ tψ(X) then ||φ||m1,...,mk := fφ(p) and Pm1,...,mk
φ is as follows:

f lφ,0(p, q0, ..., ql) := ||ψ||m1,...,mk,l for each l ≤ t

f lφ,i(p, qi, ..., ql) := f lφ,i−1(p, 0, qi, ..., ql) ∨ f lφ,i−1(p, 1, qi., , , .ql) for each l ≤ t and i ≤ l + 1

fφ(p) :=
∨
l≤t
f lφ,l+1(p)

• If φ is ∀X ≤ tψ(X) then ||φ||m1,...,mk := fφ(p) and Pm1,...,mk
φ is as follows:

f lφ,0(p, q0, ..., ql) := ||ψ||m1,...,mk,l for each l ≤ t

f lφ,i(p, qi, ..., ql) := f lφ,i−1(p, 0, qi, ..., ql) ∧ f lφ,i−1(p, 1, qi., , , .ql) for each l ≤ t and i ≤ l + 1

fφ(p) :=
∧
l≤t
f lφ,l+1(p)

30

It is clear that for fixed φ, the size of ||φ||m1,...,mk is polynomial in m1., , , .mk. Whenever we
talk of BPLK proofs or BPLK-sequences involving translations of this form, we shall insist that
the associated Boolean (semi-)program extend the (semi-)program resulting from the translation.

The following lemma is the main lemma of the proof. In the previous section, since it is not
possible to translate a general ΣB1 formula into the language of BPLK, we defined POWOs and
used them to witness a sequent containing third-order quantifiers. Similarly, in the lemma below
we shall translate sequents with third-order quantifiers as if those third-order variables were free,
and then show that BPLK can prove the existence of a function symbol witnessing the sequent
in much the same way. For this to work it would ordinarily be necessary for the formulas all to
be strict ΣB1 . Unfortunately that cannot be guaranteed since the induction scheme in W 1

1 is for
slightly more general formulas. We shall address this problem by first rewriting sequents into the
equivalent form given by the replacement theorem and then translating them into the language of
Boolean programs.

Lemma 11.4. Let LK3 −W 1
1 ` Γ −→ ∆ where Γ

⋃
∆ ⊂ ∀2ΣB1 , i.e.

Γ = {∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b)}

and
∆ = {∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)},

with {γi}
⋃
{δi} ⊂ ΣB0 , and although we write for simplicity the initial string and third-order quan-

tifiers for each formula, in fact for some of the formulas either the initial string quantifier or both
initial quantifiers may be absent.

Then for each m1, ...,mk and n1, ..., nl there are function symbols hm,ni and BPLK-sequences
with endsequents

..., ||∀Aiγi(Ai,A[Ai]
i ,B, B, n)||m1,...,mk , ...

−→ ..., ||∀Ciδi(Ci, C[Ci]
i ,B, B, n)||m1,...,mk [hm,ni /gCi], ...

where hm,ni are called witnessing function symbols and are not free, but may be defined in terms
of free function symbols (in particular, gAi). Furthermore, these sequences have size polynomial in
m1, ...,mk and n1, ..., nl.

The notation ...[hm,ni /gCi] in the succedent means that one should first perform the translation,
and then substitute function symbol hi for the free symbol gCi in the result.

Proof. We show the existence of the desired BPLK-sequence by induction on the number of sequents
in the W 1

1 proof, in a manner very similar to the witnessing theorem of the previous section. The
witnessing function symbols of the present lemma are analogous to POWOs.

Base Case: This is trivial for initial sequents and the witnessing function symbol, if required, is
defined to be the constant false predicate. For translations of axioms B1-B12, L1, L2 and instances
of ΣB0 -2COMP, it follows from the analogous result for V 1

1 and Extended Frege. For translations
of instances of ΣB0 -3COMP, the witnessing function symbol has defining formula identical to the
comprehension formula, and then the translation of the instance is proved using the introduction
rule for this symbol followed by repeated substitutions and ∧ : right inferences.

Induction Step: There are cases depending on the final inference of the W 1
1 proof:

1. Weakening, Exchange, introduction of ¬, ∨ on the right and ∧ on the left:

These cases are all either structural rules or not applicable to formulas with third-order
quantifiers and thus the same rule is applied in the BPLK proof. In the case of weakening,

31

the conclusion may have more free variables than hypothesis. In that case new witnessing
function symbols are defined to ignore the new arguments and compute the same value as
the old ones, and these must be substituted for the old ones (by induction on the structure of
the formula it can easily be seen that BPLK can prove each formula equivalent to one with
the new function symbols instead).

