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Abstract

We present and evaluate various methods for purely au-
tomated attacks against click-based graphical passwords.
Our purely automated methods combine click-order heuris-
tics with focus-of-attention scan-paths generated from a
computational model of visual attention. Our method re-
sults in a significantly better automated attack than pre-
vious work, guessing 8-15% of passwords for two repre-
sentative images using dictionaries of less than 2245 en-
tries, and about 16% of passwords on each of these im-
ages using dictionaries of less than 23'* entries (where the
full password space is 2*3). Relaxing our click-order pat-
tern substantially increased the efficacy of our attack al-
beit with larger dictionaries of 23*7 entries, allowing at-
tacks that guessed 48-54% of passwords (compared to pre-
vious results of 0.9% and 9.1% on the same two images with
235 guesses). These latter automated attacks are indepen-
dent of focus-of-attention models, and are based on image-
independent guessing patterns. Our results show that au-
tomated attacks, which are easier to arrange than human-
seeded attacks and are more scalable to systems that use
multiple images, pose a significant threat.

1 Introduction

Graphical passwords are an alternative to traditional text
passwords, whereby a user must remember an image (or
parts of an image) in place of a word. They are moti-
vated in part by the well-known fact that people are bet-
ter at remembering images than words [19]. There are
many different types of graphical passwords; among the
more popular approaches is click-based graphical pass-
words [31, 16, 2, 13, 6], which require users to click on
a sequence of points on one or more background images.
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The most effective attack strategy to date on these schemes
appears to be human-seeded attacks [27], although such at-
tacks are more difficult to arrange than attacks based on
purely automated means and do not scale well for systems
that use multiple images. In this paper, we pursue purely
automated approaches for guessing attacks.

We pursue heuristic-based strategies for purely auto-
mated dictionary generation (e.g., based on click-order pat-
terns), and strategies to prioritize these dictionaries using
image processing methods to identify points that users are
more likely to choose. We hypothesize that users will
choose click-points according to a click-order pattern, to
help remember the password as fewer “chunks” [8]. We
further examine use of the DIAG click-order pattern [27],
which captures arcs that are consistent in both horizontal
and vertical directions, and a subset of this pattern that we
call LINE that captures only horizontal and vertical lines.
We relax the rules on these definitions, showing that a
“lazy” approach to these click-order patterns is substantially
more effective.

We further hypothesize that users will choose click-
points based on their preference for certain points in the
image, and that their preference for certain points will be in-
fluenced by how much they are naturally attracted to those
points. Attention is the cognitive process of selectively fo-
cusing on one aspect of the environment while ignoring oth-
ers, a mechanism that helps us prioritize sensory informa-
tion. There are two different categories of visual attention
models: bottom-up and top-down. Bottom-up visual atten-
tion captures how attention is drawn to the parts of a scene
or image that are salient or conspicuous. It is what natu-
rally draws us to look at the unexpected or different parts
of a scene, prioritizing them from the other consistent parts.
For example, if an image contains a large number of objects
that are blue, and only one is yellow, human attention will
instinctively focus on the yellow object. Top-down visual
attention is task-dependent, based on cognitive, volitional
control. With a priori knowledge about what object(s) to
look for, our attention is brought to the parts of the scene
containing those object(s). For example, if a user decides
that people with dark hair are of interest for some reason,



the user’s attention would shift between objects with fea-
tures that might indicate a dark-haired person.

Our contributions include the best purely automated at-
tacks to date against click-based graphical passwords, an
evaluation of how the model of Itti et al. [15] relates to
user-selected click-based graphical passwords, and a new
spatial clustering algorithm. Two different hypotheses were
tested regarding how users might choose their click-points
relative to Itti’s model. Our methods were tested using the
same field study database used by Thorpe et al. [27], allow-
ing us to compare performance. We found that a “lazy”
approach to click-order patterns produced a substantially
better automated attack than previous methods with com-
parable dictionary sizes and images [27, 10], guessing 48-
54% of passwords (compared to 0.9-9.1% previously) on
two different images used in a long-term field study with a
dictionary of about 235 entries. Furthermore, we were able
to optimize this dictionary using Itti’s model, producing dic-
tionaries whose efficacy is comparable to human-seeded at-
tacks [27]: one dictionary of 2393 entries guessed 15.8% of
passwords on one image, and on a second image a dictio-
nary of 2314 entries guessed 16.5% of passwords.

