
DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes

Gary Valentin, Michael Zuliani, Daniel C. Zilio
IBM Toronto Lab

valentin,zuliani,zilio@ca.ibm.com

Guy Lohman
IBM Almaden Research Center

lohman@us.ibm.com

Alan Skelley
University of Toronto
alan@cs.utoronto.ca

Abstract

This paper introduces the concept of letting an RDBMS
Optimizer optimize its own environment. In our project, we
have used the DB2 Optimizer to tackle the index selection
problem, a variation of the knapack problem. This paper
will discuss our implementation of index recommendation,
the user interface, and provide measurements on the quality
of the recommended indexes.

1. Introduction

The performance of queries in a relational database man-
agement system (RDBMS) has always been very sensitive
to the indexes that exist on the tables in a database. Tradi-
tional B+-tree indexes can speed the execution of a query in
one or more of the following ways:

� Applying predicates, i.e. by limiting the data that must
be accessed to only those rows that satisfy those pred-
icates;

� Ordering rows, i.e. to apply ORDER BY, GROUP BY,
or DISTINCT clauses, or to merge-join a table with
another table;

� Providing index-only access, i.e. to save having to ac-
cess data pages by providing all the columns needed
by a query;

� Enforcing uniqueness, i.e. by restricting the index to
one row identifier per key value.

Specialized indexes may provide other advantageous as-
pects to query execution, such as statistics on the number
of keys.

Since the advent of relational DBMSs, researchers have
attempted to automate the design of databases, including

the selection of indexes that would best serve a particular
workload of queries. An index may have multiple columns
as key columns, and the ordering of those columns is sig-
nificant. Given that real applications such as SAP can have
tens of thousands of tables, each table can have hundreds
of columns, and a typical workload can have thousands of
queries, the number of possible indexes to consider is stag-
gering. Finding the set of indexes that optimize a workload
of complex, multi-table queries having varying importance
and subject to resource constraints, is a daunting combina-
torics challenge.

Initially these design tools were completely separate
from the DBMS engine itself. They independently pro-
posed candidate indexes and attempted to evaluate the cost
and benefit of each set of candidate indexes. A major ad-
vance in the design tools was the use of the engine’s opti-
mizer to evaluate the cost of queries, given a set of candi-
date indexes [FST 88]. This advance prevented duplication
of the optimizer’s cost model in the design tool, and ensured
consistency with the optimizer’s choice of index when the
recommended indexes were subsequently created.

This paper presents what was done as the next logical
step: Have the engine’s optimizer recommend candidate in-
dexes, as well as evaluate their benefit and cost. The DB2
Advisor, new in IBM’s DB2 Universal Database (UDB)
V6.1, utilizes a component in the optimizer that recom-
mends candidate indexes based upon an analysis of each
query, and then evaluates those indexes, all in one call to the
engine! This approach significantly improves the quality of
the indexes that are considered, and speeds the evaluation of
alternatives by reducing the number of calls to the engine.
By modeling the index selection problem as a variant of the
well-known Knapsack Problem [GN 72], the DB2 Advisor
is also able to optimize large workloads of queries in a rea-
sonable amount of time.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the overall architecture of the DB2 Advisor

and its user interface. Section 3 details how the optimizer
through the recommendation algorithm is able to recom-
mend the best indexes for a given query. Section 4 presents
the algorithm to extend this concept beyond just a single
statement at a time to a workload of SQL statements, and
subject to resource constraints (such as disk space). Sec-
tion 5 contrasts DB2 Advisor with previous work on index
recommendation. In Section 6, we give some preliminary
performance measurements, both of the time for the algo-
rithm to run and of the resulting execution time for work-
loads benefitting from the Advisor’s advice. Section 7 dis-
cusses future work.

2. Architecture

At the highest level, the DB2 Advisor works as a black-
box index-recommendation engine. The black-box has two
inputs: a set of SQL statements known as the workload, and
statistics describing the target database. There is only one
output: the recommended indexes.

