
Relating the PSPACE reasoning power of Boolean

Programs and Quantified Boolean Formulas

by

Alan Skelley

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2000 by Alan Skelley

Abstract

Relating the PSPACE reasoning power of Boolean Programs and Quantified Boolean

Formulas

Alan Skelley

Master of Science

Graduate Department of Computer Science

University of Toronto

2000

We present a new propositional proof system based on a recent new characterization of

polynomial space (PSPACE) called Boolean Programs, due to Cook and Soltys. We show

that this new system, BPLK, is polynomially equivalent to the system G, which is based

on the familiar and very different quantified Boolean formula (QBF) characterization of

PSPACE due to Stockmeyer and Meyer. We conclude with a discussion of some closely

related open problems and their implications.

ii

Acknowledgements

Thanks to my parents for being not so bad after all. A nod to NSERC for greasing

the wheels with PGSA-208264-1998. My office-mates Steve “Stevenator” Myers, Iannis

“Axiom” Tourlakis, John “Moonman” Watkinson, Jonathan “Animal” Shekter, Natasa

“Stash” Przulj and Eric “Do. J” Joanis for many helpful discussions and productive

distractions. Kleoni Ioannidou for moral support.

Tsuyoshi Morioka for helping with some production details. Michael Soltys, for the

topic. My second reader, Toniann Pitassi, for reading under duress.

Especially thanks to my supervisor, Stephen Cook, for countless helpful discussions

and crucial ideas, not to mention a lot of reading and correcting.

iii

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Overview of Thesis . 3

2 Preliminaries 5

2.1 Propositional Proof Systems . 5

2.2 LK and Quantified Propositional Logic 6

2.3 Boolean Programs . 8

2.4 Notational Conventions . 9

3 BPLK and G 11

3.1 BPLK . 11

3.2 Basic Results on BPLK and G . 12

4 BPLK P-Simulates G 17

4.1 Special Notation . 18

4.2 A Translation from the Language of G to that of BPLK 19

4.3 A Simulation of G by BPLK . 22

5 G P-Simulates BPLK 29

5.1 A Translation from the Language of BPLK to that of G 30

5.2 A Simulation of BPLK by G . 36

iv

6 Future Work and Conclusions 42

6.1 A Technical Improvement . 42

6.2 Witnessing and Search Problems . 42

6.3 Subsystems of BPLK . 43

6.4 Miscellaneous . 43

Bibliography 43

v

Chapter 1

Introduction

1.1 Background and Motivation

We often argue that a particular mathematical concept is important if it is natural, which

means that it surfaces in many places with different origins and definitions, and robust,

such that a variety of disparate formulations of it end up being equivalent or at least

closely related. Likewise, the applicability, maturity, and importance of a body of results

are greater when that field is found to have a strong connection to another. Three areas

of study intricately connected in such a useful way are computational complexity, the

proof theory of arithmetic and propositional proof complexity.

Computational complexity is the study of computation and the resources required to

perform it. A staggering number of different kinds of computation all fall into the domain

of this field. It has practical aspects, directly impacting how real computations are done

by real computers, and yet seemingly fundamental, easily explained problems remain

unsolved despite a good deal of effort. A particularly glaring example is the famous P

vs NP problem, which asks if those two classes of problems are equal. Starting from the

NP-completeness results of Cook [12] the pressure mounted with no relief, leading even

to detailed, formal analysis of known proof techniques and why they are all ineffectual at

1

Chapter 1. Introduction 2

tackling such problems [25]. Many complexity classes are studied and conjectures about

separations and hierarchies abound, yet results are elusive.

A different way of studying computational complexity is indirectly through logic.

Many connections between the fields are known: complexity classes can be characterized

as those sets or functions definable in certain theories; sets of models of formulas can be

seen as languages or classes of languages; predicates or functions from certain complexity

classes can be used to define new logics. A relevant example comprises the hierarchies

of theories of bounded arithmetic T i2 and Si2 of Buss [4]. As shown in [6], [28] and [22],

this bounded arithmetic hierarchy collapses if and only if S2 proves that the polynomial

hierarchy collapses.

Now, due to Cook [13], there is a translation from formulas of bounded arithmetic to

polynomial-sized families of propositional formulas. Furthermore, if the bounded arith-

metic formula has a proof in Cook’s system PV (corresponding to polynomial-time rea-

soning), then its translations have polynomial-sized extended Frege proofs which can be

found in polynomial time. We can replace PV by S1
2 in the previous statement due

to both theories robustly defining polynomial-time reasoning, though in different ways.

Other translations are known and in particular there is a similar connection between

T i2 and Gi, and another between Si2 and G∗i , both due to [21]. There is another corre-

spondence [23] between U1
2 (a second order system of Buss’) and G, although only for

first-order, Σb
1 formulas. In all of these latter correspondences, it is also the case that

the bounded arithmetic system can prove reflection principles for, and thus simulate, the

propositional system.

The full circle back to computational complexity is completed with the work of Cook

and Reckhow in [10] and [14]. They show that P=co-NP if and only if there exists a

polynomially bounded proof system, and additionally introduce many of the important

definitions in the area such as those of proof systems, polynomial simulations, and so on.

These results drive the study of propositional proof complexity and the search for lower

Chapter 1. Introduction 3

bounds on propositional proof systems. Fine examples are the superpolynomial lower

bounds for resolution, due to Haken [16] and bounded depth Frege systems, due to Ajtai

[1]. For many seemingly stronger systems, however, no such results are known.

1.2 Overview of Thesis

The idea suggesting the results in this thesis is yet another connection between compu-

tational complexity and propositional proof complexity. When formulated in a Gentzen

sequent style, many known propositional proof systems can be seen to be very similar,

with the only difference between them being the computational power of what can be

written at each line of the proof (or alternatively, what is allowed in the cut rule). Exam-

ples are Boolean formulas in Frege systems, single literals in resolution, Boolean circuits

in extended Frege systems. Another example is the system G, which is a sequent-based

system where formulas in the sequents are quantified boolean formulas (QBFs). These

formulas have propositional variables and also propositional quantifiers. In this case,

then, since evaluating QBFs is PSPACE-complete, the computational power which can

be harnessed in sequents is PSPACE. We can restrict G to Gi by restricting the number

of alternations of quantifiers allowed in the formulas, and the reasoning power is then

that of Σp
i predicates.

Boolean programs were introduced by Cook and Soltys in [11]. A Boolean program

defines a sequence of Boolean function symbols, where each function symbol is defined

using a boolean formula which can include, in addition to the arguments to the function,

invocations of the previously defined symbols. The authors of that paper showed that the

problem of evaluating an invocation of a function symbol defined in this way, given the

inputs and the Boolean program, is PSPACE complete. The question that then arises

is whether a proof system formulated around Boolean programs would be equivalent to

G. For this to occur, not only would Boolean programs and quantified Boolean formulas

Chapter 1. Introduction 4

need to characterize the same complexity class, but there would need to be an effective

way of translating between the two.

This thesis answers that question in the affirmative. After reviewing basic termi-

nology and notation in chapter 2, in chapter 3 we define our new system BPLK in a

straightforward way to take advantage of the expressive power of Boolean programs. In

that chapter we also prove some basic results about the two systems in consideration.

Chapter 4 contains the first of the main results, which is a polynomial simulation

of G by BPLK. We first show how to translate sequents from the language of G into

equivalent sequents in the language of Boolean programs. As we discuss, the translation is

not merely the Skolemization one might expect but rather something more sophisticated

and reminiscent of Hilbert’s ε-calculus. Following that we show how to simulate G by

translating a proof in that system, line-by-line, into the language of Boolean programs

and then filling in the gaps to make the result a proof in BPLK.

Chapter 5 presents the converse simulation. The translation used here first takes a

Boolean program to a single formula which may be used to simultaneously evaluate all

functions defined by that program. This formula is used to evaluate function symbols

occurring in the original BPLK-proof and yields a translation of sequents. As in the last

chapter, a line-by-line translation followed by some filling in of gaps gives the desired

result.

Concluding, in chapter 6 we discuss some open problems and other issues raised by

these results.

Chapter 2

Preliminaries

In this chapter we present some formal background about proof systems, which we first

formally define. We present Gentzen’s popular sequent-based system LK, which is the

foundation for the two proof systems compared in this thesis, and also discuss quantified

propositional logic and the system G and its subsystems. Finally, we comment on some

notational conventions which we shall use.