The remainder of this paper proceeds as follows. Section
2 discusses background and related work, including compu-
tational models of visual attention. We describe our purely
automated attack generation methods in Section 3, results
in Section 4, future work in Section 5, and conclusions in
Section 6.

2 Background and Related Work

We discuss computational models of visual attention in
Section 2.1, and terminology in Section 2.2. Many different
types of graphical passwords have been proposed to date
(see surveys [26, 20]). Here we give a brief overview fo-
cused on click-based graphical password schemes and other
work on modeling user choice in graphical passwords.

Click-based graphical password schemes require a user
to click on a set of points on one or more presented back-
ground images. In Blonder’s proposal [2] users must click
on a set of predefined tap regions. In V-go, by PassLogix
[24], users must click on predefined objects in the picture
in a specific sequence. In the Jansen et al. [16] variation
for PDAs, users click an ordered sequence of visible grid
squares imposed on a background image; the squares are
intended to help the user repeat their click-points in subse-
quent logins.

PassPoints [32, 31, 30] allows users to click a sequence
of five points anywhere on an image while allowing a degree
of error tolerance using robust discretization [1]. Various
studies have shown that PassPoints has acceptable usability
[30, 32, 31, 5]. visKey, a commercial system for the Pocket
PC, appears similar but allows the user to choose the num-

ber of click-points and set the error tolerance. In the Per-
suasive Cued Click-Points (PCCP) [4, 6] variation, a user
clicks on a single point on each of five images, guided par-
tially by a randomly placed viewport; each image displayed
(after the first) is dependent on the previous click-point.

Two previous studies have examined the security of
PassPoints-style graphical passwords. Dirik et al. [10] ex-
amine the efficacy of an automated tool for guessing Pass-
Points passwords. Their method, which does not draw on
a standard computational model of visual attention, uses
centroids of segments as guesses (but no corners). It was
tested against a database of single-session user choices for
two images. For the image with a reasonable level of detail,
their method guessed 8% of passwords with a dictionary of
232 entries compared to full space of 247 entries. As pre-
viously discussed, Thorpe et al. [27] examine both an auto-
mated method (based on stage 1 of Itti et al.’s [15] model
of visual attention; see Section 2.1), and a human-seeded
method (which uses click-point data from a set of users’
password choices).

User choice has been successfully modeled for other
graphical password schemes. Davis et al. [9] modeled
user choice for Faces and Story recognition-based graphical
passwords by training a dictionary using a large password
database. Van Oorschot et al. [28] model user choice in
“Draw-A-Secret” pure-recall graphical passwords [17] mo-
tivated by cognitive studies.

2.1 Models of Visual Attention

We conjecture that a significant percentage of users will
choose points that draw their attention as components of
their click-based passwords, and thus that computational
models of visual attention may help pick out more probable
click-points. Computational models of bottom-up visual at-
tention are normally defined by features of a digital image,
such as intensity, color, and orientation [15, 14].

Computational models of top-down visual attention can
be defined by training [22]. The difficulty of these models
is that the top-down task must be pre-defined (e.g., find all
people in the image), and then a corpus of images that are
tagged with the areas containing the subject to find (e.g.,
people) must be used for training. Navalpakkam et al. [21]
discuss an alternate method to create a top-down model,
based on Guided Search [33], which weighs visual feature
maps according to the top-down task. For example, with
a task of locating a red object, a red-sensitive feature map
would gain more weight, giving it a higher value in the re-
sulting saliency map. In both cases, assumptions regarding
what sort of objects people are looking for are required to
create such a model.

In this work, we focus on bottom-up visual attention, us-
ing Itti et al.’s [15] computational model of visual attention.