Architecturally, the DB2 Advisor consists of:

Index SmartGuide A graphical user interface

db2advis A command-line driven utility for recommend-
ing indexes

Optimizer Extensions have been written into the DB2 Op-
timizer for the recommendation of indexes as well as
their evaluation

Advise tables These new tables are created for the purpose
of advising, and they are used as a communication ve-
hicle between db2advis and the Optimizer

The preferred method of invoking the Index Advisor
is through the Graphical User Interface called the Index
SmartGuide. We have included here two screen snapshots
of the Index SmartGuide. The screen snapshot in Figure 2
shows how the user can specify a workload of statements.
The SmartGuide automatically searches for SQL statements
and their frequency of execution in the SQL cache and im-
ports them. Effectively, the DB2 dynamic SQL cache stores
recently-executed SQL statements. The Index SmartGuide
also imports SQL statements from statically-compiled SQL
statements, which are known as packages in DB2 terminol-
ogy. Other sources of SQL statements include the Query
Patroller load scheduling product, and recently explained
SQL statements. Lastly, statements can be entered man-
ually or using cut-and-paste. The workload is stored in a
user-owned table, called ADVISEWORKLOAD.

In other windows of the SmartGuide (see the tabs at the
top), the user may optionally specify constraints on the es-
timated disk to be consumed by all indexes recommended,

User Interface
Index SmartGuide Graphical

db2advis command-line
tool

Database "Sample"

DB2 Optimizer
SQL Cache

DB2 Universal Database

USER

System Memory System Disk

Database Statistics

Advise Tables

Packages

Data

Figure 1. Architecture of DB2 Advisor

or on the maximum time for DB2 Advisor to spend improv-
ing its recommendations. For example, the user can require
DB2 Advisor to work for no more than 5 minutes, and to
recommend that all indexes consume no more than 5 Giga-
bytes.

The SmartGuide then calls the db2advis utility, an ap-
plication program that contains the major optimization
logic of DB2 Advisor. For each statement in the AD-
VISE WORKLOAD table, it invokes the DB2 UDB Opti-
mizer in one of two new EXPLAIN modes that either REC-
OMMEND INDEXES or EVALUATE INDEXES. The
Optimizer stores the indexes it recommends in another user-
owned table, called ADVISEINDEX. The screen snapshot
in Figure 3 shows the index recommended by db2advis for
the workload of Figure 2. By clicking on the ”Show work-
load details” button, the user can see how much the recom-
mended indexes will benefit each statement in the workload.

Alternatively, the user may invoke the db2advis utility
directly from the command line, providing options for
specifying the database, the workload of SQL statements,
the constraints, and various other options. Example
1 shows the invocation of db2advis for a single SQL
statement in the ”sample” database. In less than two
seconds, DB2 Advisor determines the best indexes to
create and the estimated improvement in the execution
time if they were created, as well as the DDL to create them.

EXAMPLE 1:
$ db2advis -d sample -s "select * from
t1,t2 where t1.c1 = t2.c2"

execution started at timestamp 1999-07-
06-19.02.32.617867
Calculating initial cost (without recomm-

Figure 2. Specifying a workload of statements

mended indexes) [82.237053] timerons
Initial set of proposed indexes is ready.
Found maximum set of [2] recommended in-
dexes
Cost of workload with all indexes included
[25.879040] timerons
total disk space needed for initial set [2]
MB
total disk space constrained to [-1] MB

2 indexes in current solution

[82.2371] timerons (without indexes)

[25.8790] timerons (with current solu-
tion)

[%68.53] improvement

Trying variations of the solution set.

--

-- execution finished at timestamp 1999-07-

06-19.02.34.154307

--

--

-- LIST OF RECOMMENDED INDEXES

-- ===========================

-- index[1], 1MB

CREATE INDEX WIZ0 ON "VALENTIN"."T2" ("C2"

ASC) ;

-- index[2], 1MB

CREATE INDEX WIZ2 ON "VALENTIN"."T1" ("C1"

ASC) ;

-- ===========================

--

Index Advisor tool is finished.