2.1 Propositional Proof Systems

We shall consider a language consisting of the complete basis {¬,∨,∧}, parentheses,

constants 0 (for false) and 1, and an infinite supply of atom symbols which we shall

represent with a variety of lower-case letters. In the standard way, well-formed formulas

in this language define truth functions or equivalently, Boolean functions, of the truth

values of the atoms. TAUT is the set of propositional tautologies, formulas which evaluate

to true on every assignment.

Definition 2.1.1. A proof system P for a set S is a surjective polynomial-time com-

putable function P : Σ∗ → S for some alphabet Σ.

We are interested in proof systems for TAUT. A P -proof of a tautology τ is a string

5

Chapter 2. Preliminaries 6

π such that P (π) = τ . We denote by |π| the number of symbols in π. We have the

following important notion which allows us to compare the power of proof systems:

Definition 2.1.2. If P and Q are proof systems, we say that P polynomially simulates

(p-simulates) Q and write P ≤p Q if there is a polynomial-time computable function g

such that for every string x, P (g(x)) = Q(x).

2.2 LK and Quantified Propositional Logic

A popular proof system is Gentzen’s sequent system LK. LK is actually a proof system

for predicate logic but we shall consider only the propositional fragment. Each line of an

LK-proof is a sequent, a string of the form Γ −→ ∆, where Γ and ∆ are possibly empty

finite sequences of propositional formulas. A sequent is satisfied if and only if either one

of the formulas on the left (the antecedent) is falsified, or one of the formulas on the

right (the succedent) is satisfied. Each sequent in a proof is either an initial sequent of

the form 0 −→, −→ 1 or a −→ a for an atom a, or it is derived from previous ones (its

hypotheses) via one of the following inference rules (this set is the same as in [9], which

is a slight modification of the ones in [20]):

weakening:

left
Γ −→ ∆

A,Γ −→ ∆
and right

Γ −→ ∆

Γ −→ ∆, A

exchange:

left
Γ1, A,B,Γ2 −→ ∆

Γ1, B,A,Γ2 −→ ∆
and right

Γ −→ ∆1, A,B,∆2

Γ −→ ∆1, B,A,∆2

contraction:

left
Γ1, A,A,Γ2 −→ ∆

Γ1, A,Γ2 −→ ∆
and right

Γ −→ ∆1, A,A,∆2

Γ −→ ∆1, A,∆2

Chapter 2. Preliminaries 7

¬ : introduction:

left
Γ −→ ∆, A

¬A,Γ −→ ∆
and right

A,Γ −→ ∆

Γ −→ ∆,¬A

∧ : introduction:

left
A,B,Γ −→ ∆

A ∧B,Γ −→ ∆
and right

Γ −→ ∆, A Γ −→ ∆, B

Γ −→ ∆, A ∧B

∨ : introduction:

left
A,Γ −→ ∆ B,Γ −→ ∆

A ∨B,Γ,−→ ∆
and right

Γ −→ ∆, A,B

Γ −→ ∆, A ∨B

cut:

Γ −→ ∆, A A,Γ −→ ∆

Γ −→ ∆

Quantified propositional logic is what results when we add propositional quantifiers to

our language. The semantics of ∀xφ(x, p) is that this formula is satisfied by a particular

assignment if and only if φ(0, p) ∧ φ(1, p) is. Likewise the truth value of ∃xφ(x, p) is the

same as that of φ(0, p)∨φ(1, p). As in [7], when in the context of quantified propositional

logic we shall divide variables into bound variables and free variables. Free variables may

occur free in formulas and semiformulas, but may never be quantified. Bound variables

may occur freely in semiformulas, and may be quantified in formulas and semiformulas.

Sequents are constructed from formulas.

Additionally, we can define a hierarchy of quantified Boolean semiformulas. The

following is a slight adaptation of the definition in [20]:

Definition 2.2.1. The classes Πq
i and Σq

i are defined as follows:

1. Σq
0 = Πq

0 are the quantifier-free propositional semiformulas.

2. If φ is Σq
i or Πq

i then it is also Σq
j and Πq

j for all j > i.

Chapter 2. Preliminaries 8

3. If φ(x) is Σq
i then ∀xφ(x) is Πq

i+1.

4. If φ(x) is Πq
i then ∃xφ(x) is Σq

i+1.

5. If φ is Σq
i (Πq

i) then ¬φ is Πq
i (Σq

i respectively).

6. Σq
i and Πq

i are closed under ∨ and ∧.

7. Σq
i (Πq

i) is closed under existential (universal) quantification.

Now, the proof system G is obtained by augmenting the set of inference rules of LK

with the following:

∀ : introduction:

left
A(B),Γ −→ ∆

∀xA(x),Γ −→ ∆
and right

Γ −→ ∆, A(p)

Γ −→ ∆,∀xA(x)

∃ : introduction:

left
A(p),Γ −→ ∆

∃xA(x),Γ −→ ∆
and right

Γ −→ ∆, A(B)

Γ −→ ∆,∃xA(x)

where B is any formula and the atom p replaced does not occur in the conclusion of the

corresponding inference. Gi is G with the restriction that all formulas appearing in a

proof must be Σq
i or Πq

i . It should be noted that although G and its subsystems derive

tautological statements of quantified propositional logic, in this thesis we will consider

them only as proof systems for propositional tautologies.

2.3 Boolean Programs

Boolean programs were introduced in [11] and are a way of specifying Boolean func-

tions. It seems that perhaps representations can be remarkably (even exponentially)

much shorter than with Boolean formulas or circuits, although a formal proof would be a

breakthrough. Boolean programs are something like a generalization of the technique of

Chapter 2. Preliminaries 9

using new atoms to replace part of a Boolean formula, which idea is the basis of extended

Frege systems. The following definition is from that paper:

Definition 2.3.1 (Cook-Soltys). A Boolean Program P is specified by a finite sequence

{f1, ..., fm} of function symbols, where each symbol fi has an associated arity ki, and an

associated defining equation

fi(pi) := Ai

where pi is a list p1, ..., pki of variables and Ai is a formula all of whose variables are

among pi and all of whose function symbols are among f1, ..., fi−1. In this context the

definition of a formula is:

1. 0,1, and p are formulas, for any variable p.

2. If f is a k-ary function symbol in P and B1, ..., Bk are formulas, then f(B1, ..., Bk)

is a formula.

3. If A and B are formulas, then (A ∧B), (A ∨B) and ¬A are formulas.

The semantics are as for propositional formulas, except that when evaluating an

application fi(φ) of a function symbol, the value is defined, using the defining equation,

to be Ai(φ). There is no free/bound distinction between variables in the language of

Boolean programs.

An interesting property of Boolean programs which demonstrates their comparability

to quantified Boolean formulas is the following theorem from [11]:

Theorem 2.3.2 (Cook-Soltys). A Language L is in PSPACE iff L is computed by

some uniform polynomial size family of Boolean programs.

2.4 Notational Conventions

We shall use the following conventions of notation: Lower case English letters will repre-

sent atoms, with x, y, z, ... reserved for bound variables, and with the further exception

Chapter 2. Preliminaries 10

of f, g, h, ... to be used for function symbols. Capital letters and lower case Greek letters

will be used for formulas. An overline indicates a list: a is a list of variables (a1, ...) and

A is a list of lists of formulas (A1 = {A1,1, A1,2, ...}, A2, ...). A formula A may have free

variables p, and when we wish to emphasize that fact we shall write A(p), although we

may not explicitly display all free variables of A. A(φ) denotes the result of substituting

the list of formulas φ for the free variables of A. Since we have separated bound and free

variables, in the quantified case we are automatically assured that φ is free for p in A(p),

which is to say that no free variables of φ will end up bound by any of A’s quantifiers in

the substitution.

We shall use the following symbols:

Definition 2.4.1 (=,⊃,≡). The symbols ’=’ and ’⊃’ are not in the language of either

system we consider, but we shall use them as abbreviations. A = B abbreviates

((¬A1 ∨B1) ∧ (¬B1 ∨ A1) ∧ ... ∧ (¬Ak ∨Bk) ∧ (¬Bk ∨ Ak)).

A ⊃ B abbreviates ¬A ∨B. The symbol ’≡’ will be used to denote syntactic equality.

Finally, consider that although in general not all proof systems need be of this form,

we shall consider only systems where a proof consists of a sequence of lines, each derived

from previous ones. In these cases, we usually have two forms of a system P : The dag-like

form P , wherein lines may be re-used arbitrarily often as hypotheses of inferences, and

the tree-like form P∗, wherein a line can be used only once.

Chapter 3

BPLK and G

In this chapter we introduce the sequent system BPLK, which is basically the proposi-

tional fragment of LK enhanced with the reasoning power of Boolean programs. We then

present several lemmas about BPLK and G which show that certain classes of proofs are

easy to find in the two systems, and which will simplify arguments later on.

