
Propositional PSPACE Reasoning with Boolean
Programs vs. Quantified Boolean Formulas?

Alan Skelley??

Department of Computer Science, University of Toronto
10 King’s College Road,

Toronto, ON M5S 3G4 Canada
skelley@acm.org

Abstract. We present a new propositional proof system based on a
somewhat recent characterization of polynomial space (PSPACE) called
Boolean programs, due to Cook and Soltys. The Boolean programs are
like generalized extension atoms, providing a parallel to extended Frege.
We show that this new system, BPLK, is polynomially equivalent to the
system G, which is based on the familiar but very different quantified
Boolean formula (QBF) characterization of PSPACE due to Stockmeyer
and Meyer. This equivalence is proved by way of two translations, one
of which uses an idea reminiscent of the ε-terms of Hilbert and Bernays.

1 Introduction

When formulated in a Gentzen sequent style, many known propositional proof
systems can be seen to be very similar, with the only difference between them
being the computational power of what can be written at each line of the proof
(or alternatively, what is allowed in the cut rule). Examples are Boolean formulas
in Frege systems, single literals in resolution, Boolean circuits in extended Frege
systems. Another example is the system G [9], which is a sequent-based system
where formulas in the sequents are quantified boolean formulas (QBFs). These
formulas have propositional variables and also propositional quantifiers. In this
case, then, since evaluating QBFs is PSPACE-complete [12], the computational
power that can be harnessed in sequents is PSPACE. We can restrict G to Gi
by restricting the number of alternations of quantifiers allowed in the formulas,
and the reasoning power is then that of Σp

i predicates. G and its subsystems
are related to Buss’ theories U1

2 , Si2 and T i2 [1] by translation and provability of
reflection principles [8],[10].

Boolean programs were introduced by Cook and Soltys in [3]. A Boolean
program defines a sequence of function symbols, where each function symbol is
defined using a boolean formula that can include, in addition to the arguments to
the function, invocations of the previously defined symbols. The authors of that
? An expanded form [11] of this paper is available from ECCC in the ’Theses’ section
?? Research supported by Canadian Natural Sciences and Engineering Research Council

grant PGSA–208264–1998

2

paper showed that the problem of evaluating an invocation of a function symbol
defined in this way, given the inputs and the Boolean program, is PSPACE
complete. The question, then, is whether a proof system formulated around
Boolean programs would be equivalent to G. For this to occur, not only would
Boolean programs and quantified Boolean formulas need to characterize the
same complexity class, but there would need to be an effective way of translating
between the two.

This paper answers that question in the affirmative. We define a new system
BPLK in a straightforward way to take advantage of the expressive power of
Boolean programs, and give translations in both directions between it and G.
Although it is possible to restrict Boolean programs to be equivalently expressive
as Σq

i QBFs (i.e. of a particular number of alternations), we do not address
the possibility of matching Gi by a subsystem of BPLK; this would probably
be much more technical but not much more interesting. And although BPLK
seems convenient to work with in practice, we do not consider issues of its precise
relative efficiency to G. It is hoped only that a new and exotic PSPACE proof
system to contrast with G may be illuminating.

2 Preliminaries

We assume standard terminology about propositional proof systems and the
sequent calculus PK, for example from [7]. Recall that the inference rules are
weakening, exchange, contraction, left- and right- introduction rules for each
connective, and cut.G is the PK with the addition of left- and right- introduction
rules for the propositional quantifiers. We adopt the convention of separate sets of
free and bound variables as in [2] and call a semiformula any formula containing
a free occurrence of a bound variable. It should be noted that although G and
its subsystems derive tautological statements of quantified propositional logic,
in this paper we shall consider them only as proof systems for propositional
tautologies.

2.1 Boolean Programs

Boolean programs were introduced in [3] and are a way of specifying Boolean
functions. They are something like a generalization of the technique of using new
atoms to replace part of a Boolean formula, which idea is the basis of extended
Frege systems. The following definition is from that thesis:

Definition 1 (Cook-Soltys). A Boolean Program P is specified by a finite
sequence {f1, ..., fm} of function symbols, where each symbol fi has an associated
arity ki, and an associated defining equation

fi(pi) := Ai

where pi is a list p1, ..., pki of variables and Ai is a formula all of whose vari-
ables are among pi and all of whose function symbols are among f1, ..., fi−1. In

3

this context the definition of a formula is expanded to allow the use of function
symbols as connectives.

The semantics are as for propositional formulas, except that when evaluating
an occurrence fi(φ) of a function symbol, the value is defined, using the defining
equation, to be Ai(φ). There is no free/bound distinction between variables in
the language of Boolean programs.

An interesting property of Boolean programs that demonstrates their com-
parability to quantified Boolean formulas is the following theorem from [3]:

Theorem 2 (Cook-Soltys). A Language L is in PSPACE iff L is computed
by some uniform polynomial size family of Boolean programs.

2.2 Notational Conventions

We shall use the following conventions of notation: Lower case Latin letters
will represent atoms, with x, y, z, ... reserved for bound variables, and with the
further exception of f, g, h, ... to be used for function symbols. Capital letters
and lower case Greek letters will be used for formulas. An overline indicates a
list: a is a list of variables (a1, ...) and A is a list of lists of formulas (A1 =
{A1,1, A1,2, ...}, A2, ...). A formula A may have free variables p, and when we
wish to emphasize that fact we shall write A(p), although we may not explicitly
display all free variables of A. A(φ) denotes the result of substituting the list of
formulas φ for the free variables of A. Since we have separated bound and free
variables, in the quantified case we are automatically assured that φ is free for
p in A(p), which is to say that no free variables of φ will end up bound by any
of A’s quantifiers in the substitution.

We shall use the following symbols: ’=’ and ’⊃’ are not in the language
of either system we consider, but we shall use them as abbreviations. A = B
abbreviates ((¬A1 ∨B1) ∧ (¬B1 ∨A1) ∧ ... ∧ (¬Ak ∨Bk) ∧ (¬Bk ∨Ak)). A ⊃ B
abbreviates ¬A ∨B. The symbol ’≡’ will be used to denote syntactic equality.

3 BPLK and G

In this section we introduce the sequent system BPLK, which is basically PK
enhanced with the reasoning power of Boolean programs. We then state two
lemmas about BPLK and G that show that certain classes of proofs are easy to
find in the two systems, and which will simplify arguments later on. The proofs
of these lemmas are technical and have been omitted.

