
A resolution lower bound for a principle capturing the hardness of depth-1 LK

Alan Skelley∗

Dipartimento di Informatica
Università degli Studi di Roma “La Sapienza”

alan@cs.toronto.edu

Neil Thapen†

Mathematical Institute
Academy of Sciences of the Czech Republic

thapen@math.cas.cz

Abstract

We introduce principles 2VR2 and 2VR1 which imply
reflection for, respectively, the CNFs and the narrow CNFs
refutable in the depth-1 propositional LK system PK1. We
give a polynomial-size refutation of their negations 2VR2

and 2VR1 in the system PK1 and show an exponential
lower bound on the size of their resolution refutations. We
conjecture that they have no small Res(log) refutations;
this would be the first such lower bound for a principle
with bounded depth refutations. We also show that if any
CNF with a small PK1 refutation is exponentially hard for
Res(log) then 2VR2 is as well.

1. Introduction

The refutational system Res(log) is a strengthening of
the well-known resolution system in which small conjunc-
tions of literals, as well as single literals, are allowed to ap-
pear in clauses. It was introduced in [6] as a stronger, more
robust version of resolution, corresponding to the bounded
arithmetic theory T 2

2 via the Paris-Wilkie translation of first-
order proofs into propositional proofs.

A current frontier in propositional proof complexity is
to prove a lower bound for Res(log) for some CNF princi-
ple which has short bounded depth LK proofs (for exam-
ple it is known that there is no small Res(log) proof of the
pigeonhole principle, since it has no small proofs of any
bounded formula-depth [1]). Recent work has looked at
lower bounds for the weak pigeonhole from 2n to n. It was

∗Supported in part by grant LC505 (Eduard Čech Center) and NSERC
PDF-313650-2005; This work was partly carried out while the author was
at the Mathematical Institute of the Academy of Sciences of the Czech
Republic in Prague.

†Supported in part by grant AV0Z10190503 and by the Eduard Čech
Center grant LC505

shown in [11] that this requires exponential size to refute if
we restrict our conjunctions to size

√
log n/ log log n, and

this was improved in [10] to ε log n/ log log n. But it is
known that this is refutable with quasipolynomial size in
Res(log) [8].

A candidate for a principle that may be hard for Res(log)
is the finite Ramsey theorem, proposed in [4, 6]. This was
shown to be provable in bounded depth in [9]. Currently
not even resolution lower bounds are known for it; treelike
Res(log) lower bounds were shown in [6].

Obvious candidates are the reflection principles for proof
systems thought to be stronger than Res(log). These state
that a proof system is sound and in a sense capture the
strength of the system; however, they are generally very
complicated. The contribution of this paper is to propose
two CNFs, 2VR1 and 2VR2, which are as hard as reflec-
tion principles for a proof system PK1 (corresponding to
an extension of resolution in which we allow conjunctions
of unrestricted size) but which are simple enough that we
are able to prove at least a resolution lower bound for them.

Our motivation in this work is to better understand the
relative strengths of the theories T i

2 in the bounded arith-
metic hierarchy[2]. Here T i

2 is basically induction for for-
mulas from level i of the polynomial hierarchy; these the-
ories have close connections with complexity theory[5, 3,
12]. If we consider relatived versions T i

2(α) with an unde-
fined function symbol α (analogous to an oracle) then it is
known that these theories are strictly increasing in strength.
It is expected that they all even differ in their Σb

1(α) con-
sequences, but the best known separation of this form is
between T 1

2 (α) and T 2
2 (α). Finding a Σb

1(α) formula not
provable in T 2

2 (α) but provable somewhere higher in the
hierarchy is closely related to the problem of finding lower
bounds for Res(log) as described above.

The idea for our principles 2VR1 and 2VR2 comes from
the characterization of the Σb

1 consequences of T 3
2 in [7].

A better than quasipolynomial Res(log) lower bound for
2VR1 would imply a Σb

1(α) separation between T 2
2 (α) and

T 3
2 (α); a similar lower bound for 2VR2 would imply a

Σb
2(α) separation.
In the next section we define our proof systems; then we

describe our propositional principles 2VR1 and 2VR2 and
prove our PK1 upper bound and resolution lower bound;
in the last section we give some more evidence that these
are hard for Res(log) by showing that the existence of small
Res(log) refutations of these principles would mean that ev-
ery CNF with a small PK1 refutation has a small Res(log)
refutation.

2. Proof systems

PK is the propositional fragment of Gentzen’s sequent
calculus LK. In this paper, we shall consider small subsys-
tems of PK, in particular operating over cedents (i.e. sets
of formulas and no sequent arrow) and so more properly
called Tait calculi. We shall consider them mainly as refu-
tation systems.

The proof systems PK1 and Res(log) are generalizations
of resolution. In [6], Krajı́ček defines proof systems R(f)
by extending the language and rules of resolution to operate
on clauses containing conjunctions of literals, and then re-
stricting the sizes of these conjunctions to f(S) in proofs of
length S. Res(log) is our name for R(log) from that paper.
The inference rules of Res(log) are cut:

C ∨ (
∧

k lk) D ∨ ¬l′1 ∨ ... ∨ ¬l′j
C ∨D

provided l′1, ..., l
′
j are among the lks and k ≥ 1, and ∧-

introduction:

C ∨
∧

j lj D ∨
∧

i l′i

C ∨D ∨ (
∧

j lj ∧
∧

i l′i)

PK1 allows clauses containing conjunctions of arbitrary
size, and has the following inference rules (which seem to
be slightly weaker than R(id)): 1-resolution and an alter-
native ∧-introduction:

C ∨ (
∧

k lk ∧ l′) D ∨ ¬l′

C ∨D
;

C ∨
∧

j lj C ∨ l′

C ∨ (
∧

j lj ∧ l′)

Our choice of rules for PK1 is from [7], where they
were chosen to simplify search problems involving large
proofs. Cut can be simulated by repeated applications of
1-resolution, while the stronger ∧-introduction can be sim-
ulated by allowing free introduction of axioms the form

{p,¬p} and applying the weaker ∧-introduction rule; we
will therefore consider PK1 to be largely equivalent to
R(id).