The algorithm for the index-recommendation engine in
db2advis is covered in the next two sections. The first sec-
tion will discuss the simple case of recommending indexes
for a single SQL statement. The subsequent section extends
the algorithm to accommodate for a workload of queries.

3. Single query optimization

The algorithm for recommending indexes is an exten-
sion of the existing process for optimizing an SQL query in
the DB2 Compiler. The old process is augmented with the
injection of a multitude of ”virtual indexes” - hundreds of
indexes whose metadata has been temporarily introduced
into the schema only for the duration of the optimization
process.

To illustrate the approach, suppose that all possible in-
dexes were temporarily injected into the schema model.
The DB2 Compiler would then be faced with its usual op-
timization process, except that there would be a lot more
indexes in the schema to consider. When the optimization
process has completed, the DB2 Compiler produces the op-
timal Query Access Plan. If this plan contains one or more
virtual indexes, then these indexes are the recommended in-
dexes. Effectively, we let the optimizer choose which in-
dexes it likes.

Figure 3. View the recommended indexes

In practice, there are problems with this approach. The
most immediate issue is that the enumeration of all possible
indexes produces a working set which is too big. In DB2,
a table with n columns can support a very large number of
indexes, as shown by Formula 1.

Formula 1 (Number of Possible Indexes)Given a table
with n columns, how many different indexes can exist con-
tainingk columns, wherek <= n? There aren choices for
the first column in the index. For the second column, there
aren � 1 remaining choices. As more columns are added,
the total number becomes(n)(n� 1)(n� 2):::(n� k + 1)
or n!=(n � k)!. Therefore the total number of indexes that
can be created on a table withn columns is

nX

k=1

n!

(n� k)!

However, in DB2 UDB, each column of an index may
individually be defined as either ascending or descending.
Therefore, for a givenk, the space of possible indexes is
multiplied by2k. As a result, we adjust our first formula to
become:

nX

k=1

(2k)n!

(n� k)!

Therefore, in practice, there has to be a limit on the num-
ber of virtual indexes enumerated. The DB2 Advisor limits

the number of virtual indexes by using the DB2 Optimizer
itself to suggest indexes intelligently, based upon its knowl-
edge of how it wants to evaluate a given query. We call
this approach the ”Smart column Enumeration for Index
Scans” (SAEFIS) enumeration algorithm. This algorithm
analyzes the statement predicates and clauses to produce
sets of columns that might be exploited in a virtual index.
There are 5 such sets:

EQ columns that appear in EQUAL predicates

O columns that appear in the INTERESTING ORDERS
list. This includes columns from ORDER BY and
GROUP BY clauses, or join predicates.

RANGE columns that appear in range predicates

SARG columns that appear in any predicates but nested
subqueries or those involving a large object (LOB).

REF Remaining columns referenced in the SQL statement.

Then various combinations of (subsets of) these sets are
formed, in order, eliminating any duplicate columns:

1. EQ + O

2. EQ + O + RANGE

3. EQ + O + RANGE + SARG

4. EQ + O + RANGE + REF

5. O + EQ

6. O + EQ + RANGE

7. O + EQ + RANGE + SARG

8. O + EQ + RANGE + REF

As a safety net to make sure the simplest indexes are
not missed, and to evaluate how well the SAEFIS approach
works, we have also implemented an algorithm to enumer-
ate all possible indexes, stopping after a certain maximum
number of indexes is reached. We call this the ”Brute Force
and Ignorance” (BFI) enumeration algorithm. There are
several ways to implement this enumeration. We have taken
a simple recursive algorithm and extended it to accommo-
date for ascending/descending columns.