Definition 3 (BPLK). The system BPLK is like the propositional system PK,
but with the following changes:

1. In addition to sequents, a proof also includes a Boolean program that defines
functions. A BPLK-proof is a pair 〈π, P 〉 of the proof (sequents) and the
Boolean program defining the function symbols occurring in the sequents.

4

2. Formulas in sequents are formulas in the context of Boolean programs, as
defined earlier.

3. If the Boolean program contains a definition of the form f(p) := A(p), then
the new rules

f : left
A(φ), Γ −→ ∆

f(φ), Γ −→ ∆
and f : right

Γ −→ ∆,A(φ)
Γ −→ ∆, f(φ)

may be used, where φ are precisely as many formulas as p are variables.
4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ (q, p)
∆(φ, p) −→ Γ (φ, p)

may be used, where all occurrences of q have been substituted for.

Simultaneous substitutions can be simulated with several applications of
subst. It is an interesting open problem to eliminate subst altogether, per-
haps along the lines of the simulation of substitution Frege by extended Frege,
as in [4].

Lemma 4 (Propositional Reasoning). If a are variables and A are formulas,
and if Γ ′(a) −→ ∆′(a) follows from Γ (a) −→ ∆(a) via a proof of size k, then a
proof of the sequent Γ ′(A) −→ ∆′(A) from the sequent Γ (A) −→ ∆(A) can be
found in time O(k(|A|)3) (O(k(|A|+ |P |)3) in the case of BPLK, with P defining
all relevant function symbols), and whose length is thus similarly bounded.

Lemma 5. Substitution is a derived rule in G (i.e. it can be simulated in G by
a derivation of size polynomial in the size of the resulting sequent).

4 BPLK P-Simulates G

In this section we give a procedure to translate a sequent in the language of
G into a semantically equivalent one in the language of BPLK, along with an
accompanying Boolean program. This new Boolean program defines function
symbols that occur in the translated sequent, and which replace the quantifiers
and bound variables from the original one. We then translate a G-proof line-by-
line into the language of BPLK, and we show how to fill in the gaps to form
a correct proof in the latter system. Incidentally, this technique could easily be
adapted to provide an alternate proof of the PSPACE-completeness of Boolean
programs, as the proof in [3] did not involve a reduction from QBFs.

We do not use Boolean programs to compute Skolem functions, which is what
first springs to mind, because the same formula would have different translations
depending on which side of the sequent it occurred in (because of the semantics
of sequents). Instead, we adopt a translation similar to the ε-calculus of Hilbert
and Bernays [5],[6].

5

4.1 Special Notation

In the translation in this section, we shall use function symbols whose names
are based on formulas of G. Because of the delicate nature of these names, we
shall be especially detailed and careful about substitutions and the names of free
variables. We shall therefore, in this section only, modify our notation:

When a formula A is displayed as A(p), we shall mean that p are all the free
variables of A. We shall never use the notation A(q) to mean a substitution, but
instead that A has the single free variable q. All substitutions will be denoted
with a postfix operator [B/p] which means that the formula B (which may be a
single variable) is substituted for p in the formula that precedes the operator. We
may write several of these in a row, and the meaning is that they are performed
in sequence from left to right. We may also interject free variable lists, as in the
example A(a, b)[B(q, r, s)/b](q, r, s, a)[C/s][D/r].

4.2 A Translation from the Language of G to That of BPLK

To aid in translating we introduce the following definition, which gives us a well-
defined merging operator that says how to combine several Boolean programs
into one, eliminating duplicate definitions:

Definition 6 (Merging P � Q of Boolean Programs). If P and Q are
Boolean programs, or at least fragments (not necessarily defining all function
symbols used in definitions), then the merging P �Q of P and Q is obtained by
first concatenating P and Q, and then deleting all but the first definition of each
function symbol.

We shall use this merging operator in the following translation, and later on
in the actual simulation. However, whenever we merge two Boolean programs
that both define a particular function symbol, it will always be the case that the
two definitions are identical. Thus, which of the definitions is kept is immaterial.

Now we can present the actual translation, defined first for single formulas:

Definition 7 (Translation 〈pφq, P [φ]〉 of φ). We recursively define a trans-
lation of a quantified propositional semiformula into a semantically equivalent
quantifier-free formula in the language of BPLK, together with a Boolean pro-
gram defining the function symbols in that formula.

– If φ is an atom p then 〈pφq, P [φ]〉 is 〈φ, ∅〉.
– If φ is ψ ∧ θ (ψ ∨ θ) then 〈pφq, P [φ]〉 is 〈pψq ∧ pθq, P [ψ] � P [θ]〉 (〈pψq ∨
pθq, P [ψ] � P [θ]〉).

– If φ is ¬ψ then 〈pφq, P [φ]〉 is 〈¬pψq, P [ψ]〉.
– If φ is ∃xψ(x, p), then 〈pφq, P [φ]〉 is 〈fφ(p), P [ψ] � P ′[φ]〉 Here, P ′[φ] is a

Boolean program fragment with the following two definitions:

εφ(p) := pψq[1/x](p) and fφ(p) := pψq[εφ(p)/x](p).

6

– If φ is ∀xψ(x, p), then 〈pφq, P [φ]〉 is 〈fφ(p), P [ψ] � P ′[φ]〉 Here, P ′[φ] is a
Boolean program fragment with the following two definitions:

εφ(p) := pψq[0/x](p) and fφ(p) := pψq[εφ(p)/x](p).

Thus, in the case where a quantifier is the top-level connective of φ =
Qxψ(x, p), we first pick a function symbol whose name depends on the for-
mula φ (i.e., including more deeply nested quantifiers and free variables). This
choice encodes both which variable is the most newly quantified one, and also
what kind of quantifier it is. We call this function symbol a witnessing function
for ψ because its value will satisfy ψ if possible, in case Q is existential, or else
it will falsify ψ if possible.

We then substitute this function symbol, applied to all the variables free
in φ, into the translation of ψ. Finally, we define a new function symbol us-
ing the resulting formula, and use it instead of the formula. We do so because
pψq[εφ(p)/x](p) has more occurrences of free variables than pψq(p), and so with-
out the new function symbol, subsequent substitutions of this form may increase
the length of the formula exponentially.