We use this particular model as it is quite well-known, and
there is empirical evidence that it captures people’s bottom-
up visual attention [23]. The general idea behind this model
is that areas of an image will be salient (or visually “stand
out”) when they differ from their surroundings.

We now explain Itti’s model in further detail. Given
an input image, it outputs a focus-of-attention scan-path to
model the locations and the order in which a human might
automatically and unconsciously attend them. It is com-
posed of two stages: (stage 1) construction of a saliency
map based on visual features, and (stage 2) the use of a
winner-take-all neural network with inhibition of return to
define a specific focus-of-attention scan-path, whose goal is
to replicate the order in which a user would scan the im-
age. Thorpe et al. [27] developed an automated attack for
click-based graphical passwords that focused only on a vari-
ation of stage 1, ordering an attack dictionary based on the
raw values of the resulting saliency map. The present paper
uses the entire model including stage 2.

In stage 1, the saliency map is created by decompos-
ing the original image into a set of 50 multi-level “feature
maps”, which extract spatial discontinuities based on color
opponency (either red-green or blue-yellow), intensity, or
orientation. Each level defines a different size of the center
and its surround, in order to account for conspicuous loca-
tions of various sizes. All feature maps are then combined
into a single saliency map.

In stage 2, a winner-take-all neural network detects the
point of highest salience (as indicated by the intensity value
of the saliency map), and draws the focus of attention to-
wards this location. Once an area has been attended to, in-
hibition of return will prevent an area from being the fo-
cus again for a period of time. Together, the winner-take-
all neural network with inhibition of return produces out-
put in the form of spatio-temporal attentional scan-paths,
which follow the order of decreasing saliency as defined by
stage 1. Two different normalization types can be used with
the model: LocalMax and Iterative (cf. Figure 1). In Iter-
ative normalization, the neural network will find the next
most salient area that has not been inhibited. In LocalMax
normalization, the neural network will have a bias towards
those areas that are closer to the previously attended loca-
tion. Each normalization type produces a different scan-
path; we study and compare the results of each as relates to
our work.

2.2 Terminology

We hypothesize that users are more likely to choose dis-
tinguishable points as click-points. We define a distinguish-
able point as a point on a digital image that can be easily dis-
tinguished and relocated by a user. General ways this could
be accomplished include: (1) by using referencable points

on the image (e.g., a corner), and (2) by using calculable
points that are based on other referencable parts of the im-
age (e.g., object centers). In related work, Thorpe et al. [27]
used corner detection to find referencable points, and Dirik
et al. [10] used centroids to find calculable points. Here, we
use both approaches to define a distinguishable points map
0. We describe the details of each method below.

We use the following additional terminology. Suppose
that a user chooses a click-point ¢ as part of her password.
The tolerable error or tolerance t is the error allowed (in
both vertical and horizontal directions) for a click-point en-
tered on a subsequent login to be accepted as c. This de-
fines a folerance region (T-region) centered on ¢, which for
an implementation using ¢ = 9 pixels, is a 19 x 19 pixel
square. A 19 x 19 T-region was used in the implementation
for collecting the database [27] used herein for evaluating
our results.

A window cluster is a square region of size n x n for
some positive integer n. A cluster is a set of one or more
points that lie within a window cluster. The center of a win-
dow cluster is representative of all the points within the win-
dow cluster. An alphabet is a set of distinct window centers.

Corner Detection. A corner can be defined as the inter-
section of two edges, where an edge is defined by the points
in a digital image where there are sharp changes in intensity
[11]. A corner can also be defined as a point in whose lo-
cal neighborhood there are two dominant and different edge
directions [11].

We use the harris algorithm [12] as implemented by
Kovesi [18] for detecting corners. Harris corner detection
first identifies the edges and then those edges are blurred to
reduce the effect of any noise. Then an energy map is gen-
erated, based on the edges that contain local maxima and
minima. A local maximum indicates the presence of a cor-
ner. We run harris corner detection with the parameters:
o =1,0 = 1000 and r = 3, where o is the standard devi-
ation of a smoothing Gaussian filter, 6 is a threshold for the
maximum number of corners, and r is an inhibition radius,
measured in pixels around a detected corner.