3. CNF principles and upper and lower bounds

2VR1 is the following CNF, with a size parameter a. It is
based on the “2-verifiable recursion machines” of [7]. For
clarity we write it using quantifiers rather than propositional
connectives. All quantifiers/connectives range over [0, a].

1. For all x and all i > 0: ∃!x′ Fixx′

2. For all x: ∃!y Gxy

3. For all x, y, z: Gxy → V0xyz

4. For all x, y′ and all i > 0: ∃!y Hixy′y

5. For all y: ∃!z Syz

6. For all y, z: Syz → ¬Va0yz

7. For all x, y, z and all i > 0: ∃!z′ Tixyzz′

8. For all x, y, z, x′, y′, z′ and all i > 0:

Fixx′ ∧Hixy′y∧Tixyzz′ ∧¬Vixyz → ¬V(i−1)x′y′z′ .

We think of the propositional variables G and S as repre-
senting the graphs of functions. Fi, Hix and Tixy repre-
sent the graphs of parametrized functions and V represents
a parametrized relation Vixy(z).

The principle is best understood by considering a pic-
ture:

Va 0 ya → S → za

...
...

...
Vi x y z

Fi ↓ Hix ↑ Tixy ↓
Vi−1 x′ y′ z′

...
...

...
V0 x0 → G → y0 z0

At the bottom, for i = 0, by axiom 3 we have
∀x∃y ∀z V0xy(z) with y witnessed by G. Then by in-
duction on i from the bottom up, for all i we can derive
∀x∃y ∀z Vixy(z); axiom 8 gives us the induction step. But
at the top, for i = a, by axiom 6 we have ∀y ∃z ¬Va0y(z)
with z witnessed by S. This is a contradiction. This argu-
ment can be formalized into a polynomial-sized PK1 refu-
tation of 2VR1 which we will describe in a moment.

First we define another CNF, 2VR2, again with size pa-
rameter a:

2

1. For all x and all i > 0: ∃!x′ Fixx′

2. For all x: ∃!y Gxy

3. For all x, y, z: Gxy → V0xyz

4. For all x, y′ and all i > 0: ∃!y Hixy′y

5. For all y, z: ∃z ¬Va0yz

6. For all x, y, z, x′, y′ and all i > 0:

Fixx′ ∧Hixy′y ∧ ¬Vixyz → ∃z′ ¬V(i−1)x′y′z′ .

2VR2 is a strengthening of 2VR1, which we get by replac-
ing S and T (which we can think of as Herbrand functions)
with disjunctions.

Lemma 1 2VR1 and 2VR2 have polynomial-size PK1

refutations.

Proof It is enough to consider the stronger principle
2VR2.

By axiom 3 and several
∧

-introduction steps, for all x, y

we have Gxy →
∧

z V0xyz . From axiom 2 for all x we
have

∨
y Gxy . Several resolution steps give

∨
y

∧
z V0xyz

for each x.
This is the base case of the first order induction described

above. To illustrate the inductive step, we will fix some
x = b and derive

∨
y

∧
z V1byz .

By axiom 1 we have
∨

x′ F1bx′ . Call this A. By axiom 4,
for all y′ we have

∨
y Hiby′y . Call this B.

Temporarily fix values b′ and c′ for x′ and y′. Let
Γb′c′ be the conjunction

∧
z′ V0b′c′z′ . If we assume Γb′c′

then by cuts with instances of axiom 6 we can derive
¬F1bb′ ∨ ¬Hibc′y ∨ V1byz for each y and z; then by several∧

-introduction steps we get ¬F1bb′ ∨ ¬Hibc′y ∨
∧

z V1byz

for each y; then by repeatedly resolving with B for all ys
(for y′ = c′) we get ¬F1bb′ ∨

∨
y

∧
z V1byz .

By the induction hypothesis (here just the base case)
we have already derived

∨
y′ Γb′y′ . Applying the above

derivation to each disjunct Γ in turn, we get
∨

y′ [¬F1bb′ ∨∨
y

∧
z V1byz] which is just ¬F1bb′ ∨

∨
y

∧
z V1byz . Finally

for each b′ we resolve this with A to get
∨

y

∧
z V1byz , as

required.
We repeat this for every value of x at every level i. At

the top level we derive
∨

y

∧
z Va0yz . We then repeatedly

cut with axiom 5 to derive the empty clause. �

3.1. Lower bound

Our lower bound proof is based on a bottleneck count-
ing argument similar to those used in lower bounds for the
pigeonhole principle. We give a lower bound for 2VR1 and
the bound for 2VR2 follows.

For some large a, suppose that Π is a resolution refuta-
tion of an instance of 2VR1 of size a.

We find it intuitive to think about games rather than
proofs, so we will think of Π as a strategy for the Prover
in a certain Prover-Adversary game. In the game the Prover
starts with an empty term (that is, an empty conjunction of
the things he knows). In each turn he either asks the Adver-
sary for the value of a variable and adds the answer to his
term (corresponding to a resolution step) or forgets a vari-
able from his term (corresponding to a weakening step). We
make Π into a strategy for the Prover in this game by think-
ing of it as a directed acyclic graph, replacing each clause
with its negation and reversing the direction of the arrows.