Note that if φ is quantifier-free, then it is unchanged by the translation and
the Boolean program that results is empty.

Definition 8. If S is the sequent Γ1, ..., Γj −→ ∆1, ...,∆k then 〈pSq, P [S]〉 is

〈pΓ1q, ..., pΓjq −→ p∆1q, ..., p∆kq, P [Γ1] � ... � P [∆k]〉.

We call P [φ] or P [S] the Boolean program arising from the translation. As a
final lemma in this subsection, we observe that translations are polynomial size:

Lemma 9. If S is a sequent in the language of G, then |〈pSq, P (S)〉| ∈ O(|S|3).

4.3 A Simulation of G by BPLK

First, we observe that the translations defined above are semantically equivalent
to the original formulas.

Lemma 10. In the presence of the Boolean program P [φ] defining the function
symbols as above (arising from the translation), a quantified Boolean formula φ
is semantically equivalent to its translation pφq.

Now, the operations of substitution and translation do not commute directly
even in the case of substituting only a single variable, so for example if A(a) ≡
∃x(a ∨ x), then its translation is pAq(a) ≡ f∃x(a∨x)(a). If we then substitute b
for a we obtain pAq[b/a] ≡ f∃x(a∨x)(b). On the other hand, if we did these things
in the reverse order we would get pA[b/a]q ≡ f∃x(b∨x)(b), which is different. A
technical lemma is needed to resolve this difficulty:

7

Lemma 11. Let A(s, p, r) be a semiformula and B(p, q) a formula, both in the
language of G, so B is automatically free for s in A, and let p be all free variables
except s that are common to A and B. (s may be in q) Then proofs of

pA[B/s]q(p, q, r) −→ pAq[pBq/s](p, q, r)

and
pAq[pBq/s](p, q, r) −→ pA[B/s]q(p, q, r)

can be found in time polynomial in the size of translations and the size of the
Boolean program arising from them.

The (quite technical) proof of this lemma is by induction on the structure of A
and has been omitted. The main result of the section follows:

Theorem 12. If S is a quantifier-free sequent with a proof π1 in G, then S has
a BPLK-proof 〈π2, P [π1]〉 that, given π1, can be found in time polynomial in |π1|
(and thus has polynomial size).

Proof. First of all, P [π1] is formed by merging the Boolean programs arising
from translating all the sequents in π1. More precisely, if π1 is S1, ..., Sk, then
P [π1] = P [S1] � ... � P [Sk].

We then form π2 directly by translating π1 sequent-by-sequent into the lan-
guage of BPLK, and when necessary adding some extra sequents between the
translated ones. We have the following cases, depending on the inference rule
used:

Observe that all initial sequents of G are their own translations, and are also
initial sequents of BPLK.

If S is non-initial and is inferred by any rule except a quantifier introduction
with hypothesis(es) T (and U), then pSq follows from pTq (and pUq) by the
same rule. This is because translations of identical formulas are identical, and
the translation operator commutes with the connectives ∨, ∧ and ¬.

If S is inferred from T by the introduction of a universal quantifier on the
right, or that of an existential quantifier on the left, then considering the first case
we have that T is Γ −→ ∆,C(a, p) and S is Γ −→ ∆,∀x(C[x/a](x, p)). Their
translations are thus pΓq −→ p∆q, pCq(a, p) and pΓq −→ p∆q, f∀xC[x/a](p),
respectively. For convenience, let A ≡ C[x/a]. In this notation, pTq is pΓq −→
p∆q, pA[a/x]q(a, p). First, pA[a/x]q −→ pAq[paq/x] follows from lemma 11,
taking B ≡ a, and s ≡ x. pTq and cut then yield pΓq −→ p∆q, pAq[a/x].
Next, observe that a cannot occur in Γ or ∆ (or therefore their translations)
due to the restriction on ∀ : right. So, when we apply subst to this sequent,
substituting ε∀xA(p) for a to obtain pΓq −→ p∆q, pAq[ε∀xA(p)/x], pΓq and p∆q
are unchanged. Finally, pAq[ε∀xA(p)/x] −→ f∀xA(p) follows from the definition
of the function symbol f∀xA using the introduction right rule for that symbol.
pSq follows with weakening and cut.

The interesting case is when S follows from T by the introduction of an exis-
tential quantifier on the right, or that of a universal quantifier on the left. The two
cases are symmetrical, so consider the first. T is Γ −→ ∆,A(x, p)[B/x] and S is

8

Γ −→ ∆,∃x(A(x, p)). The translations pTq and pSq are pΓq −→ p∆q, pA[B/x]q
and pΓq −→ p∆q, f∃xA(p). Thus, it suffices to prove pA[B/x]q −→ f∃xA(p) and
apply cut. First, we derive pA[B/x]q −→ pAq[pBq/x] using lemma 11. The
next task is to prove pAq[pBq/x] −→ pAq[ε∃xA(p)/x]. This sequent is proved
by reasoning by cases about the value of ε∃xA(p) but this proof is omitted for
brevity.

Lastly, pAq[ε∃xA(p)/x] −→ f∃xA(p) follows from the definition of f∀xA.
Now, starting with pTq and using each of these last three sequents in turn

with weakening and cut, one obtains the sequent pSq, as desired.
Finally, in the case that S is quantifier-free (for example, the final sequent

in a proof), then the translation of S is S, and this completes the proof of the
theorem. ut

5 G P-Simulates BPLK

In this section we define a translation of Boolean programs into formulas in the
language of G, that is, using propositional quantifiers, inductively on the length
of the program. To avoid exponential blowup of the translations, we must be
careful to use exactly one previous translation at each step, so our construction
produces one formula simultaneously translating all the function symbols.

The method we shall use to “multiplex” is inspired by a trick used by Stock-
meyer and Meyer in [12] to show that the problem of evaluating a given quan-
tified Boolean formula (QBF) is PSPACE-complete. The idea is to abbreviate
φ(x1, y1) ∧ φ(x2, y2) as ∀x, y[((x = x1 ∧ y = y1) ∨ (x = x2 ∧ y = y2)) ⊃ φ(x, y)].
This is not exactly what is needed but is quite close.