Figure 2 shows the pool image where each detected cor-
ner is illustrated by a ‘+’. We also create a binary corners
map, which is a specialized type of binary map (i.e., a one-
to-one mapping from its pixels of value O or 1 to the pix-
els of the original image). In a binary corners map, when
a pixel is a corner in the original image, its corresponding
value is 1; otherwise it is O.

Centroid Detection. To find the centers of objects, we
first partition the digital image into segments using image
segmentation, the goal of which is to change the representa-
tion of an image into something more meaningful and easier
to analyze [25]. We use the mean-shift segmentation algo-
rithm [7], which takes a feature (range) bandwidth, spatial
bandwidth, and a minimum region area (in pixels) as input.



(a) LocalMax normalization

(b) Iterative normalization

Figure 1. pool image with the first 7 items in the scan-path.

Figure 2. Corner detection (left) and center detection (right) output for pool.

We set these parameters to 7, 9, and 50 respectively, which
we found empirically to provide an acceptable segmentation
with the smallest resulting number of segments.

After segmentation, we calculate the center of each seg-
ment (centroid) by calculating the arithmetic mean of each
coordinate of the segment’s points. In other words, the
center (Xg,Ys) of segment S is calculated by Xg =
ﬁ Y icgTiand Yg = ﬁ > ics Yi» Where z; and y;
are pixel coordinates, and n(S) denotes the fotal number
of pixels in segment S. The x coordinates of all points in
S are involved in calculating X g, not only those along the
maximum width.

Figure 2(b) illustrates the resulting segments of the pool
image with different shading. The center of each segment
is denoted by a ‘+’. We also create a centers map, which is
a binary map of the same size of the corresponding image
where each pixel has the value O or 1. If a pixel is a center
of a segment in the corresponding image, its value is 1; oth-

erwise its value is 0. The distinguishable points map 9 is a
binary map that is the logical (inclusive) “or” of the binary
centers map and binary corners map.

3 Experimental Methodology

We pursue attacks that use click-order patterns and im-
age processing methods for creating more efficient, ordered
attack sub-dictionaries. We describe the specific click-order
patterns we examine and their specification in Section 3.2.
The image processing methods which we used for further
optimization are described in Section 3.1, along with the
window clustering algorithm we use to optimize the dictio-
nary.



3.1 Image Processing Method

We used the Saliency Toolbox [29] implemented in Mat-
lab. The weights of all feature maps used by the toolbox
are set to one, to indicate that orientation, intensity and
colors have the same level of importance. All the other
settings of this toolbox are set to default except normal-
ization type, which can be either Iterative or LocalMax.
Since each of these two normalization types cause differ-
ent spatio-temporal attentional scan-paths, we tested both
in our experiments. For each, we examine two different
styles of generating a dictionary for use in a guessing attack
described below.

For each dictionary guessing style, we generate a map of
candidate click-points using our distinguishable points map
0 as a bitmask to the resulting attracted regions of the image
(i.e., using a logical “and”). We then refine this binary map
of candidate points as follows.

Window Clustering Algorithm. We assume that an at-
tacker’s goal is to guess the largest number of passwords
with the fewest guesses. After creating a set of points for a
guessing dictionary (which might be used in passwords in
any ordering of five clicks), many of them may be within the
same tolerance region, and thus could be redundant (effec-
tively guessing the same point). We devised a “clustering”
method to normalize a set of points to a single value. The
intuition is that given the system error tolerance, one point
would be accepted as a correct entry for all others within
its tolerance region. A previous clustering algorithm [27]
centers each cluster on one of the original input points.

We introduce an alternative, Window Clustering, based
on setting a window of fixed size (not necessarily the same
size as the tolerance region) over the largest number of
points it can cover. We then replace those candidate points
inside the window with the geometric center of the win-
dow. Thus, the center of the cluster is not necessarily one of
the original input points. Figure 3 shows an example set of

Figure 3. Window Clustering

candidate points with black squares, where each square rep-
resents a pixel. These 7 candidate points are covered with
two 3 x 3 windows and will be represented by the centers
of the two windows illustrated with grey squares.