We will define a distribution on partial assignments to
the variables of 2VR1. We then show that, if Π is small,
then with high probability a partial assignment ρ has sev-
eral nice properties and choose one fixed ρ with these prop-
erties. Then in particular, if the Adversary’s replies are con-
sistent with ρ then the terms known by the Prover are always
narrow in a certain sense. This narrowness allows the Ad-
versary always to give answers which are consistent with
2VR1, and hence the Prover is not able to win the game
using the strategy Π.

Our distribution is determined by three parameters, a
probability p, a width w and a constraint size c. We need
that pcw > a1+ε for some ε > 0 and that c ≥ 4pa. It is
enough to take p to be a−9/10 and w and c to be a/10. We
do not try to optimize the numbers used here.

Below “exponentially high probability” means > 1 −
2−aε

for some ε > 0 and “polynomially high probability”
means > 1− a−ε for some ε > 0.

We define a random partial assignment ρ as follows.

1. For each pair (i, x) with i > 0, with probability p “se-
lect” (i, x). Then for each row i > 0, suppose that
distinct pairs (i, x1), . . . , (i, xm) were selected on that
row. Randomly choose distinct numbers x′1, . . . , x

′
m

(on row i − 1) and use these to partially define Fi as
a partial injection. That is, for each j set Fixjx′

j
to be

true and Fixjx′′ to be false for every x′′ 6= x′j .

2. Similarly select each triple (i, x, y′) for i > 0 with
probability p and randomly define Hix to be a partial

3

injection from the selected y′s on row i− 1 to a set of
ys on row i.

3. Select each four-tuple (i, x, y, z) for i > 0 with proba-
bility p and randomly define Tixy to be a partial func-
tion from the selected zs on row i to a set of z′s on row
i− 1. Here we can choose the z′s independently since
we do not insist it is a permutation.

4. For each (i, x, y) (possibly with i = 0) with proba-
bility p set every value of Vixy(z) to be true or false
uniformly at random (with probability 1/2) – so each
(i, x, y) either has all or none of the variables Vixy(z)
set.

We say that (the value of) Fi(x) is set in a partial assign-
ment if Fi(x) = x′ is true for one x′ and false for all the
rest. Similarly for the other functions. We say Vixy is set if
it has a truth-value for every z.

Lemma 2 By the Chernoff bound, with exponentially high
probability, in every row i, Fi(x) is set for at most 2pa val-
ues of x. Similarly for each function Hix and Tixy and for
Vixy . We may also assume that, if Vixy is set by ρ, then it is
made true for between 1/3 and 2/3 of the values z.

Hence we may assume these bounds on size in the fol-
lowing lemmas, since any ρ for which they do not hold
comes from an exponentially small error set which will not
make a difference to our calculations.

We now extend the restriction to set all variables G and
S in a way which satisfies axioms 2, 3, 5 and 6 of 2VR1.

5. For each x choose y at random amongst the ≥ a− 2p

values of y for which V0xy was not set. Set G(x) = y

and set V0xy to be true for all z.

6. Let y be on row a. There are two cases.

Case 1: Va0y is set. Then choose any z such that
Va0y(z). Set S(y) = z.

Case 2: Va0y is not set. Then choose any z such that
Taxy(z) is not set. Set S(y) = z, make Va0y(z) false
and make Va0y true elsewhere.

Lemma 3 With exponentially high probability, for any x,
for all but 3a2p2 numbers x′ the following sets are disjoint
in ρ: the domain of H1x; the set of y′ for which V0x′y′ is
set. Note that this second set includes G(x′).

Proof For fixed x and x′, the probability that there is some
y′ in the intersection from the original definition of ρ is ≤

ap2. The probability that G(x′) is in the domain of H1x is
p < ap2. Hence by the Chernoff bound we may assume that
there are ≤ 3a2p2 many x′s for which a bad y′ exists. �

Lemma 4 With exponentially high probability, for any x

and any i > 1, for all but 2a2p2 numbers x′ the following
sets are disjoint in ρ: the domain of Hix; the set of y′ for
which V(i−1)x′y′ is set.

Proof For any i, x′ and y′, ρ puts y′ into each of these sets
independently with probability p. So the probability that y′

is in both of them is < p2. So the probability that, for fixed
x′, there is any y′ in an intersection is < ap2. Hence for
each fixed i and x, by the Chernoff bound we may assume
that there are < 2a2p2 numbers x′ for which the sets are not
disjoint. �

Definition 5 We say a term t constrains Fi(x) if either
the literal Fi(x) = x′ is in t for some x′, or the literal
Fi(x) 6= x′ is in t for at least c many different x′s. We define
constraining Hix(y′) and Tixy(z) similarly. Furthermore
we say that t constrains Vixy if either Vixy(z) or ¬Vixy(z)
is in t for at least one z.

A term t is F -fat if |{(i, x) : t constrains Fi(x)}| > w.
H-fat, T -fat and V -fat are defined similarly, in terms of the
number respectively of triples (i, x, y′), 4-tuples (i, x, y, z)
and triples (i, x, y) that are constrained by t.

Lemma 6 Any F -fat term t is falsified by ρ with exponen-
tially high probability. Similarly for H , T and V .

Proof A difficulty here is that in each row the values ρ

gives to each Fi(x) are not set independently, since we in-
sisted in the assignment that they should form a partial per-
mutation.