5.1 A Translation from the Language of BPLK to That of G

Reserve v, u, z of the bound type and t, d of the free type as new variables not
occurring in the BPLK-proof being translated. There will be variables vA and tA
for each formula A in the language of BPLK, and we shall replace occurrences of
function symbols by these two classes of variables as part of our translation using
the two operators defined below. One is used to translate the Boolean program,
and the other to translate the sequents of the BPLK proof.

Definition 13 (Hat and Corner Operators). If A(p) is a formula in the
language of BPLK (p are the variables free in A), then let Â(p, v) be the result
of replacing, in A, every maximal subformula f(B) of A whose main connective
is a function symbol by the corresponding variable vf(B). This new formula will
have some subset of the original p and also some v’s as free variables. The corner
operator (e.g. pAq) is defined similarly, except that corresponding t variables are
used instead of v’s. When either operator is applied to a set of formulas, we
mean that it should be applied to each formula in the set in turn.

Example 14 (Hat Operator). If ψ(p) is the formula f(p1) ∨ g(f(p1 ∧ p2)) ∧ ¬p3,
then ψ̂(p, v) is vf(p1) ∨ vg(f(p1∧p2)) ∧ ¬p3.

9

Let us fix a Boolean program defining functions f1, f2, ... such that each
function symbol in the Boolean program is defined as fi(p) := Ai(p). (In other
words, Ai is the defining formula of fi). Now, φk(z, u) will be the translation of
the Boolean program up to and including the definition of fk. The meaning
of φk(z1, ..., zk, u1, ..., uk) will be that this formula is satisfied if and only if
f1(z1) = u1, ..., and fk(zk) = uk.

Definition 15. Consider a Boolean program defining f1...fk. Define φ0 := 1.
Now, say the definition of fi includes the function symbol occurrences fj1(B1),
..., fjm(Bm) in order, some of which may be nested in others. (Here j1, j2, ..., jm
are just the indexes of the function symbols, i.e., a sequence of m integers, not
necessarily distinct, each smaller than i). Then define

φi(z1, ..., zi, u1, ..., ui) :=
∃vfj(Bj(zi))[Âi(zi, vfj(Bj(zi))) = ui∧
∀z′1, ..., z′i−1, u

′
1, ..., u

′
i−1[φi−1(z′, u′) ⊃ [

(z′j1 = ̂B1(zi) ⊃ u′j1 = vfj1 (B1(zi)))∧

(z′j2 = ̂B2(zi) ⊃ u′j2 = vfj2 (B2(zi)))∧
...

(z′jm = ̂Bm(zi) ⊃ u′jm = vfjm (Bm(zi)))∧


(∗)

(z′1 = z1 ⊃ u′1 = u1)∧
...
(z′i−1 = zi−1 ⊃ u′i−1 = ui−1)

 (∗∗)

]
]

].

Lemma 16. For each i, φi(z, u) is semantically equivalent to f1(z1) = u1∧ ...∧
fi(zi) = ui. (The part (∗) above recursively uses φi−1 to help evaluate the ith
function symbol, and (∗∗) passes through the evaluation of the previous ones.)

We can now define the translation of sequents. This translation is in the
context of a BPLK-proof, so the Boolean program and the rest of the sequents
in the proof are already fixed. Exactly which proof a particular translation is
relative to is not indicated in the notation, but it will always be clear from the
context.

Definition 17 (Translation pSq of the sequent S relative to π). Fix a
BPLK-proof π and its associated Boolean program defining f1, ..., fk. Let fji(Ci)
be a list of all subformulas in π whose main connective is a function symbol. (Ci
are arguments to fji , and again ji are simply indexes).

Then if S is the sequent Γ −→ ∆, it is translated as the sequent pSq:

φk(0, ..., 0, pC1q, 0, ..., 0, d1
1, ..., d

1
j1−1, tfj1 (C1), d

1
j1+1, ..., d

1
k), ...

φk(0, ..., 0, pCmq, 0, ..., 0, dm1 , ..., d
m
jm−1, tfjm (Cm), d

m
jm+1, ..., d

m
k), pΓq −→ p∆q.

10

Here the pCiq and the corresponding t’s are in the correct places to be the
arguments to, and the values of, the function symbol fji . The d are dummy
variables. We could use tfi(0) instead of dli (since dli will be constrained to the
value fi(0)) but it will be convenient later on that the d’s are distinct. We shall
call the occurrences of φk above the prefix of the translation, and the remainder
the suffix.

Now, these translations may have free variables that the original ones did not
(t’s and d’s). We cannot, therefore, assert semantic equivalence of the two. How-
ever, we are concerned with proving valid sequents, and we can say something
nearly as good:

The idea is that if the translation of a sequent is satisfied by some assignment,
then either one of the t or d variables has an incorrect value, falsifying the
corresponding instance of φk, or else they all have the correct values and the
remainder of the translated sequent is satisfied. In that case, the original sequent
is satisfied by the same assignment. Conversely, if the original sequent is valid,
then every assignment to the translation will either falsify one of the φk’s, or
else all the t’s will have the correct value and thus the remainder of the sequent
will be satisfied. Therefore,

Claim. For any sequent S from the language of BPLK, S is valid if and only
pSq is.

Lemma 18. Let S be any sequent from the BPLK-proof 〈π, P 〉. Then |pSq| ∈
O(|P |2|π|2).

5.2 A Simulation of BPLK by G

We first show that proofs of sequents from two special classes are efficient to
find.

Lemma 19 (Existence and Uniqueness Sequents). The existence sequents
Ei:

−→ ∀z∃uφi(z, u)

and uniqueness sequents Ui

−→ ∀z1, z2, u1, u2[φi(z1, u1) ∧ φi(z2, u2) ⊃ [
(z1,1 = z2,1 ⊃ u1,1 = u2,1)∧
...
(z1,i = z2,i ⊃ u1,i = u2,i)
]

]

have proofs that can be found in polynomial time, and thus are of polynomial
size.

11

The two parts of this lemma are proved by induction in parallel. One more
lemma, analogous to lemma 11 of the previous section, is needed because sub-
stitution does not commute with translation. The proofs of these lemmas are
omitted.

Lemma 20. If T (p) is a sequent in a BPLK-proof and ψ is a BPLK formula in
which p does not occur, then a G-proof of pT (ψ)q from pTq(pψq) can be found
in time polynomial in the size of its endsequent.