Window Clustering is a greedy algorithm with a fixed
window size. Starting with all candidate points, it finds the

next position for the window that covers the maximum num-
ber of remaining points (ties are broken arbitrarily). It then
stores the center of the window to represent the points in
the window, and erases the corresponding points. It con-
tinues this process until no candidate points remain. In our
experiments, the candidate points we use are the points with
value 1 in Sp, of Section 3.1.1 and B; of Section 3.1.2. The
window size is set to 19 x 19 in our experiments.

3.1.1 Guessing Style: Ordered by Scan-Path

The hypothesis here is that users may choose their password
points from separate attracted regions, following the order
of the focus-of-attention scan-path. The ordered dictionary
described in this subsection is designed to test this hypoth-
esis.

Using the visual attention tool, we generate S, a set of
binary maps, where each binary map is generated in a sin-
gle step of the scan-path. S = {41, As, ..., A,,} where A;
denotes the generated binary map in step ¢ and n is the to-
tal number of steps. Pixels of a binary map A; have value
1 if they belong to the attracted region of step i, otherwise
0. S, = {A1 AN, Ay NG, ..., A,y A G}, and then the win-
dow clustering algorithm is run separately on each element
in Sy to create S.. S, contains n sets of candidate points,
each set containing the cluster centers produced from run-
ning the clustering algorithm on the corresponding element
of Sy . To create each entry of the dictionary, we choose all
sets of five elements of S, and then order these elements by
increasing index. Finally, we choose one point from each
of these five elements, while retaining the element order-
ing, to put in the dictionary. Thus each dictionary entry is a
five-point graphical password, where each point belongs to
an element of S., and the five points (each belonging to a
distinct scan-path element) are ordered by the order of the 5
elements in the scan-path.

3.1.2 Guessing Style: Unordered Incremental

Here the hypothesis is that users may choose their click-
points based on points that fall along the focus-of-attention
scan-path, but not necessarily in the order of the scan-path.
The unordered incremental (UI) dictionary is designed to
test this hypothesis. We call the UI dictionary with Local-
Max normalization V' A;, and with Iferative normalization
V As.

Using the visual attention tool, we generate a set of
binary maps S’, where the i*" binary map is generated
from all of the steps until step ¢ in a scan-path: S’ =
{B1,Bs,...,B,} where B, = A; V A2V ..V A;. In
other words, B; = B;_1 V A; and By = A;. Next, we
calculate {C4,Cy,...,Cy} where C; = B; A 6, the in-
tersection (logical “and”) of each element B; with §, and



run the window clustering algorithm on each C; to pro-
duce D;, the resulting set of cluster centers (which are
pixel locations on the image). A sub-dictionary P; is all
5-permutations of the elements of D;, and so the final dic-
tionary P = {Py, P,,...,P,} is ordered by the number
of steps in the scan-path that are considered, e.g., all pass-
words from P, are only guessed after those in P; are ex-
hausted.

3.2 Click-order Patterns and Relaxation

We examine two click-order patterns alone (DIAG and
LINE), and with what we call lazy and super-lazy vari-
ations that relax the definition of the patterns alone. The
two click-order patterns are (1) DIAG and (2) LINE, a
subset of DIAG that we introduce herein. DIAG includes
any sequence of 5 click-points that follow both a consis-
tent vertical and horizontal direction (e.g., straight lines
in any direction, most arcs, and step-patterns). LINE in-
cludes any sequence of 5 click-points that follow either
a vertical or horizontal line. More specifically, DIAG =
LRTBULRBTURLTBURL_BT. Thus DIAG is
the union of four sets of passwords. In the descriptive
name of each set, the first two letters show the horizon-
tal direction and the last two are related to vertical direc-
tion. LR and RL denote left-to-right and right-to-left re-
spectively; T'B and BT denote top-to-bottom and bottom-
to-top respectively. Each of the four sets in DIAG consists
of all 5-point passwords whose successive pairs of points
(4, i), (Tix1,yitr1) satisfy the specified constraints. By
convention, the positive y axis extends downward from the
top-left pixel of the image.
LR_BT: (.L“z < Tijy1+T
RL_BT: (x;

LR_TB: (Ltl <xiy1+7T
RL.TB: (x;

Similarly, LINE = LRURLUBT UT B, where the four sets
in LINE consist of all passwords whose successive pairs of
points satisfy analogous constraints as follows.