We consider each row separately. Suppose t constrains
Fi for x1, . . . , xs in row i. Let Pj be the probability that
some literal involving xj is falsified given that no literal in-
volving xk was falsified for any k < j. The “given . . . ” part
will make no difference to our bound on Pj , but we formally
consider conditional probabilities because these events are
not independent.

If Fi(xj) = x′ is in t for some x′, then Pj > p(a−2pa−
1)/(a− 2pa) since, if ρ assigns a value to Fi(xj), then this
value was chosen not from all of the numbers < a but from
a possibly smaller set, although one still of size > a − 2pa

(here we are appealing to Lemma 2).
Similarly if Fi(xj) 6= x′ is in t for at least c many differ-

ent x′s, then Pj > p(c− 2pa)/(a− 2pa).
Since c ≥ 4pa, both these probabilities are > pc/2a. So

the probability that no literal in row i is falsified is < (1 −

4

pc/2a)s and, as the rows are independent, the probability
that no literal in any row is falsified is < (1 − pc/2a)w ≤
e−pcw/2a = 2−a1/10/200. �

We now define an important tool in the Adversary’s strat-
egy. We will need this to describe one more nice property
of ρ, which will hold with polynomially high probability.

Definition 7 An F -path in a partial assignment α is a
maximal sequence xj , xj−1, . . . , xk with j > k such that
Fj(xj) = xj−1, . . . , Fk+1(xk+1) = xk.

Given a F -path σ of the above form, a H-path τ

which “matches” σ is a maximal sequence yl, yl+1, . . . , ym

such that k ≤ l < m ≤ j and H(l+1)xl+1(yl) =
yl+1, . . . ,Hmxm(ym−1) = ym. Notice that you cannot
have an H-path without an F -path, and that an F -path may
have several disjoint, overlapping matching H-paths.

We say that xj is at the top of the F -path and xk is at the
bottom, and the length of the path is j − k. The domain of
the path is [k, j]. Similarly for H-paths.

We say that such a path τ is “full” if for each i ∈ [l, m],
Vixiyi

is set, and for each i ∈ [l + 1,m], Tixiyi
is total, and

that these hold in a way consistent with 2VR1.

Definition 8 Let γ be a partial assignment (which will
eventually represent the term remembered by the Prover at
a round in the game). We say that a partial assignment α is
a completion of γ if all of the following hold.

1. In α, where they are defined, F , H and T are partial
functions for every choice of parameters, and further-
more F and H are partial permutations.

2. ρ ⊆ α.

3. γ ⊆ α.

4. Every Fi(x) constrained in γ is set in α.

5. For every Hix(y) constrained in γ, Fi(x) and Hix(y)
are set in α.

6. Every Tixy(z) constrained in γ is set in α.

7. Every Vixy constrained in γ is set in α.

8. Every H-path in α is full. We call this condition “full-
ness”.

9. No variables are set in α other than those as required
above.

10. If Vixy is true for all z, then i ≤ 2w+2 and the F -path
containing (i, x), if there is one, has all of its domain
≤ 2w + 2. We call this “uselessness”.

11. No F -path contains more than two triples (i, x, x′)
such that Fi(x) = x′ was set in ρ (rather than com-
ing from γ). We call this “avoiding paths from ρ”.

12. α is consistent with 2VR1.

Lemma 9 With polynomially high probability there is a
completion α0 of the empty assignment.

Proof We need to show how to extend ρ to make it full.
The only obstacle to this is if there are some H-path on
which the V s and T s were badly defined. Note that if we
were proving a lower bound for 2VR2 rather than for 2VR1

then this lemma would be much shorter, since if we do not
have the function T then the only obstacle to making an
H-path full is if a V is set all-true somewhere on the path
(which can only happen at the bottom, in ρ) and a V is set
not-all-true somewhere higher on the path.

We may assume that there is no H-path in ρ of length
two or more, by the following calculation. For any
i, x, x′, x′′, y, y′, y′′, the probability that x, x′ and x′′ form
an F -path and a matching H-path (at level i) is (p/a)4.
There are only a7 such 7-tuples, so the probability that any
of them form such a path is < (p/a)4a7 = p4a3 = a4/10/a.

We can also show that there is no H-path of length one
such that V is set at both the top and bottom of the path. For
this there are three cases.

For any i, x, x′, y, y′ with a > i > 1 the probability
that they form an F -path and a matching H-path (at level
i) is (p/a)2, and the probability that Vixy and V(i−1)x′y′

are both set is p2. There are a5 such 5-tuples, so the prob-
ability that any of them form such a bad configuration is
< (p/a)2p2a5 = p4a3 = a4/10/a.

For i = a, if x 6= 0 then the calculation is as above.
If x = 0, then Va0y is set for every y (by part 6 of the
definition of ρ). But this is only a problem if there exist
x′, y′, y such that 0, x is a F -path, y′, y is a matching H-
path and V(a−1)x′y′ is set, which happens with probability
< a3/10/a2.

For i = 1, the probability that V(i−1)x′y′ is set is slightly
higher than p, since V0x′G(x′) is always set, but it is no more
than p+1/(a−2p) so the probability of a bad configuration
is still polynomially small.