Finally, we can state and prove the main result:

Theorem 21. If S has a BPLK-proof π1, then S has a G-proof π2 that, given
π1, can be found in time polynomial in |π1| (and thus has polynomial size).

Proof. We construct π2 directly by translating π1, sequent-by-sequent, into the
language of G, relative to the Boolean program of π1. If necessary, we insert
sequents to prove the translation of a sequent from the translations of its hy-
potheses.

First of all, if S is an initial sequent of BPLK, then it is function symbol free
and so its translation is itself, and thus already an initial sequent of G.

Now consider a non-initial sequent S inferred from previous ones. If the
inference was weakening, contraction, cut, or introduction of ¬, ∧ or ∨, then
the same rule yields pSq.

If S = T (ψ) is inferred from T (p) by subst, then note that without loss
of generality we may assume that p does not occur in ψ. Otherwise we could
modify π1 to perform subst twice; once to substitute ψ(q) for p (q is a variable
that does not occur in T) and then again to substitute p for q. To simulate
the substitution in G, first use lemma 5 to substitute pψq for p in pTq(p, t),
obtaining pTq(pψq, t). Finally, apply lemma 20.

The last case in the proof is when S is inferred by fi-introduction, intro-
ducing fi(B(p)). Then clearly the sequent φk(...), ... −→ pAi(B)q(p, t) = tfi(B),
together with some propositional reasoning, will produce pSq (basically just
by using cut). We derive the desired sequent as follows: First, the following is
straightforward:

φk(0, pBq, u, tfi(B), d) −→ φi(0, pBq, u, tfi(B), d).

Next, we add the rest of the prefix:

φk, ... −→ φi(0, pBq, u, tfi(B), d).

Expanding the φi,

φk, ... −→ ∃v[̂Ai(zi)(pBq, v) = tfi(B) ∧].

Note that the Ai occurrence above contains t variables, from the pBq substituted
for the zi, and also v variables, from function symbols occurring in the definition
of fi. Uniqueness for φi−1 and

φk(0, pC(B)q, u, t
fj(C(B))

, d) −→ φi−1(0, pC(B)q, u, t
fj(C(B))

, d),

12

one sequent for each function symbol occurrence fj(C((zi))) in the definition of
fi, allow us to rename the v

fj(C(zi)
in the occurrence of Âi above to t

fj(C(B))
,

producing pAi(B)q, and then we drop the existential quantifier and some con-
juncts to get φk(...), ... −→ pAi(B)q = tfi(B), which is the desired sequent.

Nearing the end of the proof now, if S is the last sequent of the proof, then
it is function symbol-free. We need only remove the prefix from pSq to obtain
S. The t variable corresponding to the outer-most function symbol occurrence
in π1 (there may be many outer-most occurrences) is defined by an occurrence
of φk, but it is not used in the definition of any of the other t variables. We may
thus use ∃ : left on the t and the d’s, followed by ∀ : left on the B’s and the 0’s,
to change this occurrence into ∀z∃uφk(z, u), which we can cut away with the
existence sequent and weakening. We can now do the same for the next most
outer function symbol occurrence, and so on. The resulting sequent at the end
of this process is S, which completes the proof. ut

Acknowledgment

The author wishes to thank the anonymous referees and, in the strongest possible
terms, his supervisor, Stephen Cook, for countless helpful discussions.

References

[1] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
[2] Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier Science B. V., Ams-

terdam, 1998.
[3] Stephen Cook and Michael Soltys. Boolean programs and quantified propositional

proof systems. Bulletin of the Section of Logic, 28(3), 1999.
[4] Martin Dowd. Model theoretic aspects of P 6= NP. Typewritten manuscript, 1985.
[5] D. Hilbert and P. Bernays. Grundlagen der Mathematik I. Springer, Berlin, 1934.
[6] D. Hilbert and P. Bernays. Grundlagen der Mathematik II. Springer, Berlin, 1939.
[7] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Cambridge University Press, 1995.
[8] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of

first order theories and the complexity of computations. The Journal of Symbolic
Logic, 54(3):1063–1079, 1989.

[9] Jan Kraj́ıček and Pavel Pudlák. Quantified propositional calculi and fragments
of bounded arithmetic. Zeitschr. f. Mathematikal Logik u. Grundlagen d. Mathe-
matik, 36:29–46, 1990.

[10] Jan Kraj́ıček and Gaisi Takeuti. On bounded Σ1
1 polynomial induction. In S. R.

Buss and P. J. Scott, editors, FEASMATH: Feasible Mathematics: A Mathematical
Sciences Institute Workshop, pages 259–80. Birkhauser, 1990.

[11] Alan Skelley. Relating the PSPACE reasoning power of Boolean programs and
quantified Boolean formulas. Master’s thesis, University of Toronto, 2000. Avail-
able from ECCC in the ’theses’ section.

[12] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Conference Record of Fifth Annual ACM Symposium on
Theory of Computing, pages 1–9, Austin, Texas, 30 April–2 May 1973.

13

A Appendix

A.1 Proof of Lemma 4

First another lemma:

Lemma 22. If φ is any formula in the language of either BPLK or of G, then
the sequent

φ −→ φ

has a proof (in the appropriate system) that can be found in time polynomial in
|φ| (and in the size of the Boolean program defining the function symbols in φ,
as appropriate) and is therefore polynomial size.

Proof. The proof is a simple induction on the structure of φ:

– If φ is a variable then the result is immediate.
– If φ is ¬ψ, then to the sequent

ψ −→ ψ

apply ¬ : right and ¬ : left.
– If φ is ψ ∨ θ then apply weakening then ∨ : right to each of the sequents

ψ −→ ψ

and
θ −→ θ,

then apply ∨ : left.
– The case for ∧ is symmetric.
– If φ is Qxψ(x) for some quantifier Q then to the sequent

ψ(a) −→ ψ(a)

apply both introduction rules for the quantifier, left first for universal, right
first for existential.

– If φ is f(ψ), then by a separate induction on i, derive

fi(p) −→ fi(p),

using subst and the other cases of the current lemma to derive

Ai(p) −→ Ai(p),

and then applying fi-introduction. Finally, apply subst to f(p) −→ f(p).