3.1 BPLK

Definition 3.1.1 (BPLK). The system BPLK is like the propositional system LK, but

with the following changes:

1. In addition to sequents, a proof also includes a Boolean program which defines

functions. Whenever we refer to a BPLK-proof, we shall always explicitly write it

as the pair < π, P > of the proof (sequents) and the Boolean program defining the

function symbols occurring in the sequents.

2. Formulas in sequents are formulas in the context of Boolean programs, as defined

earlier.

3. If the Boolean program contains a definition of the form

f(p) := A(p),

11

Chapter 3. BPLK and G 12

the new LK rules f : left

A(φ),Γ −→ ∆

f(φ),Γ −→ ∆

and f : right

Γ −→ ∆, A(φ)

Γ −→ ∆, f(φ)

may be used, where φ are precisely as many formulas as p are variables.

4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ(q, p)

∆(φ, p) −→ Γ(φ, p)

may be used, where all occurrences of q have been substituted for.

One point to note about the above definition is that we allow only one substitution

at a time with the subst rule. However, we can substitute φ for p in the sequent S(p) by

first performing several instances of subst to change the variables p to variables which

do not occur in φ or the sequent. We then substitute each of φ into the sequent, one at a

time. The size of the proof fragment is a polynomial in the size of the resulting sequent.

3.2 Basic Results on BPLK and G

Lemma 3.2.1. There is a polynomial r such that if φ is any formula in the language of

either BPLK or of G, then the sequent

φ −→ φ

has a proof (in the appropriate system) which can be found in time O(r(|φ|)), in the case

of G, and time O(r(|φ|+ |P |)), in the case of BPLK with P the Boolean program defining

the function symbols in φ. The length of this proof is thus bounded by the same value.

Proof. The proof is a simple induction on the structure of φ:

• If φ is a variable then the result is immediate.

Chapter 3. BPLK and G 13

• If φ is ¬ψ, then to the sequent

ψ −→ ψ

apply ¬ : right and ¬ : left.

• If φ is ψ ∨ θ then apply weakening then ∨ : right to each of the sequents

ψ −→ ψ

and

θ −→ θ,

then apply ∨ : left.

• The case for ∧ is symmetric.

• If φ is Qxψ(x) for some quantifier Q then to the sequent

ψ(a) −→ ψ(a)

apply both introduction rules for the quantifier, left first for universal, right first

for existential.

• If φ is f(ψ), then by a separate induction on i, derive

fi(p) −→ fi(p),

using subst and the other cases of the current lemma to derive

Ai(p) −→ Ai(p),

and then applying fi-introduction. Finally, apply subst to f(p) −→ f(p).

We apply at most 5 inferences for each connective in φ (and P), and the proof can easily

be computed using a recursion on the structure of φ, so r(x) = x2 is sufficient.

Chapter 3. BPLK and G 14

Lemma 3.2.2 (Simple Manipulations). There is a polynomial r such that if a are

variables and A are formulas, and if

Γ′(a) −→ ∆′(a)

follows from

Γ(a) −→ ∆(a)

via a proof of size k, then a proof of the sequent S ′:

Γ′(A) −→ ∆′(A)

from the sequent S:

Γ(A) −→ ∆(A)

can be found in time O(r(k, |A|)), (O(r(k, |A|, |P |)) in the case of BPLK, with P defining

all relevant function symbols) and whose length is thus similarly bounded..

Proof. Simply substitute A for a in the original proof. The only case to consider is if a

sequent in the original proof is an initial sequent, in which case we can apply lemma 3.2.1.

The substitution expands the original proof by at most a factor of |A| and adding the

subproofs obtained from lemma 3.2.1 adds a factor of at most 5|A|2 so r(k, |A|) = k(|A|)3

is sufficient.

Lemma 3.2.3 (Build Lemma for G and BPLK). There are polynomial-size proofs

of

A = B −→ C(A) = C(B),

for any formulas A,B,C, in either language/system. In the case of BPLK, the size of P ,

the Boolean program defining the function symbols occurring in A,B,C, is an argument

to the polynomial.

Proof. The proof is a simple induction on the structure of C.

Chapter 3. BPLK and G 15

• If C is a variable, then we need to prove A = B −→ Ai = Bi for some i, which is

trivial.

• If C is D ∧ E, D ∨ E or ¬D, we prove A = B −→ D(A) = D(B) and A = B −→

E(A) = E(B) and perform some simple propositional manipulations to obtain the

desired sequent.

• If C is QxD(x) for some quantifier Q, we first prove A = B −→ D(A, p) =

D(B, p). Some simple manipulations yield A = B,D(A, p) −→ D(B, p) and then

two quantifier introductions give A = B,QxD(A, x) −→ QxD(B, x). Likewise, we

obtain A = B,QxD(B, x) −→ QxD(A, x) and then some simple manipulations

yield the result.

• If C is fj(D1, ..., Dk) then first prove

A = B −→ D(A) = D(B)

then apply subst to the sequent

p = q −→ fj(p) = fj(q)

(which is proved by a simple induction on j) to substitute D(A) for p and D(B)

for q and then cut to obtain the result.

We end with a final lemma showing that substitution is like a derived rule in G:

Lemma 3.2.4. There is a polynomial r such that a G-proof of the sequent S(φ) from

the sequent S(p) (both in the language of G) can be found in time O(r(|S(φ)|)).

Proof. The proof is as follows: First apply ¬ : right then ∨ : right to obtain an equiva-

lent sequent with a single formula,

−→ FS(p).

Chapter 3. BPLK and G 16

Apply ∀ : right to obtain

−→ ∀xFS(x).

By lemma 3.2.1, the sequent

FS(φ) −→ FS(φ)

has a short proof, and thus ∀ : left, weakening and cut produce

−→ FS(φ).

The desired sequent follows after some simple manipulations.

Chapter 4

BPLK P-Simulates G

In this chapter we show that the system BPLK polynomially simulates G. We do so by

describing a procedure for translating a sequent in the language of G into a semantically

equivalent one in the language of BPLK with an accompanying Boolean program. This

new Boolean program defines function symbols which occur in the translated sequent, and

which replace the quantifiers and bound variables from the original one. This translation

is used to translate a G-proof line-by-line into the language of BPLK, and we show how

to fill in the gaps to form a correct proof in the latter system. Incidentally, this technique

could easily be adapted to provide an alternate proof of the PSPACE-completeness of

Boolean programs, as the proof in [11] did not involve a reduction from QBFs.

Perhaps the first kind of translation one would think of would be to use Boolean

programs to calculate Skolem functions, and use these to replace variables bound by

existential quantifiers. Variables bound by universal quantifiers would then become free

variables. However, there are many problems with this approach. First of all, this type of

translation would add free variables, so in some sense it is a less faithful translation than

we would like. Second, formulas in the antecedent of a sequent occur negatively in the

context of the entire sequent, so we would have to translate those quantifiers differently

than those in the succedent. This means that the same formula would have two different

17

Chapter 4. BPLK P-Simulates G 18

translations depending on which side of the sequent it occurred in, and this would greatly

complicate simulating the cut rule.

Instead, the translation we adopt is very much reminiscent of the work of Hilbert and

Bernays ([17] and [18]). Those authors used a different language: instead of quantifiers

they used the so-called ε-calculus, wherein ∃xA(x) would be written as A(εx(A(x)))

and ∀xA(x) as A(εx(¬A(x))). The ε symbol εx(A(x)) represents an object which will

satisfy A, if such an object exists. Those authors did not ascribe any kind of functional

interpretation to the ε symbols, but since our universe is of only two elements, it turns

out that Boolean programs can easily compute the values of such symbols, and this is

where we base our translation.

An alternative translation suggested by Toniann Pitassi mirrors the definition of

propositional quantifiers, and would replace ∀xA(x) by A(0) ∧ A(1) and ∃xA(x) by

A(0) ∨ A(1). To avoid exponential increase in formula size, each of these would then

be replaced by a function symbol defined by a Boolean program. Unfortunately, the

principal difficulty with the translation we do adopt, namely that the names of the func-

tion symbols in translations change after introduction of quantifiers, is also present with

this translation. The complexity of the arguments would thus be similar.

4.1 Special Notation

In the translation in this chapter, we shall use function symbols whose names are based

on formulas of G. Because of the delicate nature of these names, we shall be especially de-

tailed and careful about substitutions and the names of free variables. We shall therefore,

in this chapter only, modify our notation:

When a formula A is displayed as A(p), we shall mean that p are all the free variables

of A. We shall never use the notation A(q) to mean a substitution, but instead that A

has the single free variable q. All substitutions will be denoted with a postfix operator

Chapter 4. BPLK P-Simulates G 19

[B/p] which means that the formula B (which may be a single variable) is substituted

for p in the formula which precedes the operator. We may write several of these in a row,

and the meaning is that they are performed in sequence from left to right. We may also

interject free variable lists, as in the example

A(a, b)[B(q, r, s)/b](q, r, s, a)[C/s][D/r].