So ρ contains several H-paths of length 1, for which V

may have been set by ρ at one end or the other, but not at
both ends. Suppose y′, y is such an H-path which matches

5

a F -path x, x′ (with x, y at level i and x′, y′ at level i −
1). Tixy is partially defined, with domain of size < 2pa.
Suppose Vixy was set by ρ. Then there is no difficulty in
setting V(i−1)x′y′ and extending Tixy to a total function in

such a way that (a) axiom 8 of 2VR1 is satisfied and (b)
V(i−1)x′y′(z′) is false for some z′, so that we do not violate
uselessness. The situation is similar if instead V(i−1)x′y′

was set by ρ, or if neither was set.
For part 11 of the definition, “avoiding paths from ρ”, we

need to bound the probability that ρ contains any F -paths of
length three or more. By a similar calculation to the above,
this is < (p/a)3a5 = p3a2 = a3/10/a. �

Notice that V s only appear in α0 \ ρ on H-paths in ρ, so
we will still be able to use Lemma 4. See below.

Theorem 10 For some ε > 0, there is no resolution refuta-
tion of 2VR1 of size < 2aε

.

Proof Suppose that there is a subexponential-size proof
Π. Then we can treat Π as a Prover-strategy, as outlined
above, and by Lemma 6 we can find a single partial assign-
ment ρ which falsifies every fat term in Π. Furthermore we
can choose ρ to satisfy all our other lemmas.

The Prover begins the game with an empty assignment
γ. At each turn, he can either forget a variable from γ or
ask the Adversary for the value of a variable.

We have shown that, provided that the Adversary’s
replies are consistent with ρ, then the Prover’s strategy re-
mains “narrow” and γ constrains at most w many F s, Hs,
T s and V s.

The Adversary’s strategy is to maintain a completion α

of γ. As long as he does this, γ must be consistent with
2VR1 and the Prover cannot win.

The Adversary begins with α0, which is by definition a
completion of the empty assignment.

We consider a turn in the game where the Prover starts
with an assignment γ and ends with an assignment γ′. The
Adversary starts with a completion α of γ. We must show
there is a completion α′ of γ′.

If the Prover forgets a variable and so γ′ ⊆ γ, then the
adversary can easily find a completion α′ ⊆ α.

Suppose the Prover asks “does Fi(x) = x′?”. If Fi(x) is
set in α, then the Adversary answers appropriately and α is
still a completion. If Fi(x) is not set, then let X be the set
of x′′s for which Fi(x) 6= x′′ is in γ. If |X| < c−1 (or x′ ∈
X) then the Adversary replies “no” and adds Fi(x) 6= x′ to
α. If |X| = c−1 and x′ /∈ S then any answer to the Prover’s

question will inevitably constrain Fi(x), so α′ must set a
value for Fi(x) (and the Adversary replies accordingly). We
show how to set a value for Fi(x) in Lemma 11 below.

Suppose the Prover asks “does Hix(y′) = y?”. This is
similar to the case for F , but now we need to keep track
of whether Hix(y′) is constrained in γ even if Hix(y′) is
already set in ρ, because of part 5. of definition 8. So if
Hix(y′) is set in α, then the Adversary answers appropri-
ately. When Hix(y′) becomes constrained in γ, first the
Adversary uses Lemma 11 to set Fi(x) in α, and then uses
Lemma 12 to set Hix(y′) (if it was not set already).

T is dealt with the same way as F . When Tixy(z) be-
comes constrained in γ and is not already set in α, the Ad-
versary gives it a value arbitrarily. A single query Vixy(z)
is enough to constrain Vixy . If it is not already set in α, the
Adversary assigns it values arbitrarily, making at least one
of them false to maintain uselessness. These steps could
lead to a contradiction with 2VR1 if the T s or V s lie on
some H-path; but by fullness all the T s and V s on H-paths
are already set by α in a consistent way. �

Lemma 11 There is a way to extend α to α′ which sets a
value for Fi(x).

Proof Case 1: i > 1.
We list the properties which we do not want our choice

x′ of a value for Fi(x) to satisfy, and give bounds on the
number of x′s with each bad property.

1. Fi(x) 6= x′ is in γ; ≤ c.

2. Fi(x̃) = x′ is in α for some x̃ 6= x; ≤ 2pa + 2w (2pa

for F s set by ρ, w for F s constrained by γ and w for
Hs constrained by γ – see part 5 of Definition 8).

3. Fi−1(x′) is set in α; ≤ 2pa + 2w (as above).

4. V(i−1)x′y′ is set in γ for some y′; ≤ w.

5. x′ does not satisfy Lemma 4; ≤ 2a2p2.

The sum of these bounds is less than a, so some good x′

exists. We may extend α by setting Fi(x) = x′. Notice
that by item 3, this does not grow any F -paths upwards,
so uselessness is preserved; also by item 3 we continue to
avoid paths from ρ.

We now need to add some more things to α to get full-
ness. By 2 and 3, x′ is not on any F -path in α. Hence any
V(i−1)x′y′ that is set, was set either by ρ or in γ. By item
4, it can only have been set in ρ. By part 5 of definition 8,
Hα

ix = Hρ
ix. Hence by Lemma 4, there is no y′ such that

y′ ∈ domHα
ix and V(i−1)x′y′ is set in α.

6

So if y′, y is (part of) any H-path matching our new
(partial) F -path x, x′, then there is no difficulty in setting
V(i−1)x′y′ , setting Vixy if necessary and extending Tixy to

a total function in a way consistent with 2VR1 and with
uselessness, as in the proof of lemma 9.

Case 2: i=1.
We list the properties which we do not want our choice

x′ of a value for F1(x) to satisfy, and give bounds on the
number of x′s with each bad property.

1. F1(x) 6= x′ is in γ; ≤ c.

2. F1(x̃) = x′ is in α for some x̃ 6= x; ≤ 2pa + 2w.

3. V0x′y′ is set in γ for some y′; ≤ w.

4. x′ does not satisfy Lemma 3; ≤ 3a2p2.