We apply at most 5 inferences for each connective in φ (and P), and the proof
can easily be computed using a recursion on the structure of φ, so r(x) = x2 is
sufficient. ut

Proof (Proof of lemma 4). Simply substitute A for a in the original proof. The
only case to consider is if a sequent in the original proof is an initial sequent, in
which case we can apply lemma 22. The substitution expands the original proof
by at most a factor of |A| and adding the subproofs obtained from lemma 22
adds a factor of at most 5|A|2 so r(k, |A|) = k(|A|)3 is sufficient. ut

14

A.2 Proof of Lemma 5

Proof. The proof is as follows: First apply ¬ : right then ∨ : right to obtain an
equivalent sequent with a single formula,

−→ FS(p).

Apply ∀ : right to obtain
−→ ∀xFS(x).

By lemma 22, the sequent
FS(φ) −→ FS(φ)

has a short proof, and thus ∀ : left, weakening and cut produce

−→ FS(φ).

The desired sequent follows after some propositional reasoning. ut

A.3 Proof of Lemma 9

Proof. First, note that |pφq| ∈ O(|φ|): Inductively following the recursive defi-
nition, all the Boolean connective cases increase the translation size linearly. In
the case of φ ≡ ∃xψ(x, p), the translation pφq is just fφ(p), so the number of
symbols in the translation is at most twice the number in the original formula.
This is because to write the translation we write just an f , a copy of φ, and then
a list of φ’s free variables.

Now, the Boolean program arising from a translation of φ contains at most
two function symbols for each quantifier in φ. The size of the names of the func-
tion symbols is linear in |φ|, since the name is based on a subformula of φ. The
defining formula for an ε function symbol is linear in size from the previous para-
graph, since it is essentially just a translation of a subformula of φ. The defining
formula for an f function symbol consists of a translation of a subformula of φ,
of linear size, with an ε function symbol substituted for one of the variables, and
therefore is at most quadratic in size. The size of the entire Boolean program is
thus in O(|S|3). ut

A.4 Proof of Lemma 10

Proof. The proof is by a simple induction on the structure of φ. The interesting
cases are when φ is ∃xψ(x, p) or ∀xψ(x, p). In the first case, if the translation
holds then the value obtained by evaluating the witnessing function satisfies ψ,
and so φ holds. Conversely, if φ holds then either 0 or 1 satisfies ψ, and it is easy
to see that the witnessing function will evaluate to a satisfying value.

In the second case, observe that the witnessing function will falsify ψ if possi-
ble. Thus if the translation holds then ψ is satisfied by both 0 and 1. Conversely,
if φ holds then ψ is satisfied no matter what the witnessing function evaluates
to.

15

Note that the correctness of the cases of ∨ and ∧ depends on the fact that
whenever two Boolean programs are merged while translating a QBF, they never
disagree on the definition of any function symbol. Thus, for example, the value
of pψ ∨ θq with respect to P [ψ ∨ θ] is indeed the Boolean ∨ of the values of pψq
and pθq, each with respect to their own Boolean programs. ut

A.5 Proof of Lemma 11

First another lemma:

Lemma 23. There are polynomial-size proofs of

A = B −→ C(A) = C(B),

for any formulas A,B,C, in either language/system. In the case of BPLK, the
size of P , the Boolean program defining the function symbols occurring in A,B,C,
is an argument to the polynomial.

Proof. The proof is a simple induction on the structure of C.

– If C is a variable, then we need to prove A = B −→ Ai = Bi for some i,
which is trivial.

– If C is D ∧ E, D ∨ E or ¬D, we prove A = B −→ D(A) = D(B) and
A = B −→ E(A) = E(B) and perform some simple propositional reasoning
to obtain the desired sequent.

– If C is QxD(x) for some quantifier Q, we first prove A = B −→ D(A, p) =
D(B, p). Some propositional reasoning yields A = B,D(A, p) −→ D(B, p)
and then two quantifier introductions giveA = B,QxD(A, x) −→ QxD(B, x).
Likewise, we obtain A = B,QxD(B, x) −→ QxD(A, x) and then some
propositional reasoning yield the result.

– If C is fj(D1, ..., Dk) then first prove

A = B −→ D(A) = D(B)

then apply subst to the sequent

p = q −→ fj(p) = fj(q)

(which is proved by a simple induction on j) to substitute D(A) for p and
D(B) for q and then cut to obtain the result.

ut

Proof (Proof of lemma 11). We prove the lemma by induction on the structure of
A. The base case is if A is atomic. If A is s, then pAq is s, so pA[B/s]q ≡ pBq ≡
pAq[pBq/s]. Otherwise A is some other variable u so pA[B/s]q ≡ pAq[pBq/s] ≡
u. In either case, apply lemma 22.

If A is not atomic then we have the following cases for each possible main
connective:

16

– A is of the form C ∨ D: By assumption, we have proofs of pC[B/s]q −→
pCq[pBq/s] and pD[B/s]q −→ pDq[pBq/s]. Use weakening and ∨ : right
to produce new sequents with succedent pCq[pBq/s]∨ pDq[pBq/s] ≡ p(C ∨
D)q[pBq/s], and then apply ∨ : left. The converse sequent is proved simi-
larly.

– The case for ∧ is symmetric and that for ¬ is similarly easy.
– A is QxC(x, s, p, r): In this case, we have already found a proof π1 of
pC[B/s]q −→ pCq[pBq/s], and a proof π2 of the converse sequent. We must
find proofs of pA[B/s]q −→ pAq[pBq/s] and its converse. Now, the first step
is to derive

−→ pA[B/s]q = pC[B/s]q[εA[B/s](p, q, r)/x] (1)

and

−→ pAq[pBq/s] = pCq[εA(s, p, r)/x][pBq/s]
≡ pCq[pBq/s][εA(pBq, p, r)/x], (2)

which follow directly from the defining equations for pA[B/s]q ≡ fA[B/s](p, q, r)
and pAq ≡ fA(s, p, r), respectively.
The next step is to derive

−→ εA[B/s])(p, q, r) = εA(pBq, p, r). (3)

First, use subst on the endsequent of π1 from the induction hypothesis
to substitute 1 (or 0, as appropriate for Q) for x to obtain the sequent
pC[B/s]q[1/x](p, q, r) −→ pCq[pBq/s][1/x](p, q, r). Then, εA[B/s] introduc-
tion is applied on the left and εA introduction on the right. The process is
repeated with π2 and the introduction rules used on the opposite sides of
the sequent, and the equality follows.
The final step is as follows: First substitute εA[B/s](p, q, r) for x in the end-
sequent of π1. We obtain a proof of

pC[B/s]q[εA[B/s](p, q, r)/x] −→ pCq[pBq/s][εA[B/s](p, q, r)/x]. (4)

Then use the equality (3) derived in the previous paragraph with lemma 23
to obtain a proof of

pCq[pBq/s][εA[B/s](p, q, r)/x] −→ pCq[pBq/s][εA(pBq, p, r)/x]. (5)

Now, using (4) and (5) we can easily obtain

pC[B/s]q[εA[B/s](p, q, r)/x] −→ pCq[pBq/s][εA(pBq, p, r)/x].