LR: (z; < @ip1 +7) A (|yi — yira| < 7)

RL: (2 > ip1 — 7) A (|yi — yita| < 7)
BT: (y; > yit1 + 1) A (i — zipa| < 7)
TB: (yi < Yit1 +7) A (i —zip1] < 7)

For both LINE and DIAG, the allowance 7 serves the
purpose of relaxing the pattern, since although the user
might be inclined to select points along a line, the elements
of that line may be influenced by which click-points the user
otherwise prefers. If the image has many straight-line struc-
tures, it would seem reasonable to expect that users would
choose straighter lines, but in the absence of linear struc-
tures in the image, the lines may be more of an approxi-

mation. To this end, we introduce two variations on both
DIAG and LINE, that relax 7 in their above definitions to
allow “lazier” lines: “lazy”, which uses 7 = 19 and “super-
lazy”, which uses 7 = 28. In the normal relaxation case,
we use 7 = 9 (i.e., equal to the system error tolerance).

We denote a dictionary using a lazy or super-lazy 7 with
superscripts + and ++ respectively.

4 Experimental Results

To allow meaningful comparison, we tested our methods
by trying to guess users’ graphical passwords, using a pre-
vious PassPoints user study password database which we
summarize below. Sections 4.1 and 4.2 report on the guess-
ing styles of Section 3.1.

Review of User Study. The field study used to allow
comparison [27, 5] was 7-weeks or longer (depending on
the user), involving 223 user accounts on a web-based im-
plementation of PassPoints to gain access to course notes,
assignment solutions, and tutorials. We focus on the field
study rather than the related lab study for increased confi-
dence that the passwords we are studying have some degree
of long-term memorability. Participants were from three
undergraduate classes: two first year courses for computer
science students, and a first year course for non-computer
science students enrolled in a science degree. Participants
used one of two background images, pool or cars (see Fig-
ure 4), carefully preselected to be representative of highly
detailed usable images at 451 x 331 pixels.

Figure 4. cars (originally from [3]). See Figure
1 for pool (unmodified version from [32, 31]).

Passwords had 5 click-points, no two within ¢ = 9 pixels
of another (vertically and horizontally). Consistent with the
previous study, we used only the final passwords exercised
by each user (and recalled at least once). These 223 user
accounts mapped to 189 distinct users (34 users were in two



classes; all but one of them were assigned a different image
for each account). Overall, 114 user accounts used pool and
109 used cars as a background image.

4.1 Ordered Scan-Path Results

We tested the hypothesis that users choose click-points
in the order of their focus-of-attention scan-path, using the
method of Section 3.1.1. We found that this method did
not guess any passwords correctly. This indicates that users
do not choose click-points along a partial ordering of the
scan-path elements the model produces (under the default
settings we used).

We see two possible reasons for this result: (1) users
do not choose their click-points entirely based on bottom-
up visual attention; or (2) the model of visual attention as
used does not accurately capture bottom-up visual attention.
Our results in Section 4.2 suggest that bottom-up visual at-
tention, according to this computational model, might be a
partial factor in user choice.

4.2 Incremental LocalMax and Patterns

We tested our hypothesis that users choose click points
based on bottom-up visual attention using V' A1, the incre-
mental attack of Section 3.1.2 with LocalMax normaliza-
tion.! The V A; attack strategy uses the scan-path to pri-
oritize the dictionary entries; all 5-permutations of points
using only the first scan-path element are considered before
all 5-permutations using both the first and second elements,
etc. This method is applied in combination with the various
click-order patterns of Section 3.2, combining V' A; with
each of DIAG and LINE click-order patterns at all laziness
modes. The cumulative distribution function (CDF) of our
results (until each dictionary is exhausted) are provided in
Figure 5.