4.2 A Translation from the Language of G to that of

BPLK

To aid in translating we introduce the following definition, which gives us a well-defined

merging operator which says how to combine several Boolean programs into one, elimi-

nating duplicate definitions:

Definition 4.2.1 (Merging P � Q of Boolean Programs). If P and Q are Boolean

programs, or at least fragments (not necessarily defining all function symbols used in

definitions), then the merging P �Q of P and Q is obtained by first concatenating P and

Q, and then deleting all but the first definition of each function symbol.

We shall use this merging operator in the following translation, and later on in the

actual simulation. However, whenever we merge two Boolean programs which both define

a particular function symbol, it will always be the case that the two definitions are

identical. Thus, which of the definitions is kept is immaterial.

Now we can present the actual translation, defined first for single formulas:

Definition 4.2.2 (Translation < pφq, P [φ] > of φ). We recursively define a translation

of a quantified propositional semiformula into a semantically equivalent quantifier-free

formula in the language of BPLK, together with a Boolean program defining the function

symbols in that formula.

Chapter 4. BPLK P-Simulates G 20

• If φ is an atom p then < pφq, P [φ] > is < φ, ∅ >.

• If φ is ψ ∧ θ (ψ ∨ θ) then < pφq, P [φ] > is < pψq ∧ pθq, P [ψ] � P [θ] > (< pψq ∨

pθq, P [ψ] � P [θ] >).

• If φ is ¬ψ then < pφq, P [φ] > is < ¬pψq, P [ψ] >.

• If φ is ∃xψ(x, p), then < pφq, P [φ] > is < fφ(p), P [ψ] � P ′[φ] > Here, P ′[φ] is a

Boolean program fragment with the following two definitions:

εφ(p) := pψq[1/x](p)

fφ(p) := pψq[εφ(p)/x](p).

• If φ is ∀xψ(x, p), then < pφq, P [φ] > is < fφ(p), P [ψ] � P ′[φ] > Here, P ′[φ] is a

Boolean program fragment with the following two definitions:

εφ(p) := pψq[0/x](p)

fφ(p) := pψq[εφ(p)/x](p).

Thus, in the case where a quantifier is the top-level connective of φ = Qxψ(x, p), we

first pick a function symbol whose name depends on the formula φ (i.e., including more

deeply nested quantifiers and free variables). This choice encodes both which variable

is the most newly quantified one, and also what kind of quantifier it is. We call this

function symbol a witnessing function for ψ because its value will satisfy ψ if possible,

in case Q is existential, or else it will falsify ψ if possible.

We then substitute this function symbol, applied to all the variables free in φ, into the

translation of ψ. Finally, we define a new function symbol using the resulting formula,

and use it instead of the formula. We do so because pψq[εφ(p)/x](p) has more occur-

rences of free variables than pψq(p), and so without the new function symbol, subsequent

substitutions of this form may increase the length of the formula exponentially.

Chapter 4. BPLK P-Simulates G 21

Note that if φ is quantifier-free, then it is unchanged by the translation and the

Boolean program which results is empty.

Definition 4.2.3. If S is the sequent

Γ1, ...,Γj −→ ∆1, ...,∆k

then < pSq, P [S] > is

< pΓ1q, ..., pΓjq −→ p∆1q, ..., p∆kq , P [Γ1] � ... � P [∆k] > .

We call P [φ] or P [S] the Boolean program arising from the translation. As a final

lemma in this section, we show that translations are polynomial size:

Lemma 4.2.4. If S is a sequent in the language of G, then | < pSq, P (S) > | ∈ O(|S|3).

Proof. First, note that |pφq| ∈ O(|φ|): Inductively following the recursive definition, all

the Boolean connective cases increase the translation size linearly. In the case of φ ≡

∃xψ(x, p), the translation pφq is just fφ(p), so the number of symbols in the translation is

at most twice the number in the original formula. This is because to write the translation

we write just an f , a copy of φ, and then a list of φ’s free variables.

Now, the Boolean program arising from a translation of φ contains at most two

function symbols for each quantifier in φ. The size of the names of the function symbols

is linear in |φ|, since the name is based on a subformula of φ. The defining formula for

an ε function symbol is linear in size from the previous paragraph, since it is essentially

just a translation of a subformula of φ. The defining formula for an f function symbol

consists of a translation of a subformula of φ, of linear size, with an ε function symbol

substituted for one of the variables, and therefore is at most quadratic in size. The size

of the entire Boolean program is thus in O(|S|3).

Chapter 4. BPLK P-Simulates G 22

4.3 A Simulation of G by BPLK

First, we show that the translations defined above are semantically equivalent to the

original formulas.

Lemma 4.3.1. In the presence of the Boolean program P [φ] defining the function sym-

bols as above (arising from the translation), a (possibly) quantified Boolean formula φ is

semantically equivalent to its translation pφq.

Proof. The proof is by a simple induction on the structure of φ. The interesting cases are

when φ is ∃xψ(x, p) or ∀xψ(x, p). In the first case, if the translation holds then the value

obtained by evaluating the witnessing function satisfies ψ, and so φ holds. Conversely, if

φ holds then either 0 or 1 satisfies ψ, and it is easy to see that the witnessing function

will evaluate to a satisfying value.

In the second case, observe that the witnessing function will falsify ψ if possible. Thus

if the translation holds then ψ is satisfied by both 0 and 1. Conversely, if φ holds then ψ

is satisfied no matter what the witnessing function evaluates to.

Note that the correctness of the cases of ∨ and ∧ depends on the fact that whenever

two Boolean programs are merged while translating a QBF, they never disagree on the

definition of any function symbol. Thus, for example, the value of pψ ∨ θq with respect

to P [ψ ∨ θ] is indeed the Boolean ∨ of the values of pψq and pθq, each with respect to

their own Boolean programs.

Now, the operations of substitution and translation do not commute directly even

in the case of substituting only a single variable, so for example if A(a) ≡ ∃x(a ∨ x),

then its translation is pAq(a) ≡ f∃x(a∨x)(a). If we then substitute b for a we obtain

pAq[b/a] ≡ f∃x(a∨x)(b). On the other hand, if we did these things in the reverse order

we would get pA[b/a]q ≡ f∃x(b∨x)(b), which is different. A technical lemma is needed to

resolve this difficulty:

Chapter 4. BPLK P-Simulates G 23

Lemma 4.3.2. Let A(s, p, r) be a semiformula and B(p, q) a formula, both in the lan-

guage of G, so B is automatically free for s in A, and let p be all free variables except s

which are common to A and B. (s may be in q) Then proofs of

pA[B/s]q(p, q, r) −→ pAq[pBq/s](p, q, r)

and

pAq[pBq/s](p, q, r) −→ pA[B/s]q(p, q, r)

can be found in time polynomial in the size of translations and the size of the Boolean

program arising from them.

Proof. We prove the lemma by induction on the structure of A. The base case is if A is

atomic. If A is s, then pAq is s, so pA[B/s]q ≡ pBq ≡ pAq[pBq/s]. Otherwise A is some

other variable u so pA[B/s]q ≡ pAq[pBq/s] ≡ u. In either case, apply lemma 3.2.1.

If A is not atomic then we have the following cases for each possible main connective:

• A is C ∨ D: By assumption, we have proofs of pC[B/s]q −→ pCq[pBq/s] and

pD[B/s]q −→ pDq[pBq/s]. Use weakening and ∨ : right to produce new se-

quents with succedent pCq[pBq/s] ∨ pDq[pBq/s] ≡ p(C ∨ D)q[pBq/s], and then

apply ∨ : left. The converse sequent is proved similarly.

• The case for ∧ is symmetric and that for ¬ is similarly easy.

• A is QxC(x, s, p, r): In this case, we have already found a proof π1 of pC[B/s]q −→

pCq[pBq/s], and a proof π2 of the converse sequent. We must find proofs of

pA[B/s]q −→ pAq[pBq/s] and its converse. Now, the first step is to derive

−→ pA[B/s]q = pC[B/s]q[εA[B/s](p, q, r)/x] (4.3.1)

and

−→ pAq[pBq/s] = pCq[εA(s, p, r)/x][pBq/s] ≡ pCq[pBq/s][εA(pBq, p, r)/x],

(4.3.2)

Chapter 4. BPLK P-Simulates G 24

which follow directly from the defining equations for pA[B/s]q ≡ fA[B/s](p, q, r) and

pAq ≡ fA(s, p, r), respectively.