The desired sequent pA[B/s]q −→ pAq[pBq/s] is then obtained using (1)
and (2).
The proof of the other desired sequent is obtained symmetrically to the final
step above, but starting with π2.

By induction therefore, we can obtain π′1 and π′2, proofs of the desired sequents,
in polynomial time. ut

17

A.6 A Helper Lemma for Section 4

Lemma 24. The sequent

pAq[pBq/x] −→ pAq[ε∃xA(p)/x].

has a polynomial-size derivation.

Proof. This sequent has a proof involving 4 applications of lemma 23. In this
proof sketch we omit the corner brackets and the subscript on ε∃xA. We first
show that either 1 satisfies A or not. Next, if 1 satisfies A then ε must, since
in this case ε will evaluate to one. We then show that if 1 does not satisfy A,
but B does, then ε must also, since in this case B and ε will both evaluate to 0.
Finally, we combine these three pieces to get the result.

1. ε(p) := A[1/x] BP Def’n
2. −→ A[1/x],¬A[1/x] Easy
3. ε(p) −→ A[1/x] 1
4. A[1/x] −→ ε(p) 1
5. A[1/x], 1 −→ ε(p) 4, wk.
6. A[1/x], ε(p) −→ 1 −→ 1, wk.
7. A[1/x], A[1/x] −→ A[ε(p)/x] 5, 6, lem. 23
8. A[1/x] −→ A[ε(p)/x] 7, cntr.
9. ¬A[1/x], ε(p) −→ 0 3, ¬ : left, wk.

10. ¬A[1/x], 0 −→ ε(p) 0 −→, wk.
11. ¬A[1/x], A[0/x] −→ A[ε(p)/x] 9, 10, lem. 23
12. B,B −→ 1 −→ 1, wk.
13. B, 1 −→ B B −→ B, wk.
14. B,A[B/x] −→ A[1/x] 12,13, lem. 23
15. ¬A[1/x], A[B/x], B −→ 0 14,¬ : left, wk.
16. ¬A[1/x], A[B/x], 0 −→ B 0 −→, wk.
17. ¬A[1/x]A[B/x], A[B/x] −→ A[0/x] 15, 16, lem. 23
18. ¬A[1/x], A[B/x] −→ A[ε(p)/x] 17, cntr., 11, wk., cut
19. A[B/x] −→ A[ε(p)/x] 18, 8, 2, wk., cut

ut

A.7 Example Translation of a Boolean Program into a QBF

Example 25. Consider the following simple contrived Boolean program:

f1(p1, p2) := ¬p1 ∧ p2

f2(p1, p2) := f1(p1,¬p2) ∨ ¬f1(f1(¬p2, p1), p1)

Then by our terminology,A1(p) is ¬p1∧p2, andA2(p) is f1(p1,¬p2)∨¬f1(f1(¬p2, p1), p1).
φ0 is 1. Now, In the definition of f1 there are no occurrences of function symbols,
so there are no Bj . We thus define

φ1(z1,1, z1,2, u1) := [(¬z1,1 ∧ z1,2) = u1 ∧ [φ0 ⊃ [1]]].

18

φ1 has a number of degenerate portions and is therefore not so interesting. In
the definition of f2, f1 occurs 3 times (and is the only function symbol present).
By our terminology we have the following:

m = 3
j1 = 1
j2 = 1
j3 = 1

B1,1(p) := p1

B1,2(p) := ¬p2

B2,1(p) := f1(¬p2, p1)
B2,2(p) := p1

B3,1(p) := ¬p2

B3,2(p) := p1

B̂1,1(z2, v) := z2,1

B̂1,2(z2, v) := ¬z2,2

B̂2,1(z2, v) := vf1(¬z2,2,z2,1)

B̂2,2(z2, v) := z2,1

B̂3,1(z2, v) := ¬z2,2

B̂3,2(z2, v) := z2,1

Â2(z2, v) := vf1(z2,1,¬z2,2) ∨ ¬vf1(f1(¬z2,2,z2,1),z2,1)

Now, φ2 is constructed from the above as indicated in the definition:

φ2(z1, z2, u1, u2) :=
∃vf1(z2,1,¬z2,2), vf1(f1(¬z2,2,z2,1),z2,1)[(vf1(z2,1,¬z2,2)∨
¬vf1(f1(¬z2,2,z2,1),z2,1)) = u2∧
∀z′1, u′1[φ1(z′1, u

′
1) ⊃ [

(z′1,1 = z2,1 ∧ z′1,2 = ¬z2,2 ⊃
u′1 = vf1(z2,1,¬z2,2))∧

(z′1,1 = vf1(¬z2,2,z2,1) ∧ z′1,2 = z2,1 ⊃
u′1 = vf1(f1(¬z2,2,z2,1),z2,1))∧

(z′1,1 = ¬z2,2 ∧ z′1,2 = z2,1 ⊃
u′1 = vf1(¬z2,2,z2,1))∧

(z′1,1 = z1,1 ∧ z′1,2 = z1,2 ⊃ u′1 = u1)
]

]
].

A.8 Proof of Lemma 16

Proof. First, the statement vacuously holds for i = 0.
Now suppose it holds for i−1. If φi(z, u) holds, then there exist v’s satisfying

the part of φi marked (*), which ensures that they have the same values as the
function symbol occurrences they replace, so indeed fi(zi) = ui. The conjuncts
(**) ensure that fj(zj) = uj , j < i.