Here is a pseudo-code version of the final recommenda-
tion algorithm:

ALGORITHM 1:
RECOMMEND INDEXES(Statement S)

1. Enable ”RECOMMEND INDEXES” mode

2. Enter the DB2 Optimizer

3. Inject the schema with virtual indexes using SAEFIS
and generate their statistics

4. Inject the schema with virtual indexes using BFI and
generate their statistics

5. Construct the best plan for S by calling the DB2 Opti-
mizer

6. Scan the optimal plan, searching for virtual indexes

7. Submit these indexes back to the user as ”recom-
mended”.

The essence of this algorithm is that the DB2 Optimizer
both suggests candidate indexes and makes the decision on
which indexes perform best. Importantly, both steps happen
in a single call to the DB2 UDB engine. This approach has
many advantages. The first advantage is that the efficiency
of the recommendation process is maximized by entering
the DB2 Optimizer (and hence the DB2 Engine) just once
per single query. The second advantage is that no secondary
or external optimizer is needed, either to suggest candidate
indexes or to evaluate their cost. This reduces the main-
tenance of code that is redundant of the Optimizer’s cost
equations. Instead, by having the Optimizer itself simply
inject likely-looking virtual indexes, and estimating their
statistics, we have easily extended the DB2 Optimizer from
an SQL Optimizer into an index selection optimizer. The
last advantage is that the DB2 Optimizer does not need to
be significantly modified. Once the virtual indexes are in-
jected, the Optimizer continues working as it always has

by enumerating plans, join orderings, and access methods.
Only a small amount of code was written in order to enu-
merate virtual indexes and inject them into the schema.

Note that Algorithm 1 could be used as a subroutine
within any existing Index Recommendation algorithm, not
just our algorithm, which is detailed in Section 4 below. For
example, it could be plugged in as a method for enumerating
indexes in Daniel Zilio’s Branch-and-Bound based method
[Zilio 98] or in Whang’s Drop-based method [Whang 85].

3.1. Index Statistics

Once the index columns are defined, the optimizer still
requires statistical information about each virtual index.
Without proper statistics, the optimizer will be unable to
evaluate the cost of scanning an index, fetching selected
rows from an index, or updating an index.

The statistics for virtual indexes are generated based on
the corresponding table and column statistics, deducing in-
formation on index cardinalities, B+-Tree levels, and the
number of leaf pages and non-leaf pages. Some properties
cannot be deduced easily, such as clustering and unique-
ness. For these properties, we assign pessimistic values.
For example, we assume that there will be no clustering on
the table per the index order. This behaviour allows the op-
timizer to be cautious as it uses virtual indexes, and avoid
costing these indexes at performance levels which cannot
be guaranteed.

The statistics for each virtual indexes are derived as fol-
lows:

Index Key Width, KW: the sum of the average width of
each column in the index definition.

Index Clustering: none (worst-case value).

Index Density: none (worst-case value).

Percent Free: DB2 default, 15%.

Cardinality of an index with k columns, FKCARD:
FKCARD = minfCARD;

Qk
i=1 COLCARDig

where

CARD: cardinality of the table

COLCARD i: cardinality (i.e. number of distinct val-
ues) of theith column of the index

Number of Leaf Pages, NL: calculated from the index
cardinality, page size, overheads for each key and
page, assuming each page is fully packed with keys,
using the following formula:

KPP = PSIZE�POH

KW+KOH

NL = FULLKEY CARD

KPP

where:

KPP: keys per page

PSIZE: page size (can be 4096 or 8192 bytes in DB2
UDB)

POH: page header overhead in a leaf page

KOH: key overhead.

Total Number of Non-Leaf Pages, TNL: calculated from
number of leaf pages, key size, and page overhead as
a recursive function. The recursion starts at the leaf
level, and computes the number of pages at each level,
continuing until the number of pages has reached one
(representing the root node):

EPNL = PSIZE�NLPOH

KW+NLEOH

NL(0) = FULLKEYCARD

NL(n) =
NL(n�1)

EPNL

NLEV ELS = n

TNL =

nX

i=1

NL(i)

where:

EPNL number of entries per non-leaf page

NLPOH page header overhead in a non-leaf page

NLEOH overhead of an entry in a non-leaf page

NL (i) number of non-leaf pages in leveli

NLEVELS number of levels in the index

4. Workload Optimization

In this section, we will present the extensions to the algo-
rithm that permit the DB2 Advisor to recommend indexes
for a workload of statements.