The next step is to derive

−→ εA[B/s])(p, q, r) = εA(pBq, p, r). (4.3.3)

First, use subst on the endsequent of π1 from the induction hypothesis to sub-

stitute 1 (or 0, as appropriate for Q) for x to obtain pC[B/s]q[1/x](p, q, r) −→

pCq[pBq/s][1/x](p, q, r). Then, εA[B/s] introduction is applied on the left and εA

introduction on the right. The process is repeated with π2 and the introduction

rules used on the opposite sides of the sequent, and the equality follows.

The final step is as follows: First substitute εA[B/s](p, q, r) for x in the endsequent

of π1. We obtain a proof of

pC[B/s]q[εA[B/s](p, q, r)/x] −→ pCq[pBq/s][εA[B/s](p, q, r)/x]. (4.3.4)

Then use the equality (4.3.3) derived in the previous paragraph with the build

lemma to obtain a proof of

pCq[pBq/s][εA[B/s](p, q, r)/x] −→ pCq[pBq/s][εA(pBq, p, r)/x]. (4.3.5)

Now, using (4.3.4) and (4.3.5) we can easily obtain

pC[B/s]q[εA[B/s](p, q, r)/x] −→ pCq[pBq/s][εA(pBq, p, r)/x].

The desired sequent pA[B/s]q −→ pAq[pBq/s] is then obtained using (4.3.1) and

(4.3.2).

The proof of the other desired sequent is obtained symmetrically to the final step

above, but starting with π2.

By induction therefore, we can obtain π′1 and π′2, proofs of the desired sequents, in

polynomial time.

Chapter 4. BPLK P-Simulates G 25

The main result of the chapter follows:

Theorem 4.3.3. If S is a quantifier-free sequent with a proof π1 in G, then S has a

BPLK-proof < π2, P [π1] > which, given π1, can be found in time polynomial in |π1| (and

thus has polynomial size).

Proof. First of all, P [π1] is formed by merging the Boolean programs arising from trans-

lating all the sequents in π1. More precisely, if π1 is S1, ..., Sk, then P [π1] = P [S1] � ... �

P [Sk].

We then form π2 directly by translating π1 sequent-by-sequent into the language of

BPLK, and when necessary adding some extra sequents between the translated ones. We

have the following cases, depending on the inference rule used:

• Observe that all initial sequents of G are their own translations, and are also initial

sequents of BPLK.

• If S is non-initial and is inferred by any rule except a quantifier introduction with

hypothesis(es) T (and U), then pSq follows from pTq (and pUq) by the same rule.

This is because translations of identical formulas are identical, and the translation

operator commutes with the connectives ∨, ∧ and ¬.

• If S is inferred from T by the introduction of a universal quantifier on the right, or

that of an existential quantifier on the left, then considering the first case we have

that T is

Γ −→ ∆, C(a, p)

and S is

Γ −→ ∆,∀x(C[x/a](x, p)).

Their translations are thus

pΓq −→ p∆q, pCq(a, p)

Chapter 4. BPLK P-Simulates G 26

and

pΓq −→ p∆q, f∀xC[x/a](p),

respectively. For convenience, let A ≡ C[x/a]. In this notation, pTq is

pΓq −→ p∆q, pA[a/x]q(a, p).

First, pA[a/x]q −→ pAq[paq/x] follows from lemma 4.3.2, taking B ≡ a, and s ≡ x.

pTq and cut then yield

pΓq −→ p∆q, pAq[a/x].

Next, observe that a cannot occur in Γ or ∆ (or therefore their translations) due to

the restriction on ∀ : right. So, when we apply subst to this sequent, substituting

ε∀xA(p) for a to obtain

pΓq −→ p∆q, pAq[ε∀xA(p)/x],

pΓq and p∆q are unchanged. Finally, pAq[ε∀xA(p)/x] −→ f∀xA(p) follows from the

definition of the function symbol f∀xA using the introduction right rule for that

symbol. pSq follows with weakening and cut.

• The interesting case is when S follows from T by the introduction of an existential

quantifier on the right, or that of a universal quantifier on the left. The two cases

are symmetrical, so consider the first. T is

Γ −→ ∆, A(x, p)[B/x]

and S is

Γ −→ ∆,∃x(A(x, p)).

The translations pTq and pSq are

pΓq −→ p∆q, pA[B/x]q

Chapter 4. BPLK P-Simulates G 27

and

pΓq −→ p∆q, f∃xA(p).

Thus, it suffices to prove pA[B/x]q −→ f∃xA(p) and apply cut.

First, we derive pA[B/x]q −→ pAq[pBq/x] using lemma 4.3.2.

The next task is to prove

pAq[pBq/x] −→ pAq[ε∃xA(p)/x].

This sequent has a proof involving 4 applications of the build lemma. In this proof

sketch we omit the corner brackets and the subscript on ε∃xA. We first show that

either 1 satisfies A or not. Next, if 1 satisfies A then ε must, since in this case ε

will evaluate to one. We then show that if 1 does not satisfy A, but B does, then ε

must also, since in this case B and ε will both evaluate to 0. Finally, we combine

these three pieces to get the result.

1. ε(p) := A[1/x] BP Def’n

2. −→ A[1/x],¬A[1/x] Easy

3. ε(p) −→ A[1/x] 1

4. A[1/x] −→ ε(p) 1

5. A[1/x], 1 −→ ε(p) 4, weakening

6. A[1/x], ε(p) −→ 1 −→ 1, weakening

7. A[1/x], A[1/x] −→ A[ε(p)/x] 5, 6, build lemma

8. A[1/x] −→ A[ε(p)/x] 7, contraction

9. ¬A[1/x], ε(p) −→ 0 3, ¬ : left,weakening

10. ¬A[1/x], 0 −→ ε(p) 0 −→, weakening

11. ¬A[1/x], A[0/x] −→ A[ε(p)/x] 9, 10, build lemma

12. B,B −→ 1 −→ 1, weakening

13. B, 1 −→ B B −→ B, weakening

Chapter 4. BPLK P-Simulates G 28

14. B,A[B/x] −→ A[1/x] 12,13,build lemma

15. ¬A[1/x], A[B/x], B −→ 0 14,¬ : left, weakening

16. ¬A[1/x], A[B/x], 0 −→ B 0 −→, weakening

17. ¬A[1/x]A[B/x], A[B/x] −→ A[0/x] 15, 16, build lemma

18. ¬A[1/x], A[B/x] −→ A[ε(p)/x] 17, contraction, 11, weakening, cut

19. A[B/x] −→ A[ε(p)/x] 18, 8, 2, weakening, cut

Lastly, pAq[ε∃xA(p)/x] −→ f∃xA(p) follows from the definition of f∀xA

Now, starting with pTq and using each of these last three sequents in turn with

weakening and cut, one obtains the sequent pSq, as desired.

Finally, in the case that S is quantifier-free (for example, the final sequent in a proof),

then the translation of S is S, and this completes the proof of the theorem.

Chapter 5

G P-Simulates BPLK

In this chapter we define a translation of Boolean programs into formulas in the language

of G, that is, using propositional quantifiers. Ultimately, we want to translate sequents in

BPLK into equivalent ones in G, analogously to the previous chapter, and we shall use the

translated Boolean program to obtain the values of function symbol applications. Since a

line of the program can reference previous lines (in effect using a shorter Boolean program

to define the current function symbol), an inductive construction is indicated, using the

translations of previous lines to obtain the translation of the current one. However, if

more than one copy of previous translations are ever used to translate a line, there is a

possibility that the formula sizes will increase exponentially. Therefore our translation

will produce one formula which can be used to simultaneously evaluate all the function

symbols in the Boolean program, and one copy of this formula will be incorporated into

the translation of the next line.

The method we shall use to “multiplex” the single occurrence of a translation is

inspired by a trick used by Stockmeyer and Meyer in [26] to show that the problem of

evaluating a given quantified Boolean formula (QBF) is PSPACE-complete. The idea is

to abbreviate φ(x1, y1)∧φ(x2, y2) as ∀x, y[((x = x1∧y = y1)∨(x = x2∧y = y2)) ⊃ φ(x, y)].

29

Chapter 5. G P-Simulates BPLK 30

This is not exactly what is needed but is quite close.

5.1 A Translation from the Language of BPLK to

that of G

Since we have an infinite supply of variables, let us reserve v, t, z, d, and u as new

variables not occurring in the BPLK-proof being translated. There will be a variables vA

and tA for each formula A in the language of BPLK, and we shall replace occurrences of

function symbols by these variables as part of our translation.