Fullness is preserved as in case 1.
For y′ = G(x′), V0x′y′ will be all true in ρ. But by

the condition on avoiding paths from ρ and the limit on
the number of F s constrained by γ, the F -path containing
(0, x′) has length at most 2w + 2, so uselessness is pre-
served. �

Lemma 12 There is a way to extend α to α′ which sets a
value for Hix(y′).

Proof Recall that this lemma is only applied once Fi(x)
is set to some value x′. Note that Fi(x) is not necessarily
constrained by γ, but other than this α is a completion of γ.

Case 1: 0 < i < a, there is some x∗ such that
Fi+1(x∗) = x.

We list the properties which we do not want our choice
y of a value for Hix(y′) to satisfy, and give bounds on the
number of ys with each bad property.

1. Hix(y′) 6= y is in γ; ≤ c.

2. Vixy is set in ρ or constrained by γ; ≤ 2pa + w.

3. y ∈ ranHα
ix; ≤ 2pa + w.

4. y ∈ domHα
(i+1)x∗ ; ≤ 2pa + w.

The sum of these bounds is less than a, so some good y

exists. We may extend α by setting Hix(y′) = y.
By items 3 and 4, (i, x, y) is not on any H-path in α,

so together with item 2 this means that Vixy is not set in
α. Hence there is no difficulty with setting Vixy , possibly
setting V(i−1)x′y′ and extending Tixy to achieve fullness.

If V(i−1)x′y′ is all true, then we must set Vixy to be all
true. But this does not contradict uselessness, since the F -
path containing (i− 1, x) does not grow upwards.

Case 2: 0 < i < a, there is no x∗ such that Fi+1(x∗) =
x.

The argument is as above, but simpler because we do not
have to worry about domH(i+1)x∗ .

Case 3: i = a, x = 0.
Notice that by our construction of ρ for all y, Va0y is set

in ρ and Va0y(S(y)) is false.
Again we list the ys to avoid:

1. Ha0(y′) 6= y is in γ; ≤ c.

2. y is already in ranHα
a0; ≤ 2pa + w.

3. Va0y was set at random in ρ, at step 4 in the definition
of ρ; ≤ 2pa.

4. Va0y was set at step 6 in the definition of ρ, and
Ta0y(S(y)) is constrained by γ; ≤ w.

We may find a good y and extend α by setting Ha0(y′) = y.
We may assume that V(a−1)x′y′ is set and, by useless-

ness, that it is false for at least one z′. By item 3 above and
case 2 of part 6 of the definition of ρ, z = S(y) is the only
false z in Va0y and Ta0y(z) was not set in ρ, so is not set yet
in α. Set Ta0y(z) = z′. Then extend Ta0y arbitrarily to a
total function. This gives fullness.

Case 4: i = a, x 6= 0.
This is the same as case 2. �

4. Reflection principles and propositional
translations

In this section we show that if our CNF principles have
small refutations in Res(log), then everything with a small
refutation in the possibly-stronger system PK1 already has
a small refutation in Res(log). This is corollary 16 below.

This could be shown by directly constructing Res(log)
refutations, but instead we will describe some first-order
proofs in bounded arithmetic and make use of known trans-
lations of these into propositional proofs.

We begin by defining some first-order reflection princi-
ples for PK1 and saying how these are related to our prin-
ciples 2VR1 and 2VR2.

4.1. Reflection and verifiable recursion
principles

A reflection principle is a formula expressing that, if a
formula in a certain class is provable in a certain proof sys-
tem, then that formula is true.

7

We are interested here in what might be called “second-
order” reflection principles, and in ones which deal with
refutations rather than proofs. We are given a size param-
eter a and some oracles Γ, Π and α. The principle states
that if we interpret these oracles as structures on a domain
of size a, then if Π is a refutation of the formula Γ, then Γ
is false under the assignment α.

Reflection principles of this form are developed in [7],
for the resolution and PK1 proof systems. That paper goes
into some detail about how to present the structure of a for-
mula and a PK1 refutation using polynomial time (possibly
with an oracle) relations and functions. Π will contain ma-
chinery to list the literals in a narrow clause or conjunction,
to find the hypotheses and rule used to derive a given clause,
to check membership of a literal in a clause or a conjunc-
tion, etc. Narrow here means of size polynomial in |a|.

1−Ref(PK1)(Γ,Π, α, a), with size parameter a, is a
Σb

1(Γ,Π, α) formula stating that either the refutation Π of
a set of narrow clauses Γ is ill-defined, or there is an initial
clause falsified by α.

2−Ref(PK1)(Γ,Π, α, a) is analogous but without re-
stricting Γ to be narrow. Now the statement that
a particular initial clause is falsified by α is Πb

1, so
2−Ref(PK1)(Γ,Π, α, a) is Σb

2(Γ,Π, α).

A verifiable recursion program (defined in [7]) is a com-
putational object consisting of a sequence of machines (vi-
sualized proceeding from top to bottom), each able to make
recursive queries to other machines further down the list.
The output of any of these machines is locally verifiable by
a correctness predicate, and the output of the program on an
input x is the output of the topmost machine on that input.
(For simplicity, we will usually just use 0 as the top-level
input to the program.) There are several variations of this
model depending on the depth of the sequence as a function
of the input size, the semantics for the recursive calls, the
complexity of the correctness predicate, and so on.