19

Conversely, if f1(z1) = u1 ∧ ... ∧ fi(zi) = ui holds, then the v’s satisfying (*)
(which exist and are unique) must have the correct values and so Âi(zi, v) = ui.
Also, (**) is clearly satisfied, and thus all of φi is. ut

A.9 Proof of Lemma 18

Proof. First note that for any BPLK formula φ, we have |φ̂|, |pφq| ∈ O(|φ|).
These operators add a constant number of symbols for each replacement they
perform, and this number is bounded by the size of the formula.

Next, consider the construction of φi from φi−1. The following are added:

– 2 copies of Âi
– 2 copies of B̂, for each B which is the argument to a function symbol in Ai

(in the subsection (*))
– 3 occurrences of the corresponding v variables (in the subsection (*) and the

quantifier)
– subsection (**) whose size is in O(|P |).

Therefore summing these all up for φ0 through φk we see that the last item
dominates the sum and that |φk| ∈ O(|P |2).

Finally, pSq consists of the prefix, at most |π| occurrences of φk, each with
substitutions of size at most |π|, followed by the suffix, of size O(|S|). Therefore
|pSq| ∈ O(|P |2|π|2). ut

A.10 Proof of Lemma 19

Proof. These two lemmas are proved by induction in parallel.
For i = 0, the result is trivial.
Now assume the two lemmas are proved for i− 1. Let B = B1, ..., Bm be all

formulas appearing as arguments to function symbols in the definition of fi, Bw
as arguments to fjw . Existence and uniqueness for φi−1 plus some propositional
reasoning give

−→ ∃v[∀z′1, ..., z′i−1, u
′
1, ..., u

′
i−1[φi−1(z′, u′) ⊃ [

...

(z′jw = B̂w ⊃ u′jw = vfjw (Bw))∧
...

(z′j = zj ⊃ u′j = uj)∧
...
]

]
].

20

Some more propositional reasoning (simply conjoining the tautology Âi(zi, vi) =
Âi(zi, vi) inside the outermost quantifier) give

−→ ∃v[Âi(zi, vi) = Âi(zi, vi)∧
∀z′1, ..., z′i−1, u

′
1, ..., u

′
i−1[φi−1(z′, u′) ⊃ [

...

(z′jw = B̂w ⊃ u′jw = vfjw (Bw))∧
...
(z′j = zj ⊃ u′j = uj)∧
...
]

]
],

and then ∃ : right (on the u’s and one instance of Âi) and ∀ : right (on the z’s)
yield the existence sequent for φi.

Now in the case of uniqueness, note that

φi(z, u) −→ φi−1(z, u)

has a short proof using existence and uniqueness for i−1 and some propositional
reasoning. Thus,

−→ φi(z1, u1) ∧ φi(z2, u2) ⊃ [
(z1,1 = z2,1 ⊃ u1,1 = u2,1)∧
...
(z1,i−1 = z2,i−1 ⊃ u1,i−1 = u2,i−1)
]

(∗)

follows by uniqueness for i− 1. Now we proceed as follows:
First by the definition of φi,

φi(z1, u1) ∧ φi(z2, u2) −→ ∃v[Âi(z1,i, v) = u1,i ∧ ...] ∧ ∃v[Âi(z2,i, v) = u2,i ∧ ...].

Then renaming the quantified variables and doing some propositional reasoning,

φi(z1, u1)∧φi(z2, u2) −→ ∃v1, v2[[Âi(z1,i, v1) = u1,i∧...]∧[Âi(z2,i, v2) = u2,i∧...]].

Uniqueness for i − 1 and more reasoning allows us to prove that the v’s in one
of the conjuncts are equal to those in the other, and thus produce

φi(z1, u1)∧φi(z2, u2) −→ ∃v1, v2[[Âi(z1,i, v1) = u1,i∧...]∧[Âi(z2,i, v1) = u2,i∧...]].

We can similarly consolidate the z’s by adding a hypothesis:

φi(z1, u1)∧φi(z2, u2) −→ z1,i = z2,i ⊃ ∃v1, v2[Âi(z1,i, v1) = u1,i∧Âi(z1,i, v1) = u2,i].

21

Contracting,

φi(z1, u1) ∧ φi(z2, u2) −→ z1,i = z2,i ⊃ ∃v1, v2[u1,i = u2,i].

We can now drop the quantifier:

φi(z1, u1) ∧ φi(z2, u2) −→ z1,i = z2,i ⊃ [u1,i = u2,i].

Some propositional reasoning to combine this last sequent with (*), and then
¬ : right and several applications of ∀ : right produce the uniqueness sequent
for i. ut

A.11 Proof of Lemma 20

Proof. The first step is to use propositional reasoning to rename all the variables
t in pTq(pψq). A variable tB(p) is renamed to tB(ψ) by an application of lemma 5.
This renaming can be done in any order, and call the resulting sequent U . Now, it
is easy to see that for every occurrence of a subformula of the form pC(p)q in pTq,
the corresponding occurrence in U is pC(ψ)q: This follows because whenever the
translation operator replaces a subformula B(p) of C(p) by a function symbol,
the symbol’s name is tB(p), and so after the renaming it will be tB(ψ) as it should
be.

Now, consider any variable t
fi(B(p))

occurring in pTq. This variable is defined
by an occurrence of φk in the prefix of pTq:

φk(0, ..., 0, pB(p)q, 0, ..., 0, d1
1, ..., d

1
i−1, tfi(B(p))

, d1
i+1, ..., d

1
k).

(In fact, it is possible that this variable occurs only in the prefix.) After the
substitution of pψq into pTq, the corresponding occurrence became

φk(0, ..., 0, pB(p)q(pψq), 0, ..., 0, d1
1, ..., d

1
i−1, tfi(B(p))

, d1
i+1, ..., d

1
k).

After the renaming, in U this occurrence becomes

φk(0, ..., 0, pB(ψ)q, 0, ..., 0, d1
1, ..., d

1
i−1, tfi(B(ψ))

, d1
i+1, ..., d

1
k),

which correctly defines t
fi(B(ψ))

.
Now before the final step, note that the suffix of U is identical to the suffix of

pT (ψ)q, and those occurrences of φk defining t variables in the suffix of pT (ψ)q
also occur in U . The only difference, then, between U and pT (ψ)q is that the
former sequent may have some prefix formulas that the latter does not, and vice
versa. We can thus use the existence sequents (or contraction, in the case of a
duplicate) to cut away the superfluous prefix formulas from U , and weakening
to add the missing ones. The result is the desired sequent. ut