Dictionary Entries % guessed
pool cars
aDIAG 2330 1 21.1% | 27.5%
aDIAGY, aDIAGTT 2347 1°48.2% | 54.1%
oLINE 22011 35% | 22.0%
aLINET, aLINE*TT 2277 123.7% | 52.3%

Table 1. Results for click-order heuristics.

To examine the efficacy of using click-order pattern
heuristics alone (i.e., without additional image processing
methods as in Figure 5), we also used the following alpha-
bet o with click-order patterns DIAG and LINE to generate

I'We also tried our attack using V Ag; it did not perform very well,
indicating that the apparently small strategy change (global bias for V 4
vs. local bias for V' A; in the neural network algorithm) can have a large
effect

dictionaries aDIAG and aLINE. « is a set of points defined
to partition an entire image into T-regions (recall Section
2.2) by placing a grid of 19 x 19 windows (i.e, the same
size as the T-region) over the image. The centers of each
window compose the alphabet. Note that the T-region used
in creating « is only dependent upon the system error tol-
erance, and is independent of the 7 used in our different re-
laxation modes. Table 1 presents our results. Note that the
values in Table 1 for the dictionaries marked ‘+” and ‘++’
are the same because the T-regions are non-overlapping, and
the difference between 7 = 19 and 28 is not sufficient to in-
crease the number of included T-regions.

Many interesting points emerge from the graphs in Fig-
ure 5 and values in Table 1. The most notable in terms of
success rate is the DI AG™ dictionary of Table 1, which
guesses 48% of passwords for pool and 54% of passwords
for cars with dictionaries of less than 235 entries. Previous
purely automated attacks [27] against these same images on
the same password database, with a dictionary of 2% en-
tries, guessed 9.1% of passwords on cars and 0.9% of pass-
words on pool. Similarly, a LINE™ of Table 1 guesses
23.7% of passwords for pool, and 52.3% of passwords for
cars using a dictionary of about 227-7 entries. It is inter-
esting that when using o LIN E the percentage of pass-
words guessed for cars only drops by about 2%, while the
accuracy for pool only drops by about 24% (about half as
many passwords are guessed), despite a dictionary size re-
duction of 2% times. This implies that « LI N E™ is the most
efficient (in terms of accuracy and dictionary size) click-
order pattern studied to date. It is not surprising that the
LINE variations work better on the cars, given the number
of straight line structures in the image and the orientation of
the cars in the parking lot. It seems more surprising to see
LINE variations working as well as they do for pool.

The V A; optimization of Figure 5 does appear to cre-
ate a more efficient dictionary: for the DI AG T variation,
we are able to guess 15.8-16.5% in dictionaries of less than
2313 entries, and for the LIN E+ variation, 7.9-14.7% of
passwords using a dictionary of less than 2246 entries. The
relative “efficiency” of the dictionaries, however, cannot be
extended in their present form to guess a larger percentage
of passwords, because the full dictionaries are exhausted.

5 Discussion and Future Work

Our overall results indicate that although essentially no
users choose their click-points in the strict scan-path or-
der of Itti’s model of visual attention, when all permuta-
tions of points in the scan-path are considered, it models
a meaningful percentage (from an attacker viewpoint) of
user passwords. This raises interesting questions regarding
how visual attention relates to user choice in graphical pass-
words. Our results would be consistent with the hypothesis
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Figure 5. CDFs for different attacks with LocalMax normalization (i.e., V A;).

that bottom-up visual attention is a factor in user choice for
some users (and/or for some images), but not necessarily
for all users.

It would be interesting to further explore whether there
are top-down models under various plausible assumptions,
that may more accurately model user choice. For exam-
ple, might the first point be chosen according to bottom-
up visual attention, and then the rest chosen in a top-down
manner such that they are somehow similar to the first? Al-
ternately, might the entire process be top-down, based on
whether the user can find five objects that are similar in
some way? Such a top-down theory would be substantially
more difficult to model an attack on, but if possible to im-
plement, its results would offer interesting insight.