2. Contraction:, introduction of ∨ on the left and ∧ on the right:

The only obstacle to using the identical propositional rule is that the principal formula of a
contraction inference and the side formulas of the two-hypothesis inferences have two ancestors
which will in general be witnessed by different witnessing function symbols (if they occur in
the succedent). The solution is to define new witnessing function symbols by cases and then
for each affected formula prove that the translation witnessed by the new function symbol
implies the disjunction of the translations witnessed by the two old symbols.

For example, a side formula ∀Ci ≤ ti∃Ciδi(Ci, Ci) with witnessing function symbols h′i and h′′i
would have new witnessing function symbol

hi := (||δi(Ci, C[Ci]
i)||[h′i/gCi] ∧ h

′
i) ∨ (||δi(Ci, C[Ci]

i)||[h′′i /gCi] ∧ h
′′
i)

in the conclusion.

3. Introduction of a first-order quantifier:

These cases are handled by the introduction of the appropriate propositional connective (dis-
junction or conjunction). In the case of a universal quantifier on the right or of an existential
one on the left, proofs for each value of the free variable are concatenated together. In the
other cases the proof for the hypothesis is first extended by weakening to add the other
disjuncts (conjuncts on the left).

4. Introduction of a second-order quantifier:

These cases are handled the same way as in the simulation of G by BPLK, in that essentially a
big disjunction or conjunction is constructed over all values of a set of propositional variables.

Additionally, if the principal formula is ∀Ci ≤ ti∃Ciδi(Ci, Ci), then more work is needed. First,
a new witnessing function symbol is defined as follows:

h′i(p, q) := (p = r ∧ hi(q))

where r are the propositional variables associated with Ci, p are precisely as numerous as
r and q are the same variables as the arguments to the original hi. Then, a derivation is
inserted proving

||δi(Ci, Ci)||[hi/gCi] −→ ||δi(Ci, C
[Ci]
i)||[h′i/gCi].

The second-order quantifier introduction is then handled as usual.

5. Introduction of a third-order quantifier:

These cases are easy: On the left, this amounts to renaming the arguments to the witnessing
function symbols (from free variables to a free function symbol) and on the right it means
producing a new witnessing function symbol defined equivalent to the existing free function
symbol for that variable and substituting it into the sequent.

32

6. Cut, Induction:

The cut rule is handled by defining new witnessing function symbols for the conclusion by
cases, using the witnessing function symbol for the cut formula. For induction this procedure
is iterated as many times as the value of the induction bound.

For example, if the cut formula is ∀Ci ≤ ti∃Ciδi(Ci, Ci), then a new witnessing function symbol
hj for ∀Cj ≤ tj∃Cjδj(Cj , Cj) would be defined as follows, where h′j is the witnessing function
symbol for the hypothesis with the cut formula on the right, and h′′j that for the hypothesis
with the cut formula on the left:

hj := (||δj(Cj , C
[Cj]
j)||[h′j/gCj] ∧ hj) ∨ h

′′
j (hi).

References

[1] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

[2] Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier Science B. V., Amsterdam, 1998.

[3] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes, URL:
”http://www.cs.toronto.edu/∼sacook/csc2429h”, Winter 2002.

[4] Stephen A. Cook. Theories for complexity classes and their propositional translations.
Manuscript, 2004.

[5] Alan Skelley. Relating the PSPACE reasoning power of Boolean programs and quantified
Boolean formulas. Master’s thesis, University of Toronto, 2000. Available from ECCC in
the ’theses’ section.

[6] Alan Skelley. Propositional PSPACE reasoning with Boolean programs versus quantified
Boolean formulas. In ICALP, volume 3142 of Lecture Notes in Computer Science, pages 1163–
1175. Springer, 2004.

[7] Alan Skelley. A third-order bounded arithmetic theory for PSPACE. In Jerzy Marcinkowski
and Andrzej Tarlecki, editors, CSL, volume 3210 of Lecture Notes in Computer Science, pages
340–354. Springer, 2004.

[8] Michael Soltys. A model-theoretic proof of the completeness of LK proofs. Manuscript, available
on author’s web page, 1999.

33