Ideally, we would optimize the recommendation of in-
dexes for a workload of statements in a single invocation of
the DB2 Optimizer. There is a method of using an optimizer
to work on several statements in one invocation, which is
called Mass Query Optimization (MQO). Today, however,
no commercial Relational Database product supports Mass
Query Optimization, and therefore this was not an option
for the DB2 Advisor.

As seen before in Figure 1, the DB2 Advisor has as a
component a utility called db2advis. In this utility, we have
added an index-selection algorithm which uses the results
of the single-query recommendations as a starting point and

searches for the optimal combination of indexes for a full
workload.

The workload optimization algorithm contained in
db2advis models the index selection problem as an appli-
cation of the classic Knapsack Problem, a special type of
0-1 integer programming [GN 72]. Each index is an item
that may or may not be put into the knapsack, as indicated
by a variable for that index that can be 0 or 1 (a part of an
index is useless). Each index also has an associated benefit
and size. The benefit for an index is defined as the improve-
ment in estimated execution time that an index contributes
to all queries that exploit it, times the frequency that each
query occurs in the workload. The size is just the estimated
size of the entire index, in bytes. The knapsack has a fixed
maximum size for all items in the solution. The objective
is to maximize the benefit of all items in the knapsack. If
the integrality constraint is relaxed, it is well known that the
optimal solution accepts the entities into the knapsack in or-
der of decreasing ratio of benefit to size, until the knapsack
is full.

There are, however, a few complications in our straight-
forward application of the Knapsack Problem. First of all,
we have relaxed integrality, but in reality it makes no sense
to have a fraction of an index. Secondly, negative bene-
fit accrues for updating each index in UPDATE, INSERT,
and DELETE statements to that index’s table. But at the
time we compute the benefit for such statements, we don’t
yet know all the indexes that might be created by RECOM-
MEND INDEX. Thirdly, we have attributed all the benefit
resulting from a set of indexes to every index in a query. In
reality, the benefit of each index is a function of what other
indexes exist (i.e. the benefit of index A can differ when in-
dex B is present or absent), and attributing all the benefit to
every index of the query is double-counting. This relates to
the concept of ”separability”, discussed in the next section.
To adjust for all of these complications, we refine the initial
solution found by the Knapsack order in a routine called
TRY VARIATION, which creates a variant of the solution
by randomly swapping a small set of indexes in the solution
for a small set of indexes not in the solution. The work-
load is then re-EXPLAINed with this variant set of virtual
indexes in the EVALUATEINDEXES EXPLAIN mode. If
the variant solution is cheaper overall, it becomes the cur-
rent solution. TRYVARIATION continues until the user’s
time budget has been exhausted.

Algorithm 2 describes the algorithm of db2advis for a
workload W of SQL statements:

ALGORITHM 2:

1. GetWorkload W, including the frequency of execution
of each statement.

2. R =;

3. For each Statement S in W,

(a) EXPLAIN S with existing indexes, returning
S.costwith existing indexes.

4. For each Statement S in W,

(a) EXPLAIN S in RECOMMENDINDEX mode,
i.e. with virtual indexes

(b) R = R[RECOMMEND INDEXES(S)

5. For each index I in R

(a) I.benefit = S.costwith existing indexes -
S.costwith virtual indexes

(b) I.size = bytes in index

6. Sort indexes in R by decreasing benefit-to-cost ratio.

7. Combine any index subsumed by an index with a
higher ratio with that index.

8. Accept indexes from set R until disk constraint is ex-
hausted.

9. while (time did not expire) repeat

(a) TRY VARIATION

As stated before, the final step can be allowed to process
for any length of time. This allows for flexibility in various
cases: Where a feasible solution is needed quickly, the algo-
rithm can be given less processing time; when obtaining an
optimal solution is paramount, the algorithm can be given
more processing time.

5. Comparison with Previous Work

Many papers have been written on this subject. The DB2
Advisor is unique because it can recommend indexes for an
SQL statement within a single call to the RDBMS engine,
using the DB2 Optimizer for the optimization.