For the purposes of this paper, we will focus on 2-
verifiable recursion programs of the following kind: (The
2 refers to the extra “check” argument to the correctness
predicates). For size parameter a (for inputs in the range
[0, a]) there are a+1 machines, from number a at the top to
0 at the bottom. The correctness predicate, Vi, at each level
is ternary and takes a check argument in addition to the in-
put and output. Each machine makes exactly one recursive
call to the next lower machine, formalized by Fi(x). Its out-
put y on input x is a function of this return value y′, formal-
ized as Hi(x, y′), and is said to be correct if ∀zVi(x, y, z).
At the bottom level (0), correct outputs can be found in

polynomial time and we formalize this with a function G

and assert that ∀x, zV0(x,G(x), z) holds for a well-defined
program. At level i > 0 there is optionally a Herbrand
function T to help enforce the correctness of the output
of machine i: in a well-defined program this function has
the property that ∀i > 0∀x, y′, z (¬Vi(x,Hi(x, y′), z) →
¬Vi−1(Fi(x), y′, Ti(x, y, z))). A well-defined program
without the Herbrand function need satisfy only the weaker
property that ∀i > 0∀x, y′ (∃z¬Vi(x,Hi(x, y′), z) →
∃z′¬Vi−1(Fi(x), y′, z′)). Finally, at the top level a, there
is optionally another Herbrand function S to produce the
check argument, and in this case the correctness condition
at the top is weakened to Va(x, y, S(y)). For simplicity, we
will use 0 as the input to the top level when asserting total-
ity; this does not make the resulting principle any weaker.

With this description in mind, we define the first-order
versions of our CNFs: 2VR1(V, F, G,H, S, T, a) is ∀Σb

1

and states that if a 2-verifiable recursion program with Her-
brand functions is well-defined, then it is total:

[∀x, zV0(x,G(x), z)]∧
[∀i > 0, x, y′, z (Vi−1(Fi(x), y′, Ti(x, y′, z))

→ Vi(x,Hi(x, y′), z))] → [∃yVa(0, y, S(y))]

2VR2, meanwhile, omits the Herbrand functions S and T

and is ∀Σb
2:

[∀x, zV0(x,G(x), z)]∧
[∀i > 0, x, y′(∀z′Vi−1(Fi(x), y′, z′) →

∀zVi(x,Hi(x, y′), z))] → [∃y∀zVa(0, y, z)]

In each case, all quantifiers are bounded by a. The hypoth-
esis of the implication we call well-definedness of the pro-
gram and the conclusion totality. Our CNF 2VR1 is the
propositional translation of the negation of 2VR1 and simi-
larly for 2VR2 and 2VR2.

Theorem 13 There is a term t and polynomial-time
V, F, G,H, S, T defined in terms of oracles Γ,Π, α such
that

1. T 2
2 ` 2VR1(t(a)) → 1−Ref(PK1)(a)

and

2. T 2
2 ` 2VR2(t(a)) → 2−Ref(PK1)(a).

Proof We begin with part 1. This is essentially proved in
[7], but for a slightly more general kind of recursion pro-
gram allowing recursive calls to an arbitrarily lower ma-
chine. We will present this construction at a high level, and
point out how to modify it for the present theorem.

8

We are given Γ,Π, α with size parameter a. Say that Π
consists of b clauses C0, ..., Cb. The 2VR program we con-
struct will have size parameter t, a term in a which we will
not calculate here. The general outline of the program is
that machine i (for i ≤ b) will attempt to find a true literal
or conjunction in Ci. Note that the lower-down machines
of the program correspond to the upper (towards the initial)
clauses of the proof. The correctness predicate Vi(x, y, z) is
true if either y really is a true literal, or if it names a conjunc-
tion and z is not a witness that the conjunction is actually
false. (The input x is not used in the original construction).
Machines i for i > b behave as machine b. The Herbrand
function S(y) for the top level simply returns 0.

If Ci is an initial clause (and therefore narrow), machine
i examines the clause and returns a true literal if one exists.
Otherwise, depending on the PK1 rule used to derive clause
Ci and possibly the assignment to a relevant literal, machine
i queries the machine for one of the hypotheses of this rule.
The return value of machine i is then a simple function of
this reply.

For some inference rules involving conjunctions, ma-
chine i may return a conjunction without being able to ver-
ify that it is satisfied (as it may contain too many literals to
check); however in these cases, given a false literal in the
conjunction, the Herbrand function Ti is able to pass the
blame downwards to the machine for the relevant hypothe-
sis.

Now, if a machine corresponding to an initial clause
is not total, this yields a falsified initial clause. Every
other way that the verifiable-recursion program could be ill-
defined yields a witness to the PK1 refutation being badly
formed. Finally, a correct output at the top yields a literal
or conjunction in the final clause of the refutation, which
is another witness of it being ill-formed (as the final clause
should be empty). All this is easily provable in T 2

2 , as it in-
volves only polynomial-time reasoning about the soundness
of rules of PK1

This construction is easily adapted to the present case:
we must only arrange for the machine at each level to make
its single recursive call to the next-lower level. This is done
by expanding the inputs and outputs of the machines to al-
low a call from level i to reach level j < i by being passed
down (and back up) through the intermediate machines as a
special case; similarly for the outputs and check-arguments.
Now provably in T 2

2 , all witnesses of ill-definedness of the
new machine imply such a witness for the original machine.

The statement for 2VR2 and 2−Ref(PK1) is proved
with the identical construction, except that the Herbrand

function is omitted. Ill-definedness of the machine at the
bottom yields a false initial clause (which now could be
wide). Ill-definedness in the middle means that the refu-
tation is badly formed (as T 2

2 still proves the soundness of
individual rules of PK1), and a correct output at the top
again is a witness that the final clause is not empty. �

4.2. Propositional translations

We use a theorem of Krajı́ček, which is a model-
theoretic version of the Paris-Wilkie translation from proofs
in bounded arithmetic to proofs in propositional logic.