Definition 5.1.1 (Hat and Corner Operators). If A(p) is a formula in the language

of BPLK (p are the variables free in A), then let Â(p, v) be the result of replacing, in A,

every maximal subformula f(B) of A whose main connective is a function symbol by the

corresponding variable vf(B). This new formula will have some subset of the original p

and also some v’s as free variables. The corner operator (e.g. pAq) is defined similarly,

except that corresponding t variables are used instead of v’s. If either operator is applied

to a set of formulas, we mean that it should be applied to each formula in the set in turn.

Example 5.1.2 (Hat Operator). If ψ(p) is the formula

f(p1) ∨ g(f(p1 ∧ p2)) ∧ ¬p3,

then ψ̂(p, v) is

vf(p1) ∨ vg(f(p1∧p2)) ∧ ¬p3.

We shall assume that a Boolean program defines functions f1, f2, ... and that each

function symbol in the Boolean program is defined as fi(p) := Ai(p). (In other words,

Ai is the defining formula of fi). Now, φk(z, u) will be the translation of the Boolean

program up to and including the definition of fk. The meaning of φk(z1, ..., zk, u1, ..., uk)

will be that this formula is satisfied if and only if f1(z1) = u1, ..., and fk(zk) = uk.

Chapter 5. G P-Simulates BPLK 31

We are now in a position to define the translation of a Boolean program more formally:

Definition 5.1.3. Consider a Boolean program defining f1...fk. Define φ0 := 1. Now,

say the definition of fi includes the function symbol occurrences fj1(B1), ..., fjm(Bm) in

order, some of which may be nested in others. (Here j1, j2, ..., jm are just the indexes of

the function symbols, i.e., a sequence of m integers, not necessarily distinct, each smaller

than i). Then define

φi(z1, ..., zi, u1, ..., ui) :=

∃vfj(Bj(zi))[Âi(zi, vfj(Bj(zi))) = ui∧

∀z′1, ..., z′i−1, u
′
1, ..., u

′
i−1[φi−1(z′, u′) ⊃ [

(z′j1 = ̂B1(zi) ⊃ u′j1 = vfj1 (B1(zi)))∧

(z′j2 = ̂B2(zi) ⊃ u′j2 = vfj2 (B2(zi)))∧
...

(z′jm = ̂Bm(zi) ⊃ u′jm = vfjm (Bm(zi)))∧


(∗)

(z′1 = z1 ⊃ u′1 = u1)∧
...

(z′i−1 = zi−1 ⊃ u′i−1 = ui−1)

 (∗∗)

]

]

].

Example 5.1.4. Consider the following simple contrived Boolean program:

f1(p1, p2) := ¬p1 ∧ p2

f2(p1, p2) := f1(p1,¬p2) ∨ ¬f1(f1(¬p2, p1), p1)

Then by our terminology, A1(p) is ¬p1∧p2, and A2(p) is f1(p1,¬p2)∨¬f1(f1(¬p2, p1), p1).

φ0 is 1. Now, In the definition of f1 there are no occurrences of function symbols, so

Chapter 5. G P-Simulates BPLK 32

there are no Bj. We thus define

φ1(z1,1, z1,2, u1) := [(¬z1,1 ∧ z1,2) = u1 ∧ [φ0 ⊃ [1]]].

φ1 has a number of degenerate portions and is therefore not so interesting. In the defini-

tion of f2, f1 occurs 3 times (and is the only function symbol present). By our terminology

we have the following:

m = 3

j1 = 1

j2 = 1

j3 = 1

B1,1(p) := p1

B1,2(p) := ¬p2

B2,1(p) := f1(¬p2, p1)

B2,2(p) := p1

B3,1(p) := ¬p2

B3,2(p) := p1

B̂1,1(z2, v) := z2,1

B̂1,2(z2, v) := ¬z2,2

B̂2,1(z2, v) := vf1(¬z2,2,z2,1)

B̂2,2(z2, v) := z2,1

B̂3,1(z2, v) := ¬z2,2

B̂3,2(z2, v) := z2,1

Â2(z2, v) := vf1(z2,1,¬z2,2) ∨ ¬vf1(f1(¬z2,2,z2,1),z2,1)

Chapter 5. G P-Simulates BPLK 33

Now, φ2 is constructed from the above as indicated in the definition

φ2(z1, z2, u1, u2) :=

∃vf1(z2,1,¬z2,2), vf1(f1(¬z2,2,z2,1),z2,1)[(vf1(z2,1,¬z2,2) ∨ ¬vf1(f1(¬z2,2,z2,1),z2,1)) = u2∧

∀z′1, u′1[φ1(z′1, u
′
1) ⊃ [

(z′1,1 = z2,1 ∧ z′1,2 = ¬z2,2 ⊃ u′1 = vf1(z2,1,¬z2,2))∧

(z′1,1 = vf1(¬z2,2,z2,1) ∧ z′1,2 = z2,1 ⊃ u′1 = vf1(f1(¬z2,2,z2,1),z2,1))∧

(z′1,1 = ¬z2,2 ∧ z′1,2 = z2,1 ⊃ u′1 = vf1(¬z2,2,z2,1))∧

(z′1,1 = z1,1 ∧ z′1,2 = z1,2 ⊃ u′1 = u1)

]

]

].

Claim 5.1.5. For each i,

φi(z, u)

is semantically equivalent to

f1(z1) = u1 ∧ ... ∧ fi(zi) = ui.

Proof. First, the statement vacuously holds for i = 0.

Now suppose it holds for i − 1. If φi(z, u) holds, then there exist v’s satisfying the

part of φi marked (*), which ensures that they have the same values as the function

symbol applications they replace, so indeed fi(zi) = ui. The conjuncts (**) ensure that

fj(zj) = uj, j < i.

Conversely, if f1(z1) = u1 ∧ ... ∧ fi(zi) = ui holds, then the v’s satisfying (*) (which

exist and are unique) must have the correct values and so Âi(zi, v) = ui. Also, (**) is

clearly satisfied, and thus all of φi is.

We can now define the translation of sequents. This translation is in the context of

a BPLK-proof, so the Boolean program and the rest of the sequents in the proof are

Chapter 5. G P-Simulates BPLK 34

already fixed. Exactly which proof a particular translation is relative to is not indicated

in the notation, but it will always be clear from the context.

Definition 5.1.6 (Translation pSq of the sequent S relative to π). Fix a BPLK-

proof π and its associated Boolean program defining f1, ..., fk. Let fji(Ci) be a list of all

subformulas in π whose main connective is a function symbol. (Ci are arguments to fji,

and again ji are simply indexes).

Then the sequent S,

Γ −→ ∆,

is translated as the sequent pSq:

φk(0, ..., 0, pC1q, 0, ..., 0, d1
1, ..., d

1
j1−1, tfj1 (C1), d

1
j1+1, ..., d

1
k),

...

φk(0, ..., 0, pCmq, 0, ..., 0, dm1 , ..., d
m
jm−1, tfjm (Cm), d

m
jm+1, ..., d

m
k),

pΓq −→ p∆q.

Here the pCiq and the corresponding t’s are in the correct places to be the arguments

to, and the values of, the function symbol fji. The d are dummy variables. We could use

tfi(0) instead of dli (since dli will be constrained to the value fi(0)) but it will be convenient

later on that the d’s are distinct. We shall call the occurrences of φk above the prefix of

the translation, and the remainder the suffix.

Now, these translations may have free variables that the original ones did not (t’s

and d’s). We cannot, therefore, assert semantic equivalence of the two. However, we are

concerned with proving valid sequents, and we can say something nearly as good:

The idea is that if the translation of a sequent is satisfied by some assignment, then

either one of the t or d variables has an incorrect value, falsifying the corresponding

instance of φk, or else they all have the correct values and the remainder of the translated

sequent is satisfied. In that case, the original sequent is satisfied by the same assignment.

Chapter 5. G P-Simulates BPLK 35

Conversely, if the original sequent is valid, then every assignment to the translation

will either falsify one of the φk’s, or else all the t’s will have the correct value and thus

the remainder of the sequent will be satisfied. Therefore,

Claim 5.1.7. For any sequent S from the language of BPLK, S is valid if and only pSq

is.

The final lemma in this section shows that translations are polynomial size:

Lemma 5.1.8. Let S be a sequent from the BPLK-proof < π, P >. Then |pSq| ∈

O(|P |2|π|2).

Proof. First note that for any BPLK formula φ, we have |φ̂|, |pφq| ∈ O(|φ|). These

operators add a constant number of symbols for each replacement they perform, and this

number is bounded by the size of the formula.