Early designs for index recommendations started in
the eighties [ISR 83], [BPS 90], [FON 92], [CFM 95],
[GHRU 97], [CBC 93], [Whang 85]. These early papers
had several shortcomings. First, they were restricted by ex-
isting technology. For example, none of these papers used
an optimizer for cost estimates. One possible reason is that
the existing optimizers would not externalize their cost esti-
mates. These papers did, however, identify the nature of the
problem as a variation on the classic Knapsack Problem.

Secondly, with the exception of [GHRU 97], all of these
papers concerned themselves only with single-column in-
dexes. [Whang 85] had an interesting addition, proposing a
DROP optimization algorithm for the index selection prob-
lem, as opposed to a rule-based optimization.

Another weakness in these early algorithms was the as-
sumption of separability. [Whang 85] made the case that in-
dex selection for each relation can be made independently
of other relations. This assumption greatly simplifies the
selection problem, but is this assumption correct? In fact,
it is incorrect in many common cases. For example, in the
case of a nested-loop join between two relationsR andS,
the presence of an index on relationR reduces the poten-
tial need for an index on relationS, and vice-versa, so long
as one of the two relations has an index so that it can ap-
ply the join predicate on the inner relation. Obviously, this
assumption is flawed.

Later solutions have used the RDBMS engine for eval-
uating solution sets, but never for recommending candidate
indexes. The recommendation process always occurs in a
module external to the RDBMS engine. These latter de-
signs include [FST 88], [CN 98b], and [Zilio 98].

[Zilio 98] recognized the strong interdependence be-
tween indexes and partitioning keys. Zilio’s implementation
recommended partitioning keys as well as indexes. Zilio
used a branch-and-bound optimization algorithm, which
typically takes longer to find the optimal solution than the
benefit-to-size ratio ordering of db2advis.

[CN 98b] was implemented in a commercial RDBMS,
Microsoft SQL Server. Chauduri & Narasayya have made
an essential contribution by combining the advantages of
single-column recommendation with multi-column opti-
mization algorithms. By considering index candidates with
a small number of columns, they are more likely to optimize
for several queries using the same candidate indexes, and
still squeeze into small disk-constraints or small knapsacks.
Taking this into account, their design starts by considering
single-column indexes first, and working on wider indexes
as time permits. Their goal was to reduce the number of
optimizer invocations.

However, the same advantage of reducing the number of
optimizer calls can be achieved by placing the enumeration
algorithm inside the optimizer. That is the key to our im-
plementation, and we believe it to be the better technique.
The difference is most dramatic on a single-query basis,
where our algorithm recommends indexes in a single opti-
mizer invocation. Another advantage of this algorithm over
[CN 98b] is the recommendation of wider indexes, intrinsic
in the SAEFIS algorithm. The SAEFIS enumeration con-
siders the three most likely uses of the index scan and com-
binations thereof. Yet another advantage is that the enu-
meration originates inside the DB2 engine, leveraging the
existing optimizer, and thus reducing maintenance costs of
two distinct optimizers.

6. Performance Measurements

There are several performance aspects that need to be
addressed by DB2 Advisor. The first concern is the quality
of the recommended indexes. How good are they? This is a
difficult question to answer, but we have observed two cases
where the DB2 Advisor has been used.

The first such case was with the TPCD workload, an in-
dustry benchmark for decision support. Running DB2 Ad-
visor on the TPCD V1 workload showed that, in 14 out of
the 17 queries, DB2 Advisor recommended indexes which
performed optimally, or as near to optimal as is known to
the DB2 TPCD team. In the remaining 3 queries, the DB2
Advisor missed some key indexes. The reason for this is
that these indexes had to be defined as UNIQUE in order
to take advantage of the improvement. But unfortunately
we placed the restriction on the DB2 Advisor not to recom-
mend UNIQUE indexes, because uniqueness is application-
dependant and cannot necessarily be deduced from the ex-
isting data.

In another case, the DB2 Advisor was faced with a very
complex machine-generated query that ran in over 48 hours.
After the creation of three indexes recommended by the
DB2 Advisor, the elapsed time reduced to 11 minutes. This
shows the dramatic effect that automatic recommendation
can have in those cases where a human eye is not available
to analyze the incoming SQL, or the query is too complex.