The distinguishable points map ¢ could be enhanced in
several ways, to refine the attacks presented herein. We ex-
pect the dictionaries could be further improved by incorpo-
rating other types of calculable points, such as north, south,
east, and west on circles and squares. Also, changing the

parameters to the algorithms we use to identify distinguish-
able points might provide better results, or changing the pa-
rameters for the visual attention model. It would also be
interesting to explore whether settings can be optimized for
a wide range of images, or if optimal settings are highly-
image specific. Regarding our image-independent attacks
which rely only on generic patterns and window clustering,
exploration of other patterns may prove fruitful.

6 Concluding Remarks

We provide what appears to be the best automated at-
tack against PassPoints-style graphical passwords to date.
Click-order patterns, DIAG and LINE, combined with our
laziest relaxation rule, yielded highly effective dictionaries.
We were able to further reduce the dictionary size while
retaining some accuracy using Itti et al.’s [15] computa-
tional model of bottom-up visual attention. Our results are a
significant improvement on previous work for purely auto-



mated guessing PassPoints-style graphical passwords. Us-
ing a dictionary of 235 entries, a DI AGT™, we were able to
guess over 48% of user passwords for each of two images,
whereas previous work was able to guess 0.9-9.1% [27] for
the same images and user study password database and 8%
[10] for a single (comparable) image.

Although these lazy click-order dictionary sizes are not
as small as previous dictionaries used for human-seeded at-
tacks, when we combine them with a model of visual atten-
tion [15], our results are comparable to the human-seeded
results for cars. Using a dictionary of 233 entries, the
VA-DIAGTT dictionary guessed 15.8% of passwords on
pool, and using a dictionary of about 2314 entries it guessed
16.5% of passwords on cars. For cars, the basic human-
seeded attack [27] guessed 20% of passwords with a dic-
tionary of 233 entries. This suggests that automated attacks
provide an effective alternative to a human-seeded attack
against PassPoints-style graphical passwords. Furthermore,
they allow continuation of an attack through using click-
order patterns without prioritization by some other means,
guessing more passwords overall than human-seeded meth-
ods. Finally, they are arguably much easier for an attacker
to launch (removing the requirement of humans to index
the images), especially if large image datasets are used. We
emphasize that the attack dictionaries used for Table 1 in-
cluding the dictionary in the previous paragraph, do not rely
on visual attention techniques or any image-specific pre-
computation, implying that the actual dictionaries are the
same for all images, though the attack results (i.e., their ef-
fectiveness) are image-dependent and of course depend also
on the actual passwords chosen by any users in question.

We evaluated different guessing styles using Itti’s model
and found that using the first 30 steps of the model’s scan-
path output, none of the user passwords in the database
followed along the scan-path order (i.e., 5 ordered points
within the 30-element scan-path ordering), but a number of
passwords were composed of points within other orderings
of the scan-path elements. If we assume that Itti’s model
using the default settings is an accurate representation of
bottom-up visual attention, these results are consistent with
bottom-up visual attention being one part of a broader crite-
ria for selecting click-points. Alternately, these click-points
might be chosen according to some other phenomenon that
happens to have a non-null intersection with this model of
bottom-up visual attention.

Using Iterative normalization, our attack based on the
visual attention model did not perform very well, indicating
that the bias of proximity (local saliency vs. global saliency)
can have a dramatic effect. Our success using LocalMax
normalization suggests that users are more likely to choose
successive points that are closer to one another than on the
other side of the image. The difference in results suggests
that the success of the LocalMax attack is not a chance ef-

fect, but rather it actually locates the parts of the image that
users are more inclined to choose as click-points. Even bet-
ter results may be possible through other (unknown) neural
network strategies.

It remains unclear how universal the inducement of users
to fall into click-order patterns is across a broad universe of
images, or whether image processing measures might ef-
fectively filter out images that are more prone to structure-
based click-order patterns like those exploited in our at-
tacks.
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