Next, consider the construction of φi from φi−1. The following are added:

• 2 copies of Âi

• 2 copies of B̂, for each B which is the argument to a function symbol in Ai (in the

section (*))

• 3 occurrences of the corresponding v variables (in the section (*) and the quantifier)

• section (**) whose size is in O(|P |).

Therefore summing these all up for φ0 through φk we see that the last item dominates

the sum and that |φk| ∈ O(|P |2).

Finally, pSq consists of the prefix, at most |π| occurrences of φk, each with substi-

tutions of size at most |π|, followed by the suffix, of size O(|S|). Therefore |pSq| ∈

O(|P |2|π|2).

Chapter 5. G P-Simulates BPLK 36

5.2 A Simulation of BPLK by G

We first show that proofs of sequents from two special classes are efficient to find.

Lemma 5.2.1 (Existence Sequents). There is a polynomial r such that for every i,

the sequent Ei:

−→ ∀z∃uφi(z, u)

has a proof which can be found in time O(r(|Ei|)), and whose length is thus similarly

bounded.

Lemma 5.2.2 (Uniqueness Sequents). There is a polynomial r such that for every i,

the sequent Ui:

−→ ∀z1, z2, u1, u2[φi(z1, u1) ∧ φi(z2, u2) ⊃ [

(z1,1 = z2,1 ⊃ u1,1 = u2,1)∧
...

(z1,i = z2,i ⊃ u1,i = u2,i)

]

]

has a proof which can be found in time O(r(|Ui|)), and whose length is thus similarly

bounded.

Proof. These two lemmas are proved by induction in parallel.

For i = 0, the result is trivial.

Now assume the two lemmas are proved for i− 1. Let B = B1, ..., Bm be all formulas

appearing as arguments to function symbols in the definition of fi, Bw as arguments to

Chapter 5. G P-Simulates BPLK 37

fjw . Existence and uniqueness for φi−1 plus some simple manipulations give

−→ ∃v[∀z′1, ..., z′i−1, u
′
1, ..., u

′
i−1[φi−1(z′, u′) ⊃ [

...

(z′jw = B̂w ⊃ u′jw = vfjw (Bw))∧
...

(z′j = zj ⊃ u′j = uj)∧
...

]

]

].

Some more simple manipulations (simply conjoining the tautology Âi(zi, vi) = Âi(zi, vi)

inside the outermost quantifier) give

−→ ∃v[Âi(zi, vi) = Âi(zi, vi)∧

∀z′1, ..., z′i−1, u
′
1, ..., u

′
i−1[φi−1(z′, u′) ⊃ [

...

(z′jw = B̂w ⊃ u′jw = vfjw (Bw))∧
...

(z′j = zj ⊃ u′j = uj)∧
...

]

]

],

and then ∃ : right (on the u’s and one instance of Âi) and ∀ : right (on the z’s) yield

the existence sequent for φi.

Now in the case of uniqueness, note that

φi(z, u) −→ φi−1(z, u)

Chapter 5. G P-Simulates BPLK 38

has a short proof using existence and uniqueness for i−1 and some simple manipulations.

Thus,

−→ φi(z1, u1) ∧ φi(z2, u2) ⊃ [

(z1,1 = z2,1 ⊃ u1,1 = u2,1)∧
...

(z1,i−1 = z2,i−1 ⊃ u1,i−1 = u2,i−1)

]

(∗)

follows by uniqueness for i− 1. Now we proceed as follows:

First by the definition of φi,

φi(z1, u1) ∧ φi(z2, u2) −→

∃v[Âi(z1,i, v) = u1,i ∧ ...] ∧ ∃v[Âi(z2,i, v) = u2,i ∧ ...].

Then renaming the quantified variables and doing some simple manipulations,

φi(z1, u1) ∧ φi(z2, u2) −→

∃v1, v2[[Âi(z1,i, v1) = u1,i ∧ ...] ∧ [Âi(z2,i, v2) = u2,i ∧ ...]].

Uniqueness for i − 1 and more manipulations allows us to prove that the v’s in one of

the conjuncts are equal to those in the other, and thus produce

φi(z1, u1) ∧ φi(z2, u2) −→

∃v1, v2[[Âi(z1,i, v1) = u1,i ∧ ...] ∧ [Âi(z2,i, v1) = u2,i ∧ ...]].

We can similarly consolidate the z’s by adding a hypothesis:

φi(z1, u1) ∧ φi(z2, u2) −→

z1,i = z2,i ⊃ ∃v1, v2[Âi(z1,i, v1) = u1,i ∧ Âi(z1,i, v1) = u2,i].

Contracting,

φi(z1, u1) ∧ φi(z2, u2) −→ z1,i = z2,i ⊃ ∃v1, v2[u1,i = u2,i].

We can now drop the quantifier:

φi(z1, u1) ∧ φi(z2, u2) −→ z1,i = z2,i ⊃ [u1,i = u2,i].

Chapter 5. G P-Simulates BPLK 39

Some simple manipulations to combine this last sequent with (*), and then ¬ : right

and several applications of ∀ : right produce the uniqueness sequent for i.

Finally, we can state and prove the main result:

Theorem 5.2.3. If S has a BPLK-proof π1, then S has a G-proof π2 which, given π1,

can be found in time polynomial in |π1| (and thus has polynomial size).

Proof. We construct π2 directly by translating π1, sequent-by-sequent, into the language

of G, relative to the Boolean program of π1. If necessary, we insert sequents to prove the

translation of a sequent from the translations of its hypotheses.

First of all, if S is an initial sequent of BPLK, then it is function symbol free and so

its translation is itself, and thus already an initial sequent of G.

Now consider a non-initial sequent S inferred from previous ones. If the inference was

weakening, contraction, or introduction of ¬, ∧ or ∨, then the same rule yields pSq.

If S = T (ψ) is inferred from T (p) by subst, then note that without loss of generality

we may assume that p does not occur in ψ. Otherwise we could modify π1 to perform

subst twice; once to substitute ψ(q) for p (q is a variable which does not occur in T) and

then again to substitute p for q. To simulate the substitution in G, first use lemma 3.2.4

to substitute pψq for p in pTq(p, t), obtaining pTq(pψq, t). Finally, apply lemma 5.2.4,

which follows after this proof.

The last case in the proof is when S is inferred by fi-introduction, introducing

fi(B(p)). Then clearly the sequent

φk(...), ... −→ pAi(B)q(p, t) = tfi(B),

together with some simple manipulations, will produce pSq (basically just by using cut).

We derive the desired sequent as follows: First, the following is straightforward:

φk(0, pBq, u, tfi(B), d) −→ φi(0, pBq, u, tfi(B), d).

Chapter 5. G P-Simulates BPLK 40

Next, we add the rest of the prefix:

φk, ... −→ φi(0, pBq, u, tfi(B), d).

Expanding the φi,

φk, ... −→ ∃v[̂Ai(zi)(pBq, v) = tfi(B) ∧].

Note that the Ai occurrence above contains t variables, from the pBq substituted for

the zi, and also v variables, from function symbols occurring in the definition of fi.

Uniqueness for φi−1 and

φk(0, pC(B)q, u, t
fj(C(B))

, d) −→ φi−1(0, pC(B)q, u, t
fj(C(B))

, d),

one sequent for each function symbol occurrence fj(C((zi))) in the definition of fi, allow

us to rename the vfj(C(zi)
in the occurrence of Âi above to t

fj(C(B))
, producing pAi(B)q,

and then we drop the existential quantifier and some conjuncts to get

φk(...), ... −→ pAi(B)q = tfi(B),

which is the desired sequent.

Nearing the end of the proof now, if S is the last sequent of the proof, then it is

function symbol-free. We need only remove the prefix from pSq to obtain S. The t

variable corresponding to the outer-most function symbol application in π1 (there may

be many outer-most applications) is defined by an occurrence of φk, but it is not used

in the definition of any of the other t variables. We may thus use ∃ : left on the t

and the d’s, followed by ∀ : left on the B’s and the 0’s, to change this occurrence into

∀z∃uφk(z, u), which we can cut away with the existence sequent and weakening. We

can now do the same for the next most outer function symbol application, and so on.

The resulting sequent at the end of this process is S, which completes the proof.

All that remains is to prove lemma 5.2.4. This lemma is analogous to lemma 4.3.2

of the previous chapter, and is needed because substitution does not commute with

translation.

Chapter 5. G P-Simulates BPLK 41

Lemma 5.2.4. If T (p) is a sequent in a BPLK-proof and ψ is a BPLK formula in

which p does not occur, then a G-proof of pT (ψ)q from pTq(pψq) can be found in time

polynomial in the size of its endsequent.