Another aspect of operating performance is the execu-
tion time of DB2 Advisor. Because the DB2 Advisor can
be interrupted at any time, then how much time should it be
allowed to execute, before the recommendations are ”good
enough”?

In order to answer this question, we exercised the DB2
Advisor against a 1GB TPCD database, with 6 levels of disk
constraints. The results appear in Figure 4 and Figure 5. As
the results in Figure 4 indicate, within 90 seconds, all levels
of constraints had made a contribution to performance of
50% to 88%. This is reflected in the abrupt drop that occurs
between 60 and 90 seconds. This improvement shows that
much of the benefit of new indexes is achieved soon after
the initial optimizer pass, as seen in steps 1 through 8 of
Algorithm 2.

The benefits of allowing small permutations of that ini-
tial solution in step 9 of Algorithm 2 is seen in Figure 5,
the detailed improvement chart. In this example, optimal
indexes were found after 6 minutes, but the time to achieve
optimality is very dependent upon the size and complexity
of the workload.

7. Future Work

One of the strongest features of our algorithm relates to
future work. One of the future directions for this project is

Figure 4. Quality of recommended indexes
over time

Figure 5. Quality of recommended indexes
over time (detail)

to extend this algorithm to the recommendation of material-
ized views and indexes on materialized views. Currently,
the selection of materialized views in DB2 is performed
mostly at the Query ReWrite level - not in the Optimizer.
This means that the re-routing decisions are made using
rules, rather than allowing the Optimizer to evaluate several
alternatives according to estimated cost. However, there are
efforts underway to allow more re-routing decisions to be
made in the Optimizer, as well as efforts to add Mass Query
Optimization to the DB2 Optimizer. This will provide the
opportunity for more advanced advising that goes well be-
yond indexes.

Another future direction is to use this method for the rec-
ommendation of partitioning keys in a parallel database en-
vironment. It is possible to plug alternative partioning keys
into the DB2 Optimizer and then evaluate them using an
outside engine such as Daniel Zilio’s Physical Design rec-
ommendation tool [Zilio 98]. At the heart of this technol-
ogy is the efficiency of using the internal optimizer as much
as possible. This avoids doing excessive calls in and out of
the RDBMS, and avoids having to duplicate the optimizer’s
intelligence outside the engine.

We are looking at expanding the concept to include the
suggestion of all database-related configuration: Includ-
ing data layout, data properties such as referential integrity
and constraints, partitioning keys, clustering, reorganiza-
tion, and statistics collection.

Currently, this technology greatly simplifies the process
of selecting a set of indexes. But the long-term goal of this
technology is that a DBA will not even know what an in-
dex is, or what it is used for, and can concentrate on their
primary concern: the creation and use of data.

8. Conclusion

The DB2 Advisor is unique in its use of a query opti-
mizer for both suggesting and evaluating potential indexes.
Using information that it must derive for optimizing a query
anyway, the Optimizer can readily suggest much better can-
didates for new indexes than can an external routine that
must repeatedly invoke the optimizer as it blindly iterates
through the numerous possible combinations of columns for
potential indexes. The DB2 Advisor suggests multi-column
virtual indexes by combining columns from predicates, or-
ders, and index-only access; estimates their attributes; and
then evaluates them against other, existing indexes using its
usual query optimization logic. Virtual indexes that are cho-
sen by the optimizer are recommended to the user.

For workloads of multiple queries, this RECOMMEND
INDEX mode is also used to determine the benefit of each
such recommended index, by comparing the estimated cost
for each query with and without these virtual indexes. The
cost is simply the size of the index in bytes. Treating the in-

dex selection problem as an application of the well-known
Knapsack Problem, the db2advis utility selects those in-
dexes with the largest benefit-to-cost ratio, which is the
optimal solution when the integrality constraint is relaxed.
Selection continues until the cumulative size of all indexes
chosen exceeds the disk constraint. The solution is refined
by iteratively swapping a few indexes that are in the solu-
tion with those that are not, to account for the relaxation of
integrality.