Let M be any countable nonstandard model of true arith-
metic and a any nonstandard element of M . We define Ma

to be the structure whose domain is the cut in M of numbers
subexponential in a, that is

Ma =
⋂
ε>0

{u ∈ M : u < 2aε

},

and whose language La contains a predicate symbol for ev-
ery bounded subset of Ma which is coded in M .

Theorem 14 [6] Let Φn be a family of CNF formulas
whose variables come from a language L.

Then (Φn) has no subexponential size family of Res(log)
refutations if and only if every model of the form Ma can be
expanded to a model (Ma, L) of T 2

2 (La, L) in which Φa is
true.

Lemma 15 If 2VR2 has subexponential size Res(log) refu-
tations, then the propositional translation of¬2−Ref(PK1)
has subexponential size Res(log) refutations. Similarly for
2VR1 and 1−Ref(PK1).

Proof We do the 2VR2 case.
Suppose that the conclusion of the lemma is false and

take any model Ma. Then there is an expansion of Ma to
a model of T 2

2 (Γ,Π, α) in which the size a translation of
¬2−Ref(PK1) is true. Hence 2−Ref(PK1)(Γ,Π, α, a) is
false in the model. Let V, F, G,H, S, T be polynomial time
with oracles for Γ,Π, α as given by Theorem 13. Since
these are polynomial time, we may add them to the lan-
guage and our model will still satisfy T 2

2 in this expanded
language. But since 2VR2(t(a)) → 2−Ref(PK1)(a) is
provable in T 2

2 , we must have that 2VR2(t(a)) is false in
the model. So by the theorem 2VR2 does not have subex-
ponential size Res(log) refutations. �

Corollary 16 If 2VR2 has subexponential size Res(log)
refutations, then every CNF with a PK1 refutation of size a

9

has a Res(log) refutation subexponential in a. Similarly for
2VR1 and bounded-width CNFs.

Proof We do the 2VR2 case.
Let P be a Res(log) refutation of the translation of

¬2−Ref(PK1)(Γ,Π, α, a) of size subexponential in a, as
given by the lemma. Recall that 2−Ref(PK1) has the form
“either there is a witness that Π is not a well-formed refuta-
tion of Γ, or there is some clause in Γ which is falsified by
α” so the translation of ¬2−Ref(PK1) is the conjunction
of translations of “nothing witnesses that Π is not a well-
formed refutation of Γ” and “every clause in Γ contains a
literal made true by α”.

Suppose we have a size a PK1 refutation Π∗ of a for-
mula Γ∗. Suitably coded, we can use these to assign values
to all the variables coming from Π and Γ in our Res(log)
refutation P . This will satisfy all clauses in the first con-
junct of ¬2−Ref(PK1) (since Π∗ genuinely is a PK1 refu-
tation of Γ∗), so the first conjunct vanishes. In the second
conjunct all the literals will vanish except those from α, and
what will be left will be a set of clauses isomorphic to Γ∗,
but in these new literals.

Hence our P will have become a refutation of Γ∗ of the
required size. �

5. Acknowledgment

The authors would like to thank Jan Krajı́ček, Leszek
Kołodziejczyk and Pavel Pudlák for helpful discussions
about this material.

References

[1] M. Ajtai. The complexity of the pigeonhole principle. In
29th Annual Symposium on Foundations of Computer Sci-
ence, pages 346–355, White Plains, New York, 24–26 Oct.
1988. IEEE.

[2] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
[3] S. R. Buss. Relating the bounded arithmetic and polynomial

time hierarchies. Annals of Pure and Applied Logic, 75(1–
2):67–77, 12 Sept. 1995.

[4] M. Chiari and J. Krajı́ček. Lifting independence results
in bounded arithmetic. Archive for Mathematical Logic,
38(2):123–138, 1999.

[5] J. Krajı́ček and P. Pudlák. Quantified propositional calculi
and fragments of bounded arithmetic. Zeitschr. f. Mathe-
matikal Logik u. Grundlagen d. Mathematik, 36(1):29–46,
1990.

[6] J. Krajı́ček. On the weak pigeonhole principle. Fundamenta
Mathematicae, 170(1-3):123–140, 2001.

[7] J. Krajı́ček, A. Skelley, and N. Thapen. NP search prob-
lems in low fragments of bounded arithmetic. The Journal
of Symbolic Logic. To appear.

[8] A. Maciel, T. Pitassi, and A. Woods. A new proof of the
weak pigeonhole principle. Journal of Computer and System
Sciences, 64(4):843–872, 2002.

[9] P. Pudlák. Ramsey’s theorem in bounded arithmetic. In
E. Borger, H. K. Buning, M. M. Richter, and W. Schon-
feld, editors, Proceedings of Computer Science Logic, vol-
ume 553 of LNCS, pages 308–312. Springer-Verlag, 1992.

[10] A. Razborov. Pseudorandom generators hard for k-DNF
resolution and polynomial calculus resolution. Available at
http://www.mi.ras.ru/˜razborov/, 2003.

[11] N. Segerlind, S. R. Buss, and R. Impagliazzo. A switching
lemma for small restrictions and lower bounds for k-DNF
resolution. SIAM J. Comput, 33(5):1171–1200, 2004.

[12] D. Zambella. Notes on polynomially bounded arithmetic.
The Journal of Symbolic Logic, 61(3):942–966, 1996.

10