Proof. The first step is to use simple manipulations to rename all the variables t in

pTq(pψq). A variable tB(p) is renamed to tB(ψ) by an application of lemma 3.2.4. This

renaming can be done in any order, and call the resulting sequent U . Now, it is easy to

see that for every occurrence of a subformula of the form pC(p)q in pTq, the correspond-

ing occurrence in U is pC(ψ)q: This follows because whenever the translation operator

replaces a subformula B(p) of C(p) by a function symbol, the symbol’s name is tB(p), and

so after the renaming it will be tB(ψ) as it should be.

Now, consider any variable tfi(B(p)) occurring in pTq. This variable is defined by an

occurrence of φk in the prefix of pTq:

φk(0, ..., 0, pB(p)q, 0, ..., 0, d1
1, ..., d

1
i−1, tfi(B(p)) , d

1
i+1, ..., d

1
k).

(In fact, it is possible that this variable occurs only in the prefix.) After the substitution

of pψq into pTq, the corresponding occurrence became

φk(0, ..., 0, pB(p)q(pψq), 0, ..., 0, d1
1, ..., d

1
i−1, tfi(B(p)) , d

1
i+1, ..., d

1
k).

After the renaming, in U this occurrence becomes

φk(0, ..., 0, pB(ψ)q, 0, ..., 0, d1
1, ..., d

1
i−1, tfi(B(ψ)) , d

1
i+1, ..., d

1
k),

which correctly defines tfi(B(ψ)).

Now before the final step, note that the suffix of U is identical to the suffix of pT (ψ)q,

and those occurrences of φk defining t variables in the suffix of pT (ψ)q also occur in

U . The only difference, then, between U and pT (ψ)q is that the former sequent may

have some prefix formulas which the latter does not, and vice versa. We can thus use

the existence sequents (or contraction, in the case of a duplicate) to cut away the

superfluous prefix formulas from U , and weakening to add the missing ones. The result

is the desired sequent.

Chapter 6

Future Work and Conclusions

In this thesis we demonstrated a strong connection between two propositional proof

systems both based on PSPACE reasoning. These results raise many interesting questions

which remain unsolved:

6.1 A Technical Improvement

First of all, from a technical perspective it would be nice to get rid of the subst rule from

BPLK. It is shown in Dowd [15] that extended Frege systems p-simulate substitution

Frege. Boolean programs would appear to be a generalization of the extension rule, so it

seems reasonable that a similar result to Dowd’s might hold which would allow a version

of BPLK without subst to p-simulate the subst-augmented version.

6.2 Witnessing and Search Problems

Buss and Kraj́ıček in [5] show that those functions which are Σb
1 definable in T 1

2 are

exactly polynomial time projections of PLS functions. PLS is Papadimitriou’s class of

polynomial local search problems and is discussed in [19], [24] and [27]. Because of the

correspondence between T 1
2 and G1, it is therefore the case that the problem of finding

42

Chapter 6. Future Work and Conclusions 43

witnesses for the quantifiers in a proof in G1 is also exactly as hard as PLS.

Several lines of research are suggested: First, it would be interesting to characterize

the hardness of the witnessing problems for the other subsystems of G, and indeed

different kinds of definability in the subsystems of T2 and S2. Part of this work has

recently been done by Chiari and Kraj́ıček in [8] for Σb
2 and Σb

3 definability in T 2
2 but

nothing general is known yet. Secondly, there are other local search problems than PLS,

some of which are discussed in [19] and in more detail in [2]. It would be interesting to

find propositional proof systems whose witnessing problems were exactly projections of

these other local search problem classes.

6.3 Subsystems of BPLK

Another set of questions which are particularly interesting concerns the possibility of

finding natural subsystems of BPLK, akin to the structure of G. In their paper [11],

the authors find a natural restriction of Boolean programs, essentially amounting to

extension axioms, for witnessing proofs in G∗1. It would be instructive to find restrictions

of Boolean programs which would naturally witness proofs in other subsystems of G. It

would also be interesting to find some kind of a hierarchy within BPLK which may or

may not correspond to the hierarchy in G.

6.4 Miscellaneous

Finally, it is possible that due to the apparent ease of use of BPLK, more positive results

may be forthcoming than with G. For example, it may not be too difficult to produce

polynomial-sized proofs in BPLK of some of the conjectured hard examples for Frege [3]

and extended Frege systems. As another example, the connection between G and U1
2 ,

which currently is restricted to only Σb
1 formulas, might be generalized to handle more

general theorems, in particular including the second-order features of that system.

Bibliography

[1] M. Ajtai. The complexity of the pigeonhole principle. In 29th Annual Symposium on

Foundations of Computer Science, pages 346–355, White Plains, New York, 24–26

October 1988. IEEE.

[2] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann

Pitassi. The relative complexity of NP search problems. Journal of Computer and

System Sciences, 57(1):3–19, August 1998.

[3] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples

for frege systems? In P. Clote, J. Remmel (eds.): Feasible Mathematics II, pages

30–56. Birkhäuser, Boston, 1995.

[4] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

[5] Samuel Buss and Jan Kraj́ıček. An application of Boolean complexity to separation

problems in bounded arithmetic. Proceedings of the London Mathematical Society,

69:1–21, 1994.

[6] Samuel R. Buss. Relating the bounded arithmetic and polynomial time hierarchies.

Annals of Pure and Applied Logic, 75(1–2):67–77, 12 September 1995.

[7] Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier Science B. V., Amster-

dam, 1998.

44

Bibliography 45

[8] Mario Chiari and Jan Kraj́ıček. Witnessing functions in bounded arithmetic and

search problems. The Journal of Symbolic Logic, 63(3):1095–1115, September 1998.

[9] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes,

URL: ”http://www.cs.toronto.edu/∼sacook/csc2429 98”, Spring 1998.

[10] Stephen Cook and Robert Reckhow. On the lengths of proofs in the propositional

calculus (preliminary version). In Conference Record of Sixth Annual ACM Sympo-

sium on Theory of Computing, pages 135–148, Seattle, Washington, 30 April–2 May

1974.

[11] Stephen Cook and Michael Soltys. Boolean programs and quantified propositional

proof systems. Bulletin of the Section of Logic, 28(3), 1999.

[12] Stephen A. Cook. The complexity of theorem-proving procedures. In Conference

Record of Third Annual ACM Symposium on Theory of Computing, pages 151–158,

Shaker Heights, Ohio, 3–5 1971 1971.

[13] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (pre-

liminary version). In Conference Record of Seventh Annual ACM Symposium on

Theory of Computing, pages 83–97, Albuquerque, New Mexico, 5–7 May 1975.

[14] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional

proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

[15] Martin Dowd. Model theoretic aspects of P 6= NP. Typewritten manuscript, 1985.

[16] Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2–

3):297–308, August 1985.

[17] D. Hilbert and P. Bernays. Grundlagen der Mathematik I. Springer, Berlin, 1934.

[18] D. Hilbert and P. Bernays. Grundlagen der Mathematik II. Springer, Berlin, 1939.

Bibliography 46

[19] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy

is local search? Journal of Computer and System Sciences, 37(1):79–100, August

1988.

[20] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Cambridge University Press, 1995.

[21] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of first

order theories and the complexity of computations. The Journal of Symbolic Logic,

54(3):1063–1079, 1989.

[22] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the poly-

nomial hierarchy. Annals of Pure and Applied Logic, 52(1–2):143–153, 1991.

[23] Jan Kraj́ıček and Gaisi Takeuti. On bounded Σ1
1 polynomial induction. In S. R.

Buss and P. J. Scott, editors, FEASMATH: Feasible Mathematics: A Mathematical

Sciences Institute Workshop, pages 259–80. Birkhauser, 1990.

[24] Christos H. Papadimitriou. On the complexity of the parity argument and other

inefficient proofs of existence. Journal of Computer and System Sciences, 48(3):498–

532, June 1994.

[25] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer

and System Sciences, 55(1):24–35, August 1997.

[26] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:

Preliminary report. In Conference Record of Fifth Annual ACM Symposium on

Theory of Computing, pages 1–9, Austin, Texas, 30 April–2 May 1973.

[27] Mihalis Yannakakis. Computational complexity. In Emile Aarts and Jan Karel

Lenstra, editors, Local Search in Combinatorial Optimization, pages 19–55. John

Wiley and Sons, Chichester, UK, 1997.

Bibliography 47

[28] D. Zambella. Notes on polynomially bounded arithmetic. The Journal of Symbolic

Logic, 61(3):942–966, 1996.