Both single-query and workload index selection by DB2
Advisor have been implemented in IBM’s DB2 Universal
Data Base Version 6.1. Performance evaluation has verified
that it both finds indexes which significantly improve the
execution of complex queries, and that the utility finds these
indexes in a time proportional to the number of queries, but
can continue to iteratively improve its recommendations.

We believe that exploiting a query optimizer in this way
has tremendous potential for efficiently automating other
aspects of database design. After all, the cost model of a
query optimizer is a sophisticated mathematical model of
how a query would perform, given the schema and physical
attributes of the database. It therefore provides an ideal way
to evaluate the impact of variations in the schema and/or its
attributes. We are investigating additional ways for the DB2
Advisor to exploit the DB2 query optimizer to recommend
and evaluate alternative database designs.

References

[BPS 90] Elena Barucci, Renzo Pinzani, and Renzo Sprug-
noli, ”Optimal selection of secondary indexes”, IEEE
Trans. on Software Engineering, 16(1):32-38, January
1990.

[CBC 93] Sunil Choenni, Henk M. Blanken, and Thiel
Chang, ”On the Selection of Secondary Indices in Re-
lational Databases”, Data & Knowledge Engineering,
11(3):207-233, 1993.

[CFM 95] Alberto Capara, Matteo Fischetti, Dario Maio,
”Exact and Approximate Algorithms for the Index Se-
lection Problem in Physical Database Design”, IEEE
Transactions on Knowledge and Data Engineering,
7(6):955-967, December 1995.

[FON 92] Martin R. Frank, Edward R. Omiecinski, and
Shamkant B. Navathe, ”Adaptive and Automated In-
dex Selection in RDBMS”, International Conference
on Extendig Database Technology (EDBT), pages
277-292, Vienna, Austria, March 1992.

[GHRU 97] Himanshu Gupta, Venky Harinarayan, Anand
Rajaraman, and Jeffrey D. Ullman, ”Index Selection

for OLAP”, In Proceedings of the Internatoinal Con-
ference on Data Engineering, pages 208-219, Birm-
ingham, U.K., April 1997.

[ISR 83] Maggie Y. L. Ip, L. V. Saxton, and Vijay V.
Raghavan, ”On the Selection of an Optimal Set of In-
dexes”, IEEE Transactions on Software Engineering,
9(2):135-143, March 1983.

[CN 98a] Surajit Chaudhuri and Vivek Narasayya, ”Au-
toAdmin ’What-if’ Index Analysis Utility”, Procs. of
the 1998 ACM SIGMOD Conf. (Seattle, 1998), pp.
367-378.

[CN 98b] Surajit Chaudhuri and Vivek Narasayya, ”Mi-
crosoft Index Tuning Wizard for SQL Server 7.0”,
Procs. of the 1998 ACM SIGMOD Conf. (Seattle,
1998), pp. 553-554.

[Falkowski 92] Bernd-Juergen Falkowski, ”Comments on
an Optimal Set of Indices for a Relational Database”,
IEEE Trans. on Software Engineering 18,2 (Feb.
1992), pp. 168-171.

[FST 88] S. Finkelstein, M. Schkolnick, and P. Tiberio,
”Physical Database Design for Relational Databases”,
ACM Trans. on Database Systems 13, 1 (March 1988),
pp. 91-128.

[GN 72] Robert S. Garfinkel and George L. Nemhauser, In-
teger Programming, John Wiley & Sons, New York
(1972), pp214-241.

[Whang 85] Kyu-Young Whang, ”Index Selection in Re-
lational Databases”, Proc. Intl. Conf. on Foundations
on Data Organization (FODO) (Kyoto, Japan), May
1985, pp. 369-378. Also reprinted in Foundations
of Data Organization, Sakti P. Ghosh, Yahiko Kam-
bayashi, and Katsumi Tanaka (eds.), Plenum Press
(1987), pp. 487-500.

[Zilio 98] Zilio, Daniel C., ”Physical Database Design De-
cision Algorithms and Concurrent Reorganization for
Parallel Database Systems”, PhD Thesis, University
of Toronto, 1998.